Package: ADImpute 1.17.0

Ana Carolina Leote

ADImpute: Adaptive Dropout Imputer (ADImpute)

Single-cell RNA sequencing (scRNA-seq) methods are typically unable to quantify the expression levels of all genes in a cell, creating a need for the computational prediction of missing values (‘dropout imputation’). Most existing dropout imputation methods are limited in the sense that they exclusively use the scRNA-seq dataset at hand and do not exploit external gene-gene relationship information. Here we propose two novel methods: a gene regulatory network-based approach using gene-gene relationships learnt from external data and a baseline approach corresponding to a sample-wide average. ADImpute can implement these novel methods and also combine them with existing imputation methods (currently supported: DrImpute, SAVER). ADImpute can learn the best performing method per gene and combine the results from different methods into an ensemble.

Authors:Ana Carolina Leote [cre, aut]

ADImpute_1.17.0.tar.gz
ADImpute_1.17.0.zip(r-4.5)ADImpute_1.17.0.zip(r-4.4)ADImpute_1.17.0.zip(r-4.3)
ADImpute_1.17.0.tgz(r-4.4-any)ADImpute_1.17.0.tgz(r-4.3-any)
ADImpute_1.17.0.tar.gz(r-4.5-noble)ADImpute_1.17.0.tar.gz(r-4.4-noble)
ADImpute_1.17.0.tgz(r-4.4-emscripten)ADImpute_1.17.0.tgz(r-4.3-emscripten)
ADImpute.pdf |ADImpute.html
ADImpute/json (API)

# Install 'ADImpute' in R:
install.packages('ADImpute', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/anacarolinaleote/adimpute/issues

Datasets:

On BioConductor:ADImpute-1.15.0(bioc 3.20)ADImpute-1.14.0(bioc 3.19)

geneexpressionnetworkpreprocessingsequencingsinglecelltranscriptomics

4.30 score 7 scripts 355 downloads 6 exports 55 dependencies

Last updated 23 days agofrom:1b9a5c8120. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 30 2024
R-4.5-winOKOct 30 2024
R-4.5-linuxOKOct 30 2024
R-4.4-winOKOct 30 2024
R-4.4-macOKOct 30 2024
R-4.3-winOKOct 30 2024
R-4.3-macOKOct 30 2024

Exports:EvaluateMethodsImputeNormalizeRPMNormalizeTPMWriteCSVWriteTXT

Dependencies:abindaskpassbackportsBHBiobaseBiocGenericsBiocParallelcheckmatecodetoolscpp11crayoncurldata.tableDelayedArraydoParallelDrImputeforeachformatRfutile.loggerfutile.optionsGenomeInfoDbGenomeInfoDbDataGenomicRangesglmnethttrIRangesiteratorsjsonlitekernlablambda.rlatticeMASSMatrixMatrixGenericsmatrixStatsmimeopensslR6RcppRcppArmadilloRcppEigenrsvdS4ArraysS4VectorsSAVERshapeSingleCellExperimentsnowSparseArraySummarizedExperimentsurvivalsysUCSC.utilsXVectorzlibbioc

ADImpute tutorial

Rendered fromADImpute_tutorial.Rmdusingknitr::rmarkdownon Oct 30 2024.

Last update: 2020-10-20
Started: 2020-06-03

Readme and manuals

Help Manual

Help pageTopics
Data trimmingArrangeData
Data centeringCenterData
Argument check to Impute()CheckArguments_Impute
Method choice per geneChooseMethod
Combine imputation methodsCombine
Computation of MSE per geneComputeMSEGenewise
Argument checkCreateArgCheck
Preparation of training data for method evaluationCreateTrainData
Data check (matrix)DataCheck_Matrix
Data check (network)DataCheck_Network
Data check (SingleCellExperiment)DataCheck_SingleCellExperiment
Data check (transcript length)DataCheck_TrLength
Small dataset for example purposesdemo_data
Small regulatory network for example purposesdemo_net
Small dataset for example purposesdemo_sce
Imputation method evaluation on training setEvaluateMethods
Get dropout probabilitiesGetDropoutProbabilities
Get dropout probabilitiesHandleBiologicalZeros
Dropout imputation using different methodsImpute
Impute using average expression across all cellsImputeBaseline
Use DrImputeImputeDrImpute
Network-based parallel imputationImputeNetParallel
Network-based imputationImputeNetwork
Helper function to PseudoInverseSolution_percellImputeNPDropouts
Helper function to PseudoInverseSolution_percellImputePredictiveDropouts
Use SAVERImputeSAVER
Masking of entries for performance evaluationMaskData
Helper mask functionMaskerPerGene
Transcriptome wide gene regulatory networknetwork.coefficients
RPM normalizationNormalizeRPM
TPM normalizationNormalizeTPM
Network-based parallel imputation - Moore-Penrose pseudoinversionPseudoInverseSolution_percell
Data readReadData
Wrapper for return of EvaluateMethods()ReturnChoice
Wrapper for return of Impute()ReturnOut
Set biological zerosSetBiologicalZeros
Selection of samples for trainingSplitData
Table for transcript length calculationstranscript_length
Write csv fileWriteCSV
Write txt fileWriteTXT