Package: CausalR 1.39.0

Glyn Bradley

CausalR: Causal network analysis methods

Causal network analysis methods for regulator prediction and network reconstruction from genome scale data.

Authors:Glyn Bradley, Steven Barrett, Chirag Mistry, Mark Pipe, David Wille, David Riley, Bhushan Bonde, Peter Woollard

CausalR_1.39.0.tar.gz
CausalR_1.39.0.zip(r-4.5)CausalR_1.39.0.zip(r-4.4)CausalR_1.39.0.zip(r-4.3)
CausalR_1.39.0.tgz(r-4.4-any)CausalR_1.39.0.tgz(r-4.3-any)
CausalR_1.39.0.tar.gz(r-4.5-noble)CausalR_1.39.0.tar.gz(r-4.4-noble)
CausalR_1.39.0.tgz(r-4.4-emscripten)CausalR_1.39.0.tgz(r-4.3-emscripten)
CausalR.pdf |CausalR.html
CausalR/json (API)

# Install 'CausalR' in R:
install.packages('CausalR', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On BioConductor:CausalR-1.37.0(bioc 3.20)CausalR-1.36.0(bioc 3.19)

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

immunooncologysystemsbiologynetworkgraphandnetworknetwork inferencetranscriptomicsproteomicsdifferentialexpressionrnaseqmicroarray

3.30 score 7 scripts 170 downloads 22 exports 11 dependencies

Last updated 23 days agofrom:f417628c87. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 30 2024
R-4.5-winNOTEOct 30 2024
R-4.5-linuxNOTEOct 30 2024
R-4.4-winNOTEOct 30 2024
R-4.4-macNOTEOct 30 2024
R-4.3-winNOTEOct 30 2024
R-4.3-macNOTEOct 30 2024

Exports:AnalysePredictionsListCalculateEnrichmentPValueCalculateSignificanceCalculateSignificanceUsingCubicAlgorithmCalculateSignificanceUsingCubicAlgorithm1bCalculateSignificanceUsingQuarticAlgorithmCompareHypothesisCreateCCGCreateCGGetNodeNameGetNumberOfPositiveAndNegativeEntriesGetShortestPathsFromCCGMakePredictionsMakePredictionsFromCCGMakePredictionsFromCGPlotGraphWithNodeNamesRankTheHypothesesReadExperimentalDatarunSCANRScoreHypothesisWriteAllExplainedNodesToSifFileWriteExplainedNodesToSifFile

Dependencies:clicpp11glueigraphlatticelifecyclemagrittrMatrixpkgconfigrlangvctrs

CausalR : an R Package for causal reasoning on networks

Rendered fromCausalR.rnwusingknitr::knitron Oct 30 2024.

Last update: 2016-11-16
Started: 2016-11-16

Readme and manuals

Help Manual

Help pageTopics
The CausalR packageCausalR-package CausalR
add IDs to verticesAddIDsToVertices
add weights to edgesAddWeightsToEdges
analyse experimental dataAnalyseExperimentalData
analyse predictions listAnalysePredictionsList
calculates an enrichment p-valueCalculateEnrichmentPValue
calculate overall significance p-valueCalculateSignificance
calculate significance using the cubic algorithmCalculateSignificanceUsingCubicAlgorithm
Calculate Significance Using Cubic AlgorithmCalculateSignificanceUsingCubicAlgorithm1b
calculate significance using the quartic algorithmCalculateSignificanceUsingQuarticAlgorithm
calculate total weight for all contingency tablesCalculateTotalWeightForAllContingencyTables
calculate weight given values in three-by-three contingency tableCalculateWeightGivenValuesInThreeByThreeContingencyTable
check possible values are validCheckPossibleValuesAreValid
check row and column sum values are validCheckRowAndColumnSumValuesAreValid
compare hypothesisCompareHypothesis
compute final distributionComputeFinalDistribution
compute a p-value from the distribution tableComputePValueFromDistributionTable
create a Computational Causal Graph (CCG)CreateCCG
create a Computational Graph (CG)CreateCG
create network from tableCreateNetworkFromTable
determine interaction type of pathDetermineInteractionTypeOfPath
find approximate values that will maximise D valueFindApproximateValuesThatWillMaximiseDValue
find Ids of connected nodes in subgraphFindIdsOfConnectedNodesInSubgraph
find maximum D valueFindMaximumDValue
get score for numbers of correct and incorrect predictionsGetAllPossibleRoundingCombinations
returns approximate maximum D value or weight for a 3x2 superfamilyGetApproximateMaximumDValueFromThreeByTwoContingencyTable
computes an approximate maximum D value or weightGetApproximateMaximumDValueFromTwoByTwoContingencyTable
returns table of correct and incorrect predictionsGetCombinationsOfCorrectandIncorrectPredictions
Get explained nodes of CCGGetExplainedNodesOfCCG
returns interaction information from input dataGetInteractionInformation
compute causal relationships matrixGetMatrixOfCausalRelationships
get maximun D value for a familyGetMaxDValueForAFamily
get maximum D value for three-by-two a familyGetMaxDValueForAThreeByTwoFamily
get maximum D value from two-by-two contingency tableGetMaximumDValueFromTwoByTwoContingencyTable
get CCG node IDGetNodeID
get node nameGetNodeName
counts the number of positive and negative entriesGetNumberOfPositiveAndNegativeEntries
Get paths in Sif formatGetPathsInSifFormat
get regulated nodesGetRegulatedNodes
get row and column sum valuesGetRowAndColumnSumValues
returns the score for a given number of correct and incorrect predictionsGetScoreForNumbersOfCorrectandIncorrectPredictions
Get scores for single nodeGetScoresForSingleNode
get scores weight matrixGetScoresWeightsMatrix
get scores weights matrix by the cubic algorithmGetScoresWeightsMatrixByCubicAlg
get set of differientially expressed genesGetSetOfDifferentiallyExpressedGenes
get set of significant predictionsGetSetOfSignificantPredictions
get shortest paths from CCGGetShortestPathsFromCCG
get weight for numbers of correct and incorrect predictionsGetWeightForNumbersOfCorrectandIncorrectPredictions
get weights above hypothesis score and total weightsGetWeightsAboveHypothesisScoreAndTotalWeights
updates weights for contingency table and produce values for p-value calculationGetWeightsAboveHypothesisScoreForAThreeByTwoTable
get weights from interaction informationGetWeightsFromInteractionInformation
make predictionsMakePredictions
make predictions from CCGMakePredictionsFromCCG
make predictions from CGMakePredictionsFromCG
order hypothesesOrderHypotheses
plot graph with node namesPlotGraphWithNodeNames
populate the three-by-three contingency tablePopulateTheThreeByThreeContingencyTable
Populate Two by Two Contingency TablePopulateTwoByTwoContingencyTable
process experimental dataProcessExperimentalData
rank the hypothesesRankTheHypotheses
read experimental dataReadExperimentalData
read .sif to TableReadSifFileToTable
remove IDs not in experimental dataRemoveIDsNotInExperimentalData
run rank the hypothesisrunRankHypothesis
run ScanRrunSCANR
score hypothesisScoreHypothesis
validate format of the experimental data tableValidateFormatOfDataTable
validate format of tableValidateFormatOfTable
Write all explained nodes to Sif fileWriteAllExplainedNodesToSifFile
Write explained nodes to Sif fileWriteExplainedNodesToSifFile