Package: DESpace 1.7.0

Peiying Cai

DESpace: DESpace: a framework to discover spatially variable genes

Intuitive framework for identifying spatially variable genes (SVGs) via edgeR, a popular method for performing differential expression analyses. Based on pre-annotated spatial clusters as summarized spatial information, DESpace models gene expression using a negative binomial (NB), via edgeR, with spatial clusters as covariates. SVGs are then identified by testing the significance of spatial clusters. The method is flexible and robust, and is faster than the most SV methods. Furthermore, to the best of our knowledge, it is the only SV approach that allows: - performing a SV test on each individual spatial cluster, hence identifying the key regions of the tissue affected by spatial variability; - jointly fitting multiple samples, targeting genes with consistent spatial patterns across replicates.

Authors:Peiying Cai [aut, cre], Simone Tiberi [aut]

DESpace_1.7.0.tar.gz
DESpace_1.7.0.zip(r-4.5)DESpace_1.7.0.zip(r-4.4)DESpace_1.7.0.zip(r-4.3)
DESpace_1.7.0.tgz(r-4.4-any)DESpace_1.7.0.tgz(r-4.3-any)
DESpace_1.7.0.tar.gz(r-4.5-noble)DESpace_1.7.0.tar.gz(r-4.4-noble)
DESpace_1.7.0.tgz(r-4.4-emscripten)DESpace_1.7.0.tgz(r-4.3-emscripten)
DESpace.pdf |DESpace.html
DESpace/json (API)
NEWS

# Install 'DESpace' in R:
install.packages('DESpace', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/peicai/despace/issues

Datasets:

On BioConductor:DESpace-1.7.0(bioc 3.21)DESpace-1.6.0(bioc 3.20)

spatialsinglecellrnaseqtranscriptomicsgeneexpressionsequencingdifferentialexpressionstatisticalmethodvisualization

5.19 score 4 stars 13 scripts 146 downloads 4 exports 130 dependencies

Last updated 3 months agofrom:2b11443ad6. Checks:5 OK, 2 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 22 2025
R-4.5-winNOTEJan 22 2025
R-4.5-linuxNOTEJan 22 2025
R-4.4-winOKJan 22 2025
R-4.4-macOKJan 22 2025
R-4.3-winOKJan 22 2025
R-4.3-macOKJan 22 2025

Exports:DESpace_testFeaturePlotindividual_testtop_results

Dependencies:abindaskpassassertthatbackportsBHBiobaseBiocFileCacheBiocGenericsBiocParallelbitbit64blobbootbroomcachemcarcarDataclicodetoolscolorspacecorrplotcowplotcpp11crayoncurldata.tableDBIdbplyrDelayedArrayDerivdoBydplyredgeRfansifarverfastmapfilelockformatRFormulafutile.loggerfutile.optionsgenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggforceggnewscaleggplot2ggpubrggrepelggsciggsignifgluegridExtragtablehttrIRangesisobandjsonlitelabelinglambda.rlatticelifecyclelimmalme4locfitmagickmagrittrMASSMatrixMatrixGenericsMatrixModelsmatrixStatsmemoisemgcvmicrobenchmarkmimeminqamodelrmunsellnlmenloptrnnetnumDerivopensslpatchworkpbkrtestpillarpkgconfigplogrpolyclippolynompurrrquantregR6rbibutilsRColorBrewerRcppRcppEigenRdpackreformulasrjsonrlangRSQLiterstatixS4ArraysS4VectorsscalesSingleCellExperimentsnowSparseArraySparseMSpatialExperimentstatmodstringistringrSummarizedExperimentsurvivalsyssystemfontstibbletidyrtidyselecttweenrUCSC.utilsutf8vctrsviridisLitewithrXVector

A framework to discover Spatially Variable genes via spatial clusters

Rendered fromDESpace.Rmdusingknitr::rmarkdownon Jan 22 2025.

Last update: 2023-10-12
Started: 2023-02-28