The CausalR package | CausalR-package CausalR |
add IDs to vertices | AddIDsToVertices |
add weights to edges | AddWeightsToEdges |
analyse experimental data | AnalyseExperimentalData |
analyse predictions list | AnalysePredictionsList |
calculates an enrichment p-value | CalculateEnrichmentPValue |
calculate overall significance p-value | CalculateSignificance |
calculate significance using the cubic algorithm | CalculateSignificanceUsingCubicAlgorithm |
Calculate Significance Using Cubic Algorithm | CalculateSignificanceUsingCubicAlgorithm1b |
calculate significance using the quartic algorithm | CalculateSignificanceUsingQuarticAlgorithm |
calculate total weight for all contingency tables | CalculateTotalWeightForAllContingencyTables |
calculate weight given values in three-by-three contingency table | CalculateWeightGivenValuesInThreeByThreeContingencyTable |
check possible values are valid | CheckPossibleValuesAreValid |
check row and column sum values are valid | CheckRowAndColumnSumValuesAreValid |
compare hypothesis | CompareHypothesis |
compute final distribution | ComputeFinalDistribution |
compute a p-value from the distribution table | ComputePValueFromDistributionTable |
create a Computational Causal Graph (CCG) | CreateCCG |
create a Computational Graph (CG) | CreateCG |
create network from table | CreateNetworkFromTable |
determine interaction type of path | DetermineInteractionTypeOfPath |
find approximate values that will maximise D value | FindApproximateValuesThatWillMaximiseDValue |
find Ids of connected nodes in subgraph | FindIdsOfConnectedNodesInSubgraph |
find maximum D value | FindMaximumDValue |
get score for numbers of correct and incorrect predictions | GetAllPossibleRoundingCombinations |
returns approximate maximum D value or weight for a 3x2 superfamily | GetApproximateMaximumDValueFromThreeByTwoContingencyTable |
computes an approximate maximum D value or weight | GetApproximateMaximumDValueFromTwoByTwoContingencyTable |
returns table of correct and incorrect predictions | GetCombinationsOfCorrectandIncorrectPredictions |
Get explained nodes of CCG | GetExplainedNodesOfCCG |
returns interaction information from input data | GetInteractionInformation |
compute causal relationships matrix | GetMatrixOfCausalRelationships |
get maximun D value for a family | GetMaxDValueForAFamily |
get maximum D value for three-by-two a family | GetMaxDValueForAThreeByTwoFamily |
get maximum D value from two-by-two contingency table | GetMaximumDValueFromTwoByTwoContingencyTable |
get CCG node ID | GetNodeID |
get node name | GetNodeName |
counts the number of positive and negative entries | GetNumberOfPositiveAndNegativeEntries |
Get paths in Sif format | GetPathsInSifFormat |
get regulated nodes | GetRegulatedNodes |
get row and column sum values | GetRowAndColumnSumValues |
returns the score for a given number of correct and incorrect predictions | GetScoreForNumbersOfCorrectandIncorrectPredictions |
Get scores for single node | GetScoresForSingleNode |
get scores weight matrix | GetScoresWeightsMatrix |
get scores weights matrix by the cubic algorithm | GetScoresWeightsMatrixByCubicAlg |
get set of differientially expressed genes | GetSetOfDifferentiallyExpressedGenes |
get set of significant predictions | GetSetOfSignificantPredictions |
get shortest paths from CCG | GetShortestPathsFromCCG |
get weight for numbers of correct and incorrect predictions | GetWeightForNumbersOfCorrectandIncorrectPredictions |
get weights above hypothesis score and total weights | GetWeightsAboveHypothesisScoreAndTotalWeights |
updates weights for contingency table and produce values for p-value calculation | GetWeightsAboveHypothesisScoreForAThreeByTwoTable |
get weights from interaction information | GetWeightsFromInteractionInformation |
make predictions | MakePredictions |
make predictions from CCG | MakePredictionsFromCCG |
make predictions from CG | MakePredictionsFromCG |
order hypotheses | OrderHypotheses |
plot graph with node names | PlotGraphWithNodeNames |
populate the three-by-three contingency table | PopulateTheThreeByThreeContingencyTable |
Populate Two by Two Contingency Table | PopulateTwoByTwoContingencyTable |
process experimental data | ProcessExperimentalData |
rank the hypotheses | RankTheHypotheses |
read experimental data | ReadExperimentalData |
read .sif to Table | ReadSifFileToTable |
remove IDs not in experimental data | RemoveIDsNotInExperimentalData |
run rank the hypothesis | runRankHypothesis |
run ScanR | runSCANR |
score hypothesis | ScoreHypothesis |
validate format of the experimental data table | ValidateFormatOfDataTable |
validate format of table | ValidateFormatOfTable |
Write all explained nodes to Sif file | WriteAllExplainedNodesToSifFile |
Write explained nodes to Sif file | WriteExplainedNodesToSifFile |