Package: CNORdt 1.49.0

A. MacNamara

CNORdt: Add-on to CellNOptR: Discretized time treatments

This add-on to the package CellNOptR handles time-course data, as opposed to steady state data in CellNOptR. It scales the simulation step to allow comparison and model fitting for time-course data. Future versions will optimize delays and strengths for each edge.

Authors:A. MacNamara

CNORdt_1.49.0.tar.gz
CNORdt_1.49.0.zip(r-4.5)CNORdt_1.49.0.zip(r-4.4)CNORdt_1.49.0.zip(r-4.3)
CNORdt_1.49.0.tgz(r-4.4-x86_64)CNORdt_1.49.0.tgz(r-4.4-arm64)CNORdt_1.49.0.tgz(r-4.3-x86_64)CNORdt_1.49.0.tgz(r-4.3-arm64)
CNORdt_1.49.0.tar.gz(r-4.5-noble)CNORdt_1.49.0.tar.gz(r-4.4-noble)
CNORdt_1.49.0.tgz(r-4.4-emscripten)CNORdt_1.49.0.tgz(r-4.3-emscripten)
CNORdt.pdf |CNORdt.html
CNORdt/json (API)

# Install 'CNORdt' in R:
install.packages('CNORdt', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

On BioConductor:CNORdt-1.49.0(bioc 3.21)CNORdt-1.48.0(bioc 3.20)

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

immunooncologycellbasedassayscellbiologyproteomicstimecourse

3.78 score 15 scripts 217 downloads 2 mentions 6 exports 64 dependencies

Last updated 3 months agofrom:7924ad24f0. Checks:1 OK, 8 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKDec 29 2024
R-4.5-win-x86_64NOTEDec 29 2024
R-4.5-linux-x86_64NOTEDec 29 2024
R-4.4-win-x86_64NOTEDec 29 2024
R-4.4-mac-x86_64NOTEDec 29 2024
R-4.4-mac-aarch64NOTEDec 29 2024
R-4.3-win-x86_64NOTEDec 29 2024
R-4.3-mac-x86_64NOTEDec 29 2024
R-4.3-mac-aarch64NOTEDec 29 2024

Exports:computeScoreDTconvert2arraycutAndPlotResultsDTgaBinaryDTgetFitDTsimulatorDT

Dependencies:abindbase64encBHBiocGenericsbitopsbslibcachemCellNOptRclicolorspacecpp11digestevaluatefansifarverfastmapfontawesomefsgenericsggplot2gluegraphgtablehighrhtmltoolsigraphisobandjquerylibjsonliteknitrlabelinglatticelifecyclemagrittrMASSMatrixmemoisemgcvmimemunsellnlmepillarpkgconfigR6rappdirsRBGLRColorBrewerRCurlRgraphvizrlangrmarkdownsassscalesstringistringrtibbletinytexutf8vctrsviridisLitewithrxfunXMLyaml

Using multiple time points to train logic models to data

Rendered fromCNORdt-vignette.Rnwusingutils::Sweaveon Dec 29 2024.

Last update: 2018-08-30
Started: 2013-11-01