Package: DMCFB 1.21.0

Farhad Shokoohi

DMCFB: Differentially Methylated Cytosines via a Bayesian Functional Approach

DMCFB is a pipeline for identifying differentially methylated cytosines using a Bayesian functional regression model in bisulfite sequencing data. By using a functional regression data model, it tries to capture position-specific, group-specific and other covariates-specific methylation patterns as well as spatial correlation patterns and unknown underlying models of methylation data. It is robust and flexible with respect to the true underlying models and inclusion of any covariates, and the missing values are imputed using spatial correlation between positions and samples. A Bayesian approach is adopted for estimation and inference in the proposed method.

Authors:Farhad Shokoohi [aut, cre]

DMCFB_1.21.0.tar.gz
DMCFB_1.21.0.zip(r-4.5)DMCFB_1.21.0.zip(r-4.4)DMCFB_1.21.0.zip(r-4.3)
DMCFB_1.21.0.tgz(r-4.4-any)DMCFB_1.21.0.tgz(r-4.3-any)
DMCFB_1.21.0.tar.gz(r-4.5-noble)DMCFB_1.21.0.tar.gz(r-4.4-noble)
DMCFB_1.21.0.tgz(r-4.4-emscripten)DMCFB_1.21.0.tgz(r-4.3-emscripten)
DMCFB.pdf |DMCFB.html
DMCFB/json (API)
NEWS

# Install 'DMCFB' in R:
install.packages('DMCFB', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/shokoohi/dmcfb/issues

On BioConductor:DMCFB-1.21.0(bioc 3.21)DMCFB-1.20.0(bioc 3.20)

differentialmethylationsequencingcoveragebayesianregression

3.90 score 3 scripts 191 downloads 11 exports 86 dependencies

Last updated 3 months agofrom:931dcfd751. Checks:5 OK, 2 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKDec 29 2024
R-4.5-winNOTEDec 31 2024
R-4.5-linuxNOTEDec 29 2024
R-4.4-winOKDec 31 2024
R-4.4-macOKDec 29 2024
R-4.3-winOKNov 29 2024
R-4.3-macOKDec 29 2024

Exports:cBSDMCcombinefindDMCFBmethLevelsmethLevels<-methReadsmethReads<-plotDMCFBreadBismarktotalReadstotalReads<-

Dependencies:abindarmaskpassbenchmarkmebenchmarkmeDataBHbiglmBiobaseBiocGenericsBiocIOBiocParallelBiostringsbitopsbootclicodacodetoolscpp11crayoncurldata.tableDBIDelayedArraydoParalleldplyrfansifastDummiesforeachformatRfutile.loggerfutile.optionsgenericsGenomeInfoDbGenomeInfoDbDataGenomicAlignmentsGenomicRangesgluehttrIRangesiteratorsjsonlitelambda.rlatticelifecyclelme4magrittrMASSMatrixMatrixGenericsmatrixStatsmimeminqanlmenloptropensslpillarpkgconfigR6RcppRcppEigenRCurlrestfulrRhtslibrjsonrlangRsamtoolsrtracklayerS4ArraysS4VectorssnowSparseArrayspeedglmstringistringrSummarizedExperimentsystibbletidyselectUCSC.utilsutf8vctrswithrXMLXVectoryamlzlibbioc

Identifying DMCs using Bayesian functional regressions in BS-Seq data

Rendered fromDMCFB.Rmdusingknitr::rmarkdownon Dec 29 2024.

Last update: 2020-09-27
Started: 2019-07-02

Readme and manuals

Help Manual

Help pageTopics
Differentially Methylated cytosines using functional Bayesian regression modelsDMCFB-package DMCFB
BSDMC objectBSDMC BSDMC-class
cBSDMC methodcBSDMC cBSDMC,matrix,matrix,matrix,GRanges-method cBSDMC-method
combine methodcombine combine,BSDMC,BSDMC-method combine-method
findDMCFB methodfindDMCFB findDMCFB,BSDMC-method findDMCFB-method
methLevels methodmethLevels methLevels,BSDMC-method methLevels-method methLevels<- methLevels<-,BSDMC,matrix-method
methReads methodmethReads methReads,BSDMC-method methReads-method methReads<- methReads<-,BSDMC,matrix-method
paramsparams
plotDMCFB methodplotDMCFB plotDMCFB,BSDMC-method plotDMCFB-method
readBismark methodreadBismark readBismark,character,character,numeric-method readBismark,character,data.frame,numeric-method readBismark,character,DataFrame,numeric-method readBismark-method
totalReads methodtotalReads totalReads,BSDMC-method totalReads-method totalReads<- totalReads<-,BSDMC,matrix-method