Package: DeepPINCS 1.15.0

Dongmin Jung

DeepPINCS: Protein Interactions and Networks with Compounds based on Sequences using Deep Learning

The identification of novel compound-protein interaction (CPI) is important in drug discovery. Revealing unknown compound-protein interactions is useful to design a new drug for a target protein by screening candidate compounds. The accurate CPI prediction assists in effective drug discovery process. To identify potential CPI effectively, prediction methods based on machine learning and deep learning have been developed. Data for sequences are provided as discrete symbolic data. In the data, compounds are represented as SMILES (simplified molecular-input line-entry system) strings and proteins are sequences in which the characters are amino acids. The outcome is defined as a variable that indicates how strong two molecules interact with each other or whether there is an interaction between them. In this package, a deep-learning based model that takes only sequence information of both compounds and proteins as input and the outcome as output is used to predict CPI. The model is implemented by using compound and protein encoders with useful features. The CPI model also supports other modeling tasks, including protein-protein interaction (PPI), chemical-chemical interaction (CCI), or single compounds and proteins. Although the model is designed for proteins, DNA and RNA can be used if they are represented as sequences.

Authors:Dongmin Jung [cre, aut]

DeepPINCS_1.15.0.tar.gz
DeepPINCS_1.15.0.zip(r-4.5)DeepPINCS_1.15.0.zip(r-4.4)DeepPINCS_1.15.0.zip(r-4.3)
DeepPINCS_1.15.0.tgz(r-4.4-any)DeepPINCS_1.15.0.tgz(r-4.3-any)
DeepPINCS_1.15.0.tar.gz(r-4.5-noble)DeepPINCS_1.15.0.tar.gz(r-4.4-noble)
DeepPINCS_1.15.0.tgz(r-4.4-emscripten)DeepPINCS_1.15.0.tgz(r-4.3-emscripten)
DeepPINCS.pdf |DeepPINCS.html
DeepPINCS/json (API)
NEWS

# Install 'DeepPINCS' in R:
install.packages('DeepPINCS', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • openjdk– OpenJDK Java runtime, using Hotspot JIT
Datasets:

On BioConductor:DeepPINCS-1.15.0(bioc 3.21)DeepPINCS-1.14.0(bioc 3.20)

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

softwarenetworkgraphandnetworkneuralnetwork

4.78 score 2 packages 4 scripts 153 downloads 15 exports 137 dependencies

Last updated 23 days agofrom:70f36a9280. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 18 2024
R-4.5-winNOTENov 18 2024
R-4.5-linuxNOTENov 18 2024
R-4.4-winNOTENov 18 2024
R-4.4-macNOTENov 18 2024
R-4.3-winNOTENov 18 2024
R-4.3-macNOTENov 18 2024

Exports:cnn_in_outfit_cpigcn_in_outget_canonical_smilesget_fingerprintget_graph_structure_node_featureget_seq_encode_padmetric_concordance_indexmetric_f1_scoremlp_in_outmultiple_sampling_generatorpredict_cpirnn_in_outseq_checkseq_preprocessing

Dependencies:askpassbackportsbase64encBHbitbit64bslibcachemCatEncodersclicliprcolorspaceconfigcpp11crayoncurldata.tabledata.treeDiagrammeRdigestdplyrdttenglishevaluatefansifarverfastmapfastmatchfingerprintfloatfontawesomefsgenericsglueherehighrhmshtmltoolshtmlwidgetshttrhunspelligraphISOcodesiteratorsitertoolsjquerylibjsonlitekerasknitrkoRpuskoRpus.lang.enlabelinglatticelexiconlgrlifecyclemagrittrmatlabMatrixMatrixExtramemoisemgsubmimemlapimunsellNLPopensslpillarpkgconfigpngprettyunitsprocessxprogressPRROCpspurrrqdapRegexquantedaR6rappdirsrcdkrcdklibsRColorBrewerRcppRcppArmadilloRcppTOMLreadrreticulateRhpcBLASctlrJavarlangrmarkdownrprojrootrsparserstudioapirvestsassscalesselectrslamSnowballCstopwordsstringdiststringistringrsyllysylly.ensyssyuzhettensorflowtext2vectextcleantextshapetextstemtfautographtfrunstibbletidyrtidyselecttinytextmtokenizersttgseatzdbutf8vctrsviridisLitevisNetworkvroomwebchemwhiskerwithrxfunxml2yamlzeallotzoo

Protein Interactions and Networks with Compounds based on Sequences using Deep Learning

Rendered fromDeepPINCS.Rmdusingknitr::rmarkdownon Nov 18 2024.

Last update: 2021-09-30
Started: 2021-03-21