Package: CPSM 0.99.7

Harpreet Kaur

CPSM: CPSM: Cancer patient survival model

The CPSM package provides a comprehensive computational pipeline for predicting the survival probability of cancer patients. It offers a series of steps including data processing, splitting data into training and test subsets, and normalization of data. The package enables the selection of significant features based on univariate survival analysis and generates a LASSO prognostic index score. It supports the development of predictive models for survival probability using various features and provides visualization tools to draw survival curves based on predicted survival probabilities. Additionally, SPM includes functionalities for generating bar plots that depict the predicted mean and median survival times of patients, making it a versatile tool for survival analysis in cancer research.

Authors:Harpreet Kaur [aut, cre], Pijush Das [aut], Kevin Camphausen [aut], Uma Shankavaram [aut]

CPSM_0.99.7.tar.gz
CPSM_0.99.7.zip(r-4.5)CPSM_0.99.7.zip(r-4.4)
CPSM_0.99.7.tgz(r-4.5-any)CPSM_0.99.7.tgz(r-4.4-any)
CPSM_0.99.7.tar.gz(r-4.5-noble)CPSM_0.99.7.tar.gz(r-4.4-noble)
CPSM_0.99.7.tgz(r-4.4-emscripten)
CPSM.pdf |CPSM.html
CPSM/json (API)
NEWS

# Install 'CPSM' in R:
install.packages('CPSM', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/hks5august/cpsm/issues

Datasets:

On BioConductor:CPSM-0.99.7(bioc 3.21)

geneexpressionnormalizationsurvival

3.90 score 9 exports 183 dependencies

Last updated 1 days agofrom:f9ecfc0ceb. Checks:3 ERROR, 4 WARNING. Indexed: yes.

TargetResultLatest binary
Doc / VignettesFAILMar 12 2025
R-4.5-winWARNINGMar 12 2025
R-4.5-macWARNINGMar 12 2025
R-4.5-linuxERRORMar 12 2025
R-4.4-winWARNINGMar 12 2025
R-4.4-macWARNINGMar 12 2025
R-4.4-linuxERRORMar 12 2025

Exports:data_process_fLasso_PI_scores_fmean_median_surv_barplot_fMTLR_pred_model_fNomogram_generate_fsurv_curve_plots_ftr_test_ftrain_test_normalization_fUnivariate_sig_features_f

Dependencies:abindaskpassbackportsbase64encBiobaseBiocGenericsbitopsbootbroombslibcachemcarcarDatacaToolscheckmatecliclustercmprskcodetoolscolorspacecommonmarkcorrplotcowplotcpp11crayoncurldata.tableDelayedArrayDerivdiagramdigestdoBydoParalleldplyrevaluateexactRankTestsfansifarverfastmapfontawesomeforeachforeignFormulafsfuturefuture.applygenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggfortifyggplot2ggpubrggrepelggsciggsignifggtextglmnetglobalsgluegplotsgridExtragridtextgtablegtoolshighrHmischtmlTablehtmltoolshtmlwidgetshttrIRangesisobanditeratorsjpegjquerylibjsonliteKernSmoothkm.ciKMsurvknitrlabelinglatticelavalifecyclelistenvlme4magrittrmarkdownMASSMatrixMatrixGenericsMatrixModelsmatrixStatsmaxstatmemoisemetsmgcvmicrobenchmarkmimeminqamodelrMTLRmultcompmunsellmvtnormnlmenloptrnnetnumDerivopensslparallellypbkrtestpecpillarpkgconfigplotrixplyrpngpolsplinepolynompreprocessCoreprodlimprogressrPublishpurrrquantregR6rangerrappdirsrbibutilsRColorBrewerRcppRcppArmadilloRcppEigenRdpackreformulasreshape2riskRegressionrlangrmarkdownrmsROCRrpartrstatixrstudioapiS4ArraysS4VectorssandwichsassscalesshapeSparseArraySparseMSQUAREMstringistringrSummarizedExperimentsurvivalsurvivalROCsurvminersurvMiscsvglitesyssystemfontsTH.datatibbletidyrtidyselecttimeregtinytexUCSC.utilsutf8vctrsviridisviridisLitewithrxfunxml2xtableXVectoryamlzoo

Readme and manuals

Help Manual

Help pageTopics
Data Processing fdata_process_f
Example TCGA LGG FPKM dataExample_TCGA_LGG_FPKM_data
feature list for Nomogramfeature_list_for_Nomogram
Key Clin feature listKey_Clin_feature_list
Key Clin features with PI listKey_Clin_features_with_PI_list
Key PI listKey_PI_list
Key univariate features listKey_univariate_features_list
Key univariate features with Clin listKey_univariate_features_with_Clin_list
Lasso-Based Prognostic Index CalculationLasso_PI_scores_f
Mean and Median Survival Bar Plotmean_median_surv_barplot_f
mean median survival time datamean_median_survival_time_data
MTLR Prediction Model FunctionMTLR_pred_model_f
New dataNew_data
Nomogram Generation FunctionNomogram_generate_f
Generate Survival Curve Plotssurv_curve_plots_f
survCurves datasurvCurves_data
Test ClinTest_Clin
test FPKMtest_FPKM
Test Norm dataTest_Norm_data
Test PI dataTest_PI_data
Test Uni sig dataTest_Uni_sig_data
Train-Test Split Functiontr_test_f
Train ClinTrain_Clin
Train Data Nomogram inputTrain_Data_Nomogram_input
train FPKMtrain_FPKM
Train Norm dataTrain_Norm_data
Train PI dataTrain_PI_data
Train-Test Data Normalization Functiontrain_test_normalization_f
Train Uni sig dataTrain_Uni_sig_data
Perform Univariate Survival AnalysisUnivariate_sig_features_f