Package: DESpace 1.7.0

Peiying Cai

DESpace: DESpace: a framework to discover spatially variable genes

Intuitive framework for identifying spatially variable genes (SVGs) via edgeR, a popular method for performing differential expression analyses. Based on pre-annotated spatial clusters as summarized spatial information, DESpace models gene expression using a negative binomial (NB), via edgeR, with spatial clusters as covariates. SVGs are then identified by testing the significance of spatial clusters. The method is flexible and robust, and is faster than the most SV methods. Furthermore, to the best of our knowledge, it is the only SV approach that allows: - performing a SV test on each individual spatial cluster, hence identifying the key regions of the tissue affected by spatial variability; - jointly fitting multiple samples, targeting genes with consistent spatial patterns across replicates.

Authors:Peiying Cai [aut, cre], Simone Tiberi [aut]

DESpace_1.7.0.tar.gz
DESpace_1.7.0.zip(r-4.5)DESpace_1.7.0.zip(r-4.4)DESpace_1.7.0.zip(r-4.3)
DESpace_1.7.0.tgz(r-4.4-any)DESpace_1.7.0.tgz(r-4.3-any)
DESpace_1.7.0.tar.gz(r-4.5-noble)DESpace_1.7.0.tar.gz(r-4.4-noble)
DESpace_1.7.0.tgz(r-4.4-emscripten)DESpace_1.7.0.tgz(r-4.3-emscripten)
DESpace.pdf |DESpace.html
DESpace/json (API)
NEWS

# Install 'DESpace' in R:
install.packages('DESpace', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/peicai/despace/issues

Datasets:

On BioConductor:DESpace-1.7.0(bioc 3.21)DESpace-1.6.0(bioc 3.20)

spatialsinglecellrnaseqtranscriptomicsgeneexpressionsequencingdifferentialexpressionstatisticalmethodvisualization

5.19 score 4 stars 13 scripts 134 downloads 4 exports 128 dependencies

Last updated 2 months agofrom:2b11443ad6. Checks:OK: 5 NOTE: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 29 2024
R-4.5-winNOTENov 29 2024
R-4.5-linuxNOTENov 29 2024
R-4.4-winOKNov 29 2024
R-4.4-macOKNov 29 2024
R-4.3-winOKNov 29 2024
R-4.3-macOKNov 29 2024

Exports:DESpace_testFeaturePlotindividual_testtop_results

Dependencies:abindaskpassassertthatbackportsBHBiobaseBiocFileCacheBiocGenericsBiocParallelbitbit64blobbootbroomcachemcarcarDataclicodetoolscolorspacecorrplotcowplotcpp11crayoncurldata.tableDBIdbplyrDelayedArrayDerivdoBydplyredgeRfansifarverfastmapfilelockformatRFormulafutile.loggerfutile.optionsgenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggforceggnewscaleggplot2ggpubrggrepelggsciggsignifgluegridExtragtablehttrIRangesisobandjsonlitelabelinglambda.rlatticelifecyclelimmalme4locfitmagickmagrittrMASSMatrixMatrixGenericsMatrixModelsmatrixStatsmemoisemgcvmicrobenchmarkmimeminqamodelrmunsellnlmenloptrnnetnumDerivopensslpatchworkpbkrtestpillarpkgconfigplogrpolyclippolynompurrrquantregR6RColorBrewerRcppRcppEigenrjsonrlangRSQLiterstatixS4ArraysS4VectorsscalesSingleCellExperimentsnowSparseArraySparseMSpatialExperimentstatmodstringistringrSummarizedExperimentsurvivalsyssystemfontstibbletidyrtidyselecttweenrUCSC.utilsutf8vctrsviridisLitewithrXVectorzlibbioc

A framework to discover Spatially Variable genes via spatial clusters

Rendered fromDESpace.Rmdusingknitr::rmarkdownon Nov 29 2024.

Last update: 2023-10-12
Started: 2023-02-28