Package: BioGA 1.1.0
BioGA: Bioinformatics Genetic Algorithm (BioGA)
Genetic algorithm are a class of optimization algorithms inspired by the process of natural selection and genetics. This package allows users to analyze and optimize high throughput genomic data using genetic algorithms. The functions provided are implemented in C++ for improved speed and efficiency, with an easy-to-use interface for use within R.
Authors:
BioGA_1.1.0.tar.gz
BioGA_1.1.0.zip(r-4.5)BioGA_1.1.0.zip(r-4.4)BioGA_0.99.6.zip(r-4.3)
BioGA_1.1.0.tgz(r-4.4-x86_64)BioGA_1.1.0.tgz(r-4.4-arm64)BioGA_0.99.6.tgz(r-4.3-x86_64)BioGA_0.99.6.tgz(r-4.3-arm64)
BioGA_1.1.0.tar.gz(r-4.5-noble)BioGA_1.1.0.tar.gz(r-4.4-noble)
BioGA_1.1.0.tgz(r-4.4-emscripten)BioGA_0.99.6.tgz(r-4.3-emscripten)
BioGA.pdf |BioGA.html✨
BioGA/json (API)
NEWS
# Install 'BioGA' in R: |
install.packages('BioGA', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/danymukesha/bioga/issues
Pkgdown:https://danymukesha.github.io
On BioConductor:BioGA-1.1.0(bioc 3.21)BioGA-1.0.0(bioc 3.20)
experimentaldesigntechnologycpp
Last updated 2 months agofrom:7656c41b59. Checks:OK: 9. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 29 2024 |
R-4.5-win-x86_64 | OK | Nov 29 2024 |
R-4.5-linux-x86_64 | OK | Nov 29 2024 |
R-4.4-win-x86_64 | OK | Nov 29 2024 |
R-4.4-mac-x86_64 | OK | Nov 29 2024 |
R-4.4-mac-aarch64 | OK | Nov 29 2024 |
R-4.3-win-x86_64 | OK | Sep 14 2024 |
R-4.3-mac-x86_64 | OK | Sep 14 2024 |
R-4.3-mac-aarch64 | OK | Sep 14 2024 |
Exports:crossover_cppevaluate_fitness_cppinitialize_population_cppmutation_cppplot_fitnessplot_fitness_historyplot_populationreplacement_cppselection_cpp
Dependencies:abindanimationaskpassbase64encBHBiobaseBiocGenericsBiocManagerBiocStylebiocViewsbitopsbookdownbslibcachemclicolorspacecrayoncurlDelayedArraydigestevaluatefansifarverfastmapfontawesomefsgenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggplot2gluegraphgtablehighrhtmltoolshttrIRangesisobandjquerylibjsonliteknitrlabelinglatticelifecyclemagickmagrittrMASSMatrixMatrixGenericsmatrixStatsmemoisemgcvmimemunsellnlmeopensslpillarpkgconfigR6rappdirsRBGLRColorBrewerRcppRCurlrlangrmarkdownRUnitS4ArraysS4VectorssassscalessessioninfoSparseArraySummarizedExperimentsystibbletinytexUCSC.utilsutf8vctrsviridisLitewithrxfunXMLXVectoryamlzlibbioc
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Function to perform crossover between selected individuals | crossover_cpp |
Function to evaluate fitness using genomic data | evaluate_fitness_cpp |
Function to initialize the population from genomic data | initialize_population_cpp |
Function to mutate the offspring | mutation_cpp |
Plot Fitness Values | plot_fitness |
Plot Fitness Change Over Generations | plot_fitness_history |
Plot Population Distribution | plot_population |
Function to replace non-selected individuals in the population | replacement_cpp |
Function to select individuals based on fitness scores | selection_cpp |