Package: CytoPipeline 1.7.0

Philippe Hauchamps

CytoPipeline: Automation and visualization of flow cytometry data analysis pipelines

This package provides support for automation and visualization of flow cytometry data analysis pipelines. In the current state, the package focuses on the preprocessing and quality control part. The framework is based on two main S4 classes, i.e. CytoPipeline and CytoProcessingStep. The pipeline steps are linked to corresponding R functions - that are either provided in the CytoPipeline package itself, or exported from a third party package, or coded by the user her/himself. The processing steps need to be specified centrally and explicitly using either a json input file or through step by step creation of a CytoPipeline object with dedicated methods. After having run the pipeline, obtained results at all steps can be retrieved and visualized thanks to file caching (the running facility uses a BiocFileCache implementation). The package provides also specific visualization tools like pipeline workflow summary display, and 1D/2D comparison plots of obtained flowFrames at various steps of the pipeline.

Authors:Philippe Hauchamps [aut, cre], Laurent Gatto [aut], Dan Lin [ctb]

CytoPipeline_1.7.0.tar.gz
CytoPipeline_1.7.0.zip(r-4.5)CytoPipeline_1.7.0.zip(r-4.4)CytoPipeline_1.5.1.zip(r-4.3)
CytoPipeline_1.7.0.tgz(r-4.4-any)CytoPipeline_1.5.1.tgz(r-4.3-any)
CytoPipeline_1.7.0.tar.gz(r-4.5-noble)CytoPipeline_1.7.0.tar.gz(r-4.4-noble)
CytoPipeline_1.7.0.tgz(r-4.4-emscripten)CytoPipeline_1.5.1.tgz(r-4.3-emscripten)
CytoPipeline.pdf |CytoPipeline.html
CytoPipeline/json (API)
NEWS

# Install 'CytoPipeline' in R:
install.packages('CytoPipeline', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/uclouvain-cbio/cytopipeline/issues

Pkgdown:https://uclouvain-cbio.github.io

Datasets:

On BioConductor:CytoPipeline-1.7.0(bioc 3.21)CytoPipeline-1.6.0(bioc 3.20)

flowcytometrypreprocessingqualitycontrolworkflowstepimmunooncologysoftwarevisualization

6.90 score 3 stars 2 packages 17 scripts 169 downloads 65 exports 126 dependencies

Last updated 1 months agofrom:9ee3877fe9. Checks:OK: 1 NOTE: 4 ERROR: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 23 2024
R-4.5-winNOTENov 23 2024
R-4.5-linuxNOTENov 23 2024
R-4.4-winNOTENov 23 2024
R-4.4-macNOTENov 23 2024
R-4.3-winERRORSep 26 2024
R-4.3-macERRORSep 26 2024

Exports:addProcessingStepaggregateAndSampleappendCellIDapplyScaleTransformsareFluoColsareSignalColsas.json.CytoProcessingStepbuildCytoPipelineFromCachecheckCytoPipelineConsistencyWithCachecleanProcessingStepscollectNbOfRetainedEventscompensateFromMatrixcomputeScatterChannelsLinearScaleCytoPipelineCytoProcessingStepdeleteCytoPipelineCacheestimateScaleTransformsexecuteexecuteProcessingStepexperimentNameexperimentName<-export2JSONFilefindTimeChannelfrom.json.CytoProcessingStepgetAcquiredCompensationMatrixgetChannelNamesFromMarkersgetCPSARGSgetCPSFUNgetCPSNamegetCytoPipelineExperimentNamesgetCytoPipelineFlowFramegetCytoPipelineObjectFromCachegetCytoPipelineObjectInfosgetCytoPipelineScaleTransformgetFCSFileNamegetNbProcessingStepsgetProcessingStepgetProcessingStepNamesgetTransfoParamsggplotEventsggplotFilterEventsggplotFlowRatepDatapData<-plotCytoPipelineProcessingQueuequalityControlFlowAIqualityControlPeacoQCreadRDSObjectreadSampleFilesremoveChannelsremoveDeadCellsManualGateremoveDebrisManualGateremoveDoubletsCytoPipelineremoveMarginsPeacoQCremoveProcessingStepresetCellIDsrunCompensationsampleFilessampleFiles<-showshowProcessingStepssingletsGatesubsampleupdateMarkerNamewriteFlowFrame

Dependencies:abindaskpassbase64encBHBiobaseBiocFileCacheBiocGenericsBiocParallelbitbit64blobbslibcachemchangepointcirclizecliclueclustercodetoolscolorspaceComplexHeatmapcpp11crayoncurlcytolibdata.tableDBIdbplyrDelayedArraydiagramdigestdoParalleldplyrevaluatefansifarverfastmapfilelockflowAIflowCoreflowWorkspacefontawesomeforeachformatRfsfutile.loggerfutile.optionsgenericsGetoptLongggcytoggplot2GlobalOptionsgluegraphgridExtragtablehexbinhighrhtmltoolshttrIRangesisobanditeratorsjquerylibjsonliteknitrlabelinglambda.rlatticelifecyclemagrittrMASSMatrixMatrixGenericsmatrixStatsmemoisemgcvmimemunsellncdfFlownlmeopensslPeacoQCpillarpkgconfigplogrplyrpngpurrrR6rappdirsRBGLRColorBrewerRcppreshape2RgraphvizRhdf5librjsonrlangrmarkdownRProtoBufLibRSQLiteS4ArraysS4VectorssassscalesshapesnowSparseArraystringistringrsystibbletidyrtidyselecttinytexutf8vctrsviridisLitewithrxfunXMLXVectoryamlzlibbioczoo

Automation and Visualization of Flow Cytometry Data Analysis Pipelines

Rendered fromCytoPipeline.Rmdusingknitr::rmarkdownon Nov 23 2024.

Last update: 2024-10-14
Started: 2022-09-06

Demonstration of the CytoPipeline R package suite functionalities

Rendered fromDemo.Rmdusingknitr::rmarkdownon Nov 23 2024.

Last update: 2023-07-04
Started: 2023-03-20

Readme and manuals

Help Manual

Help pageTopics
Aggregate and sample multiple flow frames of a flow set togetheraggregateAndSample
append 'Original_ID' column to a flowframeappendCellID
apply scale transformsapplyScaleTransforms
find flow frame columns that represent fluorochrome channelareFluoCols
find flow frame columns that represent true signalareSignalCols
compensation of fcs file(s) from matrixcompensateFromMatrix
compute linear transformation of scatter channels found in ff, based on 5% and 95% of referenceChannel, set as target. If there is a transformation defined in transList for referenceChannel, it is applied first, before computing quantiles. Then the computed linear transformations (or each scatter channel) are added into the transfo_list. -A channels are computed, and same linear transformation is then applied to corresponding -W and -H channels (if they exist in ff).computeScatterChannelsLinearScale
CytoPipeline classas.list.CytoPipeline CytoPipeline,character-method CytoPipeline,list-method CytoPipeline,missing-method CytoPipeline-class CytoPipeline-class, CytoPipelineClass experimentName experimentName<- pData pData<- sampleFiles sampleFiles<- show,CytoPipeline-method
Cyto Processing stepas.json.CytoProcessingStep as.list.CytoProcessingStep characterOrFunction-class CytoProcessingStep CytoProcessingStep-class executeProcessingStep from.json.CytoProcessingStep getCPSARGS getCPSFUN getCPSName show,CytoProcessingStep-method
estimates scale tranformationsestimateScaleTransforms
executing CytoPipeline objectexecute
exporting CytoPipeline objectsexport2JSONFile exportCytoPipeline
find time channel in flowSet/flowFramefindTimeChannel
extract compensation matrix from a flowCore::flowFramegetAcquiredCompensationMatrix
get channel names from markersgetChannelNamesFromMarkers
get fcs file namegetFCSFileName
get tranformation parameters for a specific channelgetTransfoParams
plot events in 1D or 2D, using ggplot2ggplotEvents
plot filtered events in 2D, using ggplotggplotFilterEvents
plot flow rate as a function of time, using ggplot2ggplotFlowRate
handling processing steps in CytoPipeline objectsaddProcessingStep cleanProcessingSteps getNbProcessingSteps getProcessingStep getProcessingStepNames handlingProcessingSteps removeProcessingStep showProcessingSteps
inspect CytoPipeline results objectscollectNbOfRetainedEvents getCytoPipelineExperimentNames getCytoPipelineFlowFrame getCytoPipelineObjectFromCache getCytoPipelineObjectInfos getCytoPipelineScaleTransform inspectCytoPipelineObjects plotCytoPipelineProcessingQueue
interaction between CytoPipeline object and disk cachebuildCytoPipelineFromCache checkCytoPipelineConsistencyWithCache deleteCytoPipelineCache interactingWithCytoPipelineCache
OMIP021Samples datasetOMIP021Samples
perform QC with flowAIqualityControlFlowAI
perform QC with PeacoQCqualityControlPeacoQC
read RDS objectreadRDSObject
Read fcs sample filesreadSampleFiles
remove channels from a flowFrameremoveChannels
remove dead cells from a flowFrame using manual gatingremoveDeadCellsManualGate
remove debris from a flowFrame using manual gatingremoveDebrisManualGate
remove doublets from a flowFrame, using CytoPipeline custom algorithmremoveDoubletsCytoPipeline
remove margin events using PeacoQCremoveMarginsPeacoQC
reset 'Original_ID' column in a flowframeresetCellIDs
compensate with additional optionsrunCompensation
Clean doublet events from flow cytometry datasingletsGate
sub-sampling of a flowFramesubsample
update marker name of a given flowFrame channelupdateMarkerName
write flowFrame to diskwriteFlowFrame