Package: CPSM 0.99.7
CPSM: CPSM: Cancer patient survival model
The CPSM package provides a comprehensive computational pipeline for predicting the survival probability of cancer patients. It offers a series of steps including data processing, splitting data into training and test subsets, and normalization of data. The package enables the selection of significant features based on univariate survival analysis and generates a LASSO prognostic index score. It supports the development of predictive models for survival probability using various features and provides visualization tools to draw survival curves based on predicted survival probabilities. Additionally, SPM includes functionalities for generating bar plots that depict the predicted mean and median survival times of patients, making it a versatile tool for survival analysis in cancer research.
Authors:
CPSM_0.99.7.tar.gz
CPSM_0.99.7.zip(r-4.5)CPSM_0.99.7.zip(r-4.4)
CPSM_0.99.7.tgz(r-4.5-any)CPSM_0.99.7.tgz(r-4.4-any)
CPSM_0.99.7.tar.gz(r-4.5-noble)CPSM_0.99.7.tar.gz(r-4.4-noble)
CPSM_0.99.7.tgz(r-4.4-emscripten)
CPSM.pdf |CPSM.html✨
CPSM/json (API)
NEWS
# Install 'CPSM' in R: |
install.packages('CPSM', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/hks5august/cpsm/issues
- Example_TCGA_LGG_FPKM_data - Example TCGA LGG FPKM data
- Key_Clin_feature_list - Key Clin feature list
- Key_Clin_features_with_PI_list - Key Clin features with PI list
- Key_PI_list - Key PI list
- Key_univariate_features_list - Key univariate features list
- Key_univariate_features_with_Clin_list - Key univariate features with Clin list
- New_data - New data
- Test_Clin - Test Clin
- Test_Norm_data - Test Norm data
- Test_PI_data - Test PI data
- Test_Uni_sig_data - Test Uni sig data
- Train_Clin - Train Clin
- Train_Data_Nomogram_input - Train Data Nomogram input
- Train_Norm_data - Train Norm data
- Train_PI_data - Train PI data
- Train_Uni_sig_data - Train Uni sig data
- feature_list_for_Nomogram - Feature list for Nomogram
- mean_median_survival_time_data - Mean median survival time data
- survCurves_data - SurvCurves data
- test_FPKM - Test FPKM
- train_FPKM - Train FPKM
On BioConductor:CPSM-0.99.7(bioc 3.21)
geneexpressionnormalizationsurvival
Last updated 1 days agofrom:f9ecfc0ceb. Checks:3 ERROR, 4 WARNING. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | FAIL | Mar 12 2025 |
R-4.5-win | WARNING | Mar 12 2025 |
R-4.5-mac | WARNING | Mar 12 2025 |
R-4.5-linux | ERROR | Mar 12 2025 |
R-4.4-win | WARNING | Mar 12 2025 |
R-4.4-mac | WARNING | Mar 12 2025 |
R-4.4-linux | ERROR | Mar 12 2025 |
Exports:data_process_fLasso_PI_scores_fmean_median_surv_barplot_fMTLR_pred_model_fNomogram_generate_fsurv_curve_plots_ftr_test_ftrain_test_normalization_fUnivariate_sig_features_f
Dependencies:abindaskpassbackportsbase64encBiobaseBiocGenericsbitopsbootbroombslibcachemcarcarDatacaToolscheckmatecliclustercmprskcodetoolscolorspacecommonmarkcorrplotcowplotcpp11crayoncurldata.tableDelayedArrayDerivdiagramdigestdoBydoParalleldplyrevaluateexactRankTestsfansifarverfastmapfontawesomeforeachforeignFormulafsfuturefuture.applygenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggfortifyggplot2ggpubrggrepelggsciggsignifggtextglmnetglobalsgluegplotsgridExtragridtextgtablegtoolshighrHmischtmlTablehtmltoolshtmlwidgetshttrIRangesisobanditeratorsjpegjquerylibjsonliteKernSmoothkm.ciKMsurvknitrlabelinglatticelavalifecyclelistenvlme4magrittrmarkdownMASSMatrixMatrixGenericsMatrixModelsmatrixStatsmaxstatmemoisemetsmgcvmicrobenchmarkmimeminqamodelrMTLRmultcompmunsellmvtnormnlmenloptrnnetnumDerivopensslparallellypbkrtestpecpillarpkgconfigplotrixplyrpngpolsplinepolynompreprocessCoreprodlimprogressrPublishpurrrquantregR6rangerrappdirsrbibutilsRColorBrewerRcppRcppArmadilloRcppEigenRdpackreformulasreshape2riskRegressionrlangrmarkdownrmsROCRrpartrstatixrstudioapiS4ArraysS4VectorssandwichsassscalesshapeSparseArraySparseMSQUAREMstringistringrSummarizedExperimentsurvivalsurvivalROCsurvminersurvMiscsvglitesyssystemfontsTH.datatibbletidyrtidyselecttimeregtinytexUCSC.utilsutf8vctrsviridisviridisLitewithrxfunxml2xtableXVectoryamlzoo