Package: ARRmNormalization 1.47.0

Jean-Philippe Fortin

ARRmNormalization: Adaptive Robust Regression normalization for Illumina methylation data

Perform the Adaptive Robust Regression method (ARRm) for the normalization of methylation data from the Illumina Infinium HumanMethylation 450k assay.

Authors:Jean-Philippe Fortin, Celia M.T. Greenwood, Aurelie Labbe.

ARRmNormalization_1.47.0.tar.gz
ARRmNormalization_1.47.0.zip(r-4.5)ARRmNormalization_1.47.0.zip(r-4.4)ARRmNormalization_1.47.0.zip(r-4.3)
ARRmNormalization_1.47.0.tgz(r-4.4-any)ARRmNormalization_1.47.0.tgz(r-4.3-any)
ARRmNormalization_1.47.0.tar.gz(r-4.5-noble)ARRmNormalization_1.47.0.tar.gz(r-4.4-noble)
ARRmNormalization_1.47.0.tgz(r-4.4-emscripten)ARRmNormalization_1.47.0.tgz(r-4.3-emscripten)
ARRmNormalization.pdf |ARRmNormalization.html
ARRmNormalization/json (API)

# Install 'ARRmNormalization' in R:
install.packages('ARRmNormalization', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:
  • ProbesType - Probe Design information for the 450k methylation assay

On BioConductor:ARRmNormalization-1.45.0(bioc 3.20)ARRmNormalization-1.44.0(bioc 3.19)

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

dnamethylationtwochannelpreprocessingmicroarray

3.30 score 1 scripts 300 downloads 7 exports 1 dependencies

Last updated 23 days agofrom:528145733e. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 30 2024
R-4.5-winNOTEOct 30 2024
R-4.5-linuxNOTEOct 30 2024
R-4.4-winNOTEOct 30 2024
R-4.4-macNOTEOct 30 2024
R-4.3-winNOTEOct 30 2024
R-4.3-macNOTEOct 30 2024

Exports:getBackgroundgetCoefficientsgetDesignInfogetQuantilesnormalizeARRmpositionPlotsquantilePlots

Dependencies:ARRmData

ARRmNormalization

Rendered fromARRmNormalization.Rnwusingutils::Sweaveon Oct 30 2024.

Last update: 2013-03-18
Started: 2013-03-18