Package: BioGA 1.1.0

Dany Mukesha

BioGA: Bioinformatics Genetic Algorithm (BioGA)

Genetic algorithm are a class of optimization algorithms inspired by the process of natural selection and genetics. This package allows users to analyze and optimize high throughput genomic data using genetic algorithms. The functions provided are implemented in C++ for improved speed and efficiency, with an easy-to-use interface for use within R.

Authors:Dany Mukesha [aut, cre]

BioGA_1.1.0.tar.gz
BioGA_1.1.0.zip(r-4.5)BioGA_1.1.0.zip(r-4.4)
BioGA_1.1.0.tgz(r-4.4-x86_64)BioGA_1.1.0.tgz(r-4.4-arm64)
BioGA_1.1.0.tar.gz(r-4.5-noble)BioGA_1.1.0.tar.gz(r-4.4-noble)
BioGA_1.1.0.tgz(r-4.4-emscripten)
BioGA.pdf |BioGA.html
BioGA/json (API)
NEWS

# Install 'BioGA' in R:
install.packages('BioGA', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/danymukesha/bioga/issues

Pkgdown site:https://danymukesha.github.io

Uses libs:
  • c++– GNU Standard C++ Library v3

On BioConductor:BioGA-1.1.0(bioc 3.21)BioGA-1.0.0(bioc 3.20)

experimentaldesigntechnologygenetic-algorithmoptimizationcpp

4.74 score 5 scripts 106 downloads 9 exports 87 dependencies

Last updated 3 months agofrom:7656c41b59. Checks:6 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKDec 29 2024
R-4.5-win-x86_64OKDec 31 2024
R-4.5-linux-x86_64OKDec 29 2024
R-4.4-win-x86_64OKDec 31 2024
R-4.4-mac-x86_64OKDec 29 2024
R-4.4-mac-aarch64OKDec 29 2024

Exports:crossover_cppevaluate_fitness_cppinitialize_population_cppmutation_cppplot_fitnessplot_fitness_historyplot_populationreplacement_cppselection_cpp

Dependencies:abindanimationaskpassbase64encBHBiobaseBiocGenericsBiocManagerBiocStylebiocViewsbitopsbookdownbslibcachemclicolorspacecrayoncurlDelayedArraydigestevaluatefansifarverfastmapfontawesomefsgenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggplot2gluegraphgtablehighrhtmltoolshttrIRangesisobandjquerylibjsonliteknitrlabelinglatticelifecyclemagickmagrittrMASSMatrixMatrixGenericsmatrixStatsmemoisemgcvmimemunsellnlmeopensslpillarpkgconfigR6rappdirsRBGLRColorBrewerRcppRCurlrlangrmarkdownRUnitS4ArraysS4VectorssassscalessessioninfoSparseArraySummarizedExperimentsystibbletinytexUCSC.utilsutf8vctrsviridisLitewithrxfunXMLXVectoryaml

Introduction

Rendered fromIntroduction.Rmdusingknitr::rmarkdownon Dec 29 2024.

Last update: 2024-06-04
Started: 2024-02-26