Title: | Stepwise normalization functions for cDNA microarrays |
---|---|
Description: | Stepwise normalization functions for cDNA microarray data. |
Authors: | Yuanyuan Xiao <[email protected]>, Yee Hwa (Jean) Yang <[email protected]> |
Maintainer: | Yuanyuan Xiao <[email protected]> |
License: | LGPL |
Version: | 1.79.0 |
Built: | 2024-11-30 04:48:13 UTC |
Source: | https://github.com/bioc/stepNorm |
Computes the Akaike Information Criterion for a fitted parametric model.
calcAIC(fit, subset=TRUE, scale = 0, enp, loss.fun = square)
calcAIC(fit, subset=TRUE, scale = 0, enp, loss.fun = square)
fit |
fitted model; see details below |
scale |
optional numeric specifying the scale parameter of the
model; see |
subset |
A "logical" or "numeric" vector indicating the subset of points used to compute the fitted model. |
enp |
equivalent number of parameters in the fitted model. If
missing, the |
loss.fun |
the loss function used to calculate deviance; default
uses the squared deviations from the fitted values; one could also
use, for example, absolute deviations ( |
The argument fit
can be an object of class
marrayFit
, in which case the residuals
component
from the marrayFit
object will be extracted to calculate
the deviance; the user can also pass in a numeric vector, in which
case it will be interpreted as the residuals and the user needs to
specify the argument enp
.
The criterion used is
where L is the likelihood and enp
the equivalent number of
parameters of fit
. For linear models (as in marrayFit),
is computed from the deviance.
k = 2
corresponds to the traditional AIC and is the penalty for
the number of parameters.
A numeric vector of length 4, giving
Dev |
the deviance of the |
enp |
the equivalent number of parameters of the
|
penalty |
the penalty for number of parameters. |
Criterion |
the Akaike Information Criterion for |
Yuanyuan Xiao, [email protected],
Jean Yee Hwa Yang, [email protected]
## load in swirl data data(swirl) ## fit a model fit <- fitWithin(fun="medfit") ## res is an object of class marrayFit res <- fit(swirl[,1]) ## calculate AIC calcAIC(res) ## or could pass in the residual vector, but then argument "enp" needs to be specified calcAIC(res$residual, enp=1)
## load in swirl data data(swirl) ## fit a model fit <- fitWithin(fun="medfit") ## res is an object of class marrayFit res <- fit(swirl[,1]) ## calculate AIC calcAIC(res) ## or could pass in the residual vector, but then argument "enp" needs to be specified calcAIC(res$residual, enp=1)
Computes the Bayesian Information Criterion for a fitted parametric model.
calcBIC(fit, subset=TRUE, scale = 0, enp, loss.fun = square)
calcBIC(fit, subset=TRUE, scale = 0, enp, loss.fun = square)
fit |
fitted model; see details below |
subset |
A "logical" or "numeric" vector indicating the subset of points used to compute the fitted model. |
scale |
optional numeric specifying the scale parameter of the
model; see |
enp |
equivalent number of parameters in the fitted model. If
missing, the |
loss.fun |
the loss function used to calculate deviance; the
default uses the squared deviation from the fitted values;
one could also use absolute deviations ( |
The argument fit
can be an object of class
marrayFit
, in which case the residuals
component
from the marrayFit
object will be extracted to calculate
the deviance; the user can also pass in a numeric vector, in which
case it will be interpreted as the residuals and the user needs to
specify the argument enp
.
The criterion used is
where L is the likelihood and enp
the equivalent number of
parameters of fit
. For linear models (as in marrayFit
),
is computed from the deviance.
k = log(n)
corresponds to the BIC and is the penalty for
the number of parameters.
A numeric vector of length 4, giving
Dev |
the deviance of the |
enp |
the equivalent number of parameters of the
|
penalty |
the penalty for number of parameters. |
Criterion |
the Akaike Information Criterion for |
Yuanyuan Xiao, [email protected],
Jean Yee Hwa Yang, [email protected]
## load in swirl data data(swirl) ## fit a model fit <- fitWithin(fun="medfit") ## res is an object of class marrayFit res <- fit(swirl[,1]) ## calculate BIC calcBIC(res) ## or could pass in the residual vector, but then argument "enp" needs to be specified calcBIC(res$residual, enp=1)
## load in swirl data data(swirl) ## fit a model fit <- fitWithin(fun="medfit") ## res is an object of class marrayFit res <- fit(swirl[,1]) ## calculate BIC calcBIC(res) ## or could pass in the residual vector, but then argument "enp" needs to be specified calcBIC(res$residual, enp=1)
This function performs 2D location normalization on cDNA
micoroarray. It operates on class
marrayRaw
or class
marrayNorm
. It allows the user
to choose from a set of four basic normalization procedures.
fit2DWithin(x1.fun = "maSpotRow", x2.fun = "maSpotCol", y.fun = "maM", subset=TRUE, fun = aov2Dfit, ...)
fit2DWithin(x1.fun = "maSpotRow", x2.fun = "maSpotCol", y.fun = "maM", subset=TRUE, fun = aov2Dfit, ...)
x1.fun |
Name of accessor method for spot row coordinates, usually |
x2.fun |
Name of accessor method for spot column coordinates, usually |
y.fun |
Name of accessor method for spot statistics, usually the
log-ratio |
subset |
A "logical" or "numeric" vector indicating the subset of points used to compute the normalization values. |
fun |
Character string specifying the normalization procedures: |
... |
Misc arguments for |
The spot statistic named in y
is regressed on spot row and
column coordinates, using the function specified by the argument
fun
. Typically, rlm2Dfit
and loess2Dfit
, which
treat row and column coordinates as numeric vectors, require a lot fewer parameters than
aov2Dfit
which specifies these two variables as
categorical. spatialMedfit
could yet fit the most complicated
model, depending on size of the smoothing window specified; details
see Wison et al (2003).
The function fit2DWithin
returns a function () with
bindings for
x1.fun
, x2.fun
, y.fun
, subset
and fun
. When the function is evaluated with an object
of class
marrayNorm
or
marrayRaw
, it carries out
normalization and returns an object of class marrayFit
that contains the normalization information as a list with the following
components:
varfun |
: A character vector of names of predictor variables. |
x |
: A numeric matrix of predictor variables. |
y |
: A numeric matrix of responses. |
residuals |
: A numeric matrix of normalized values (typically
log ratios ( |
fitted |
: A numeric matrix of the fitted values. |
enp |
: The equivalent number of parameters; see
|
df.residual |
: The residual degrees of freedom. |
fun |
: A character string indicating the name of the function used for normalization. |
Note that the residuals
component stores the normalized ratios.
Yuanyuan Xiao, [email protected],
Jean Yee Hwa Yang, [email protected]
Y. H. Yang, S. Dudoit, P. Luu, and T. P. Speed (2001). Normalization for cDNA microarray data. In M. L. Bittner, Y. Chen, A. N. Dorsel, and E. R. Dougherty (eds), Microarrays: Optical Technologies and Informatics, Vol. 4266 of Proceedings of SPIE.
D. L. Wilson, M. J. Buckley, C. A. Helliwell and I. W. Wilson (2003). New normalization methods for cDNA microarray data. Bioinformatics, Vol. 19, pp. 1325-1332.
## use the swirl data as example data(swirl) ## 2D rlm normalization rlm2D <- fit2DWithin(fun="rlm2Dfit") swirl1.rlm <- rlm2D(swirl[,1]) norm.M <- swirl1.rlm$residuals ## matrix of normalized ratios ## 2D loess normalization, default span=0.2 loess2D <- fit2DWithin(fun="loess2Dfit") swirl1.loess <- loess2D(swirl[,1]) ## 2D loess normalization, span=0.4 ## Not run: loess2D.1 <- fit2DWithin(fun="loess2Dfit", span=0.4) swirl1.loess.1 <- loess2D.1(swirl[,1]) ## End(Not run) ## 2D aov normalization aov2D <- fit2DWithin(fun="aov2Dfit") swirl1.aov <- aov2D(swirl[,1]) ## 2D spatial median normalization, default window width=3 spatialMed2D <- fit2DWithin(fun="spatialMedfit") swirl1.spatialMed <- spatialMed2D(swirl[,1]) ## 2D loess normalization, window width=9 ## Not run: spatialMed2D.1 <- fit2DWithin(fun="spatialMedfit", width=9) swirl1.spatialMed.1 <- spatialMed2D.1(swirl[,1]) ## End(Not run)
## use the swirl data as example data(swirl) ## 2D rlm normalization rlm2D <- fit2DWithin(fun="rlm2Dfit") swirl1.rlm <- rlm2D(swirl[,1]) norm.M <- swirl1.rlm$residuals ## matrix of normalized ratios ## 2D loess normalization, default span=0.2 loess2D <- fit2DWithin(fun="loess2Dfit") swirl1.loess <- loess2D(swirl[,1]) ## 2D loess normalization, span=0.4 ## Not run: loess2D.1 <- fit2DWithin(fun="loess2Dfit", span=0.4) swirl1.loess.1 <- loess2D.1(swirl[,1]) ## End(Not run) ## 2D aov normalization aov2D <- fit2DWithin(fun="aov2Dfit") swirl1.aov <- aov2D(swirl[,1]) ## 2D spatial median normalization, default window width=3 spatialMed2D <- fit2DWithin(fun="spatialMedfit") swirl1.spatialMed <- spatialMed2D(swirl[,1]) ## 2D loess normalization, window width=9 ## Not run: spatialMed2D.1 <- fit2DWithin(fun="spatialMedfit", width=9) swirl1.spatialMed.1 <- spatialMed2D.1(swirl[,1]) ## End(Not run)
This function performs location normalization on cDNA micoroarray. It
operates on class marrayRaw
or
class marrayNorm
. It allows the
user to choose from a set of three basic normalization procedures.
fitWithin(x.fun = "maA", y.fun = "maM", z.fun = TRUE, subset=TRUE, fun = "medfit", ...)
fitWithin(x.fun = "maA", y.fun = "maM", z.fun = TRUE, subset=TRUE, fun = "medfit", ...)
x.fun |
Name of accessor method for spot intensity, usually |
y.fun |
Name of accessor method for spot statistics, usually the log-ratio |
z.fun |
Name of accessor method for spot statistic used to
stratify the data, usually a layout parameter,
e.g. |
subset |
A "logical" or "numeric" vector indicating the subset of points used to compute the normalization values. |
fun |
Character string specifying the normalization procedure: |
... |
Miscs arguments to be passed in |
Normalization is typically performed on the expression ratios of cDNA
microarray data, using the function specified by argument
fun
. Currently, this function is to be chosen from:
medfit
(median), rlmfit
(rlm) and
loessfit
(loess). When z.fun
is provided as a character
string, for example, maPrintTip
, the normalization procedure is
operated within each print-tip of the slide.
The function fitWithin
returns a function() with
bindings for
x.fun
, y.fun
, z.fun
, subset
and fun
. When the function is evaluated with an object
of class
marrayNorm
or
marrayRaw
, it carries out
normalization and returns an object of class marrayFit
that contains the normalization information as a list with the following
list components:
varfun |
: A character vector of names of predictor variables. |
x |
: A numeric matrix of predictor variables. |
y |
: A numeric matrix of repsonses. |
residuals |
: A numeric matrix of normalized values (typically
log ratios ( |
fitted |
: A numeric matrix of the fitted values. |
enp |
: The equivalent number of parameters; see |
df.residual |
: The residual degrees of freedom. |
fun |
: A character string indicating the name of the function used for normalization. |
Note that the residuals
component stores the normalized ratios.
Yuanyuan Xiao, [email protected],
Jean Yee Hwa Yang, [email protected]
Y. H. Yang, S. Dudoit, P. Luu, and T. P. Speed (2001). Normalization for cDNA microarray data. In M. L. Bittner, Y. Chen, A. N. Dorsel, and E. R. Dougherty (eds), Microarrays: Optical Technologies and Informatics, Vol. 4266 of Proceedings of SPIE.
## using the swirl data as example data(swirl) ## median normalization med <- fitWithin(fun="medfit") swirl1.med <- med(swirl[,1]) norm.M <- swirl1.med$residuals ## matrix of normalized ratios ## rlm normalization rlmF <- fitWithin(fun="rlmfit") swirl1.rlm <- rlmF(swirl[,1]) ## loess normalization, default span=0.4 loessF <- fitWithin(fun="loessfit") swirl1.loess <- loessF(swirl[,1]) ## loess normalization, span=0.2 loessF.1 <- fitWithin(fun="loessfit", span=0.2) swirl1.loess.1 <- loessF.1(swirl[,1]) ## within-printtip loess normalization loessP <- fitWithin(z.fun="maPrintTip", fun="loessfit") swirl1.loessP <- loessP(swirl[,1])
## using the swirl data as example data(swirl) ## median normalization med <- fitWithin(fun="medfit") swirl1.med <- med(swirl[,1]) norm.M <- swirl1.med$residuals ## matrix of normalized ratios ## rlm normalization rlmF <- fitWithin(fun="rlmfit") swirl1.rlm <- rlmF(swirl[,1]) ## loess normalization, default span=0.4 loessF <- fitWithin(fun="loessfit") swirl1.loess <- loessF(swirl[,1]) ## loess normalization, span=0.2 loessF.1 <- fitWithin(fun="loessfit", span=0.2) swirl1.loess.1 <- loessF.1(swirl[,1]) ## within-printtip loess normalization loessP <- fitWithin(z.fun="maPrintTip", fun="loessfit") swirl1.loessP <- loessP(swirl[,1])
This function is a modification of the maCompPlate
function in the marray
library. It generates plate IDs
from the dimensions of the grid and spot matrices. Unlike the
maCompPlate
function, the number of spots is not
necessarily a multiple of the number of wells on a plate, therefore
this function allows empty spots on the slide.
maCompPlate2(no.plates = NULL, n = 384)
maCompPlate2(no.plates = NULL, n = 384)
no.plates |
object of class "numeric", number of plates used specified by the user. If a number is not specified, then it is assumed that there are no empty spots on the slide. |
n |
object of class "numeric", number of wells in each plate, usually 384 or 96. |
This function can be used to handle three cases: 1) the number of spots is a multiple of the number of wells on a plate (usually 96 or 384); 2) the number of spots is not a multiple of the number of wells on a plate, and several of spots on the slide are therefore left empty. In this case, the user needs to specify the number of total plates used; plate IDs of empty spots will be NAs; 3)the number of spots is not a multiple of the number of wells on a plate, but all spots on the slide are spotted, therefore there is one plate not fully used. In this case, the user does not need to specify the number of total plates (as this will not be an integer), the function assumes no empty spots on the slide automatically. See Examples below.
The function maCompPlate2
returns a function with bindings for
no.plates
and n
, which when receiving a object of
marrayRaw
,
marrayNorm
or marrayLayout
class,
it returns a vector of plate IDs (factor
).
Yuanyuan Xiao
####### case 1: no empty spots on the slide, full plates used L<-new("marrayLayout", maNgr=4, maNgc=4, maNsr=22, maNsc=24) ### "compPlate" is a function compPlate <- maCompPlate2(n=384) plate <- compPlate(L) table(plate) ### can also use: plate<-maCompPlate(L,384) table(plate) ####### case 2: with empty spots on the slide, full plates used L<-new("marrayLayout", maNgr=4, maNgc=4, maNsr=22, maNsc=26) ### "compPlate" is a function compPlate <- maCompPlate2(no.plates=22,n=384) plate <- compPlate(L) table(plate) ### empty spots are NAs unique(plate) ###### case 3: no empty spots on the slide, one plate not full L<-new("marrayLayout", maNgr=4, maNgc=4, maNsr=22, maNsc=26) ### argument no.plates not specified, the function assumes no empty spots compPlate <- maCompPlate2(n=384) plate <- compPlate(L) ### 23 full plates (384), the 24th not full (304) table(plate) ### no NAs, no empty spots unique(plate)
####### case 1: no empty spots on the slide, full plates used L<-new("marrayLayout", maNgr=4, maNgc=4, maNsr=22, maNsc=24) ### "compPlate" is a function compPlate <- maCompPlate2(n=384) plate <- compPlate(L) table(plate) ### can also use: plate<-maCompPlate(L,384) table(plate) ####### case 2: with empty spots on the slide, full plates used L<-new("marrayLayout", maNgr=4, maNgc=4, maNsr=22, maNsc=26) ### "compPlate" is a function compPlate <- maCompPlate2(no.plates=22,n=384) plate <- compPlate(L) table(plate) ### empty spots are NAs unique(plate) ###### case 3: no empty spots on the slide, one plate not full L<-new("marrayLayout", maNgr=4, maNgc=4, maNsr=22, maNsc=26) ### argument no.plates not specified, the function assumes no empty spots compPlate <- maCompPlate2(n=384) plate <- compPlate(L) ### 23 full plates (384), the 24th not full (304) table(plate) ### no NAs, no empty spots unique(plate)
This function provides a user friendly way to construct a list for input
to the function stepWithinNorm
. The list indicates
intended biases for correction and models for stepwise normalization.
makeStepList(A = c("median", "rlm", "loess"), PT = c("median", "rlm", "loess"), PL = c("median", "rlm", "loess"), Spatial2D = c("rlm2D", "loess2D", "aov2D", "spatialMedian"))
makeStepList(A = c("median", "rlm", "loess"), PT = c("median", "rlm", "loess"), PL = c("median", "rlm", "loess"), Spatial2D = c("rlm2D", "loess2D", "aov2D", "spatialMedian"))
A |
A character string specifying the normalization models
for the adjustment of intensity or
The user can specify any of these three choices and the selected
model will be compared based the goodness fit and model parsimony;
If the correction of the $A$ bias is not desired, the user can set
|
PT |
A character string specifying the normalization models
for the adjustment of print-tip or
If the correction of the $PT$ bias is not desired, the user can set
|
PL |
A character string specifying the normalization models
for the adjustment of well-plate or
If the correction of the $PL$ bias is not desired, the user can set
|
Spatial2D |
A character string specifying the normalization models for the adjustment of spatial 2D bias:
If the correction of the $PL$ bias is not desired, the user can set
|
This function provides a user friendly way to specify the parameter
wf.loc
for the main stepwise normalization function
stepWithinNorm
; see examples for details.
An object of class "list" for input to the stepWithinNorm
function.
Yuanyuan Xiao, [email protected],
Jean Yee Hwa Yang, [email protected]
# Examples use swirl dataset, for description type ? swirl data(swirl) # To use the default parameters, which adjusts A, PT, PL and Spatial2D # biases sequentially and compares all models available, simple type wf.loc <- makeStepList() # To apply loess for the A bias, and to omit the Spatial2D step wf.loc <- makeStepList(A=("loess"), Spatial2D=NULL) # To compare only rlm and loess in the A bias step, and other biases as default wf.loc <- makeStepList(A=c("rlm","loess")) # input to the stepWithinNorm function ## Not run: step.swirl1 <- stepWithinNorm(swirl[,1],wf.loc=wf.loc) ## End(Not run)
# Examples use swirl dataset, for description type ? swirl data(swirl) # To use the default parameters, which adjusts A, PT, PL and Spatial2D # biases sequentially and compares all models available, simple type wf.loc <- makeStepList() # To apply loess for the A bias, and to omit the Spatial2D step wf.loc <- makeStepList(A=("loess"), Spatial2D=NULL) # To compare only rlm and loess in the A bias step, and other biases as default wf.loc <- makeStepList(A=c("rlm","loess")) # input to the stepWithinNorm function ## Not run: step.swirl1 <- stepWithinNorm(swirl[,1],wf.loc=wf.loc) ## End(Not run)
A simple list-based class for the storage of parameters and results of normalization of cDNA microarray data.
Objects can be created by calls of the form new('marrayFit', fit)
where
fit
is a list. Objects of marrayFit
in the StepNorm
package are typically created by functions fitWithin
and
fit2DWithin
.
This class contains no slots, but objects should contain the following list components:
: A character vector of names of predictor variables.
: A numeric matrix of predictor variables.
: A numeric matrix of responses.
: A numeric matrix of normalized values (typically
log ratios ())
.
: A numeric matrix of the fitted values.
: The equivalent number of parameters; see loess
.
: The residual degrees of freedom.
: A character string indicating the name of the function used for normalization.
This class inherits directly from class list
so any operation
appropriate for lists will work on objects of this class.
Yuanyuan Xiao, [email protected],
Jean Yee Hwa Yang, [email protected]
## load in swirl data data(swirl) ## median normalization for the first slide of the swirl data medWithin <- fitWithin(fun="medfit") ## medFit is an object of class marrayFit medFit <- medWithin(swirl[,1]) ## normalized ratios is stored in: norm.M <- medFit$residuals
## load in swirl data data(swirl) ## median normalization for the first slide of the swirl data medWithin <- fitWithin(fun="medfit") ## medFit is an object of class marrayFit medFit <- medWithin(swirl[,1]) ## normalized ratios is stored in: norm.M <- medFit$residuals
This function conducts cDNA microarray normalization in a sequential fashion. In a two-color cDNA array setting, within-slide normalization calibrates signals from the two channels to remove non-biological variation introduced by various processing steps.
seqWithinNorm(marraySet, y = "maM", subset = TRUE, loss.fun = square, A = c("loess", "rlm", "median", "none"), PT = c("median", "rlm", "loess", "none"), PL = c("median", "rlm", "loess", "none"), Spatial2D = c("none", "aov2D", "rlm2D", "loess2D", "spatialMedian"), criterion = c("BIC", "AIC"))
seqWithinNorm(marraySet, y = "maM", subset = TRUE, loss.fun = square, A = c("loess", "rlm", "median", "none"), PT = c("median", "rlm", "loess", "none"), PL = c("median", "rlm", "loess", "none"), Spatial2D = c("none", "aov2D", "rlm2D", "loess2D", "spatialMedian"), criterion = c("BIC", "AIC"))
marraySet |
Object of class |
y |
Name of accessor method for spot statistics, usually the
log-ratio |
subset |
A "logical" or "numeric" vector indicating the subset of points used to compute the normalization values. |
loss.fun |
The loss function used in calculating deviance, the
default uses squared sum of residuals; for absolute sum of
residuals, use |
A |
A character string specifying the normalization model
for the adjustment of intensity or
If not specified, |
PT |
A character string specifying the normalization model
for the adjustment of print-tip or
If not specified, |
PL |
A character string specifying the normalization model
for the adjustment of well-plate or
If not specified, |
Spatial2D |
A character string specifying the normalization model for the adjustment of spatial 2D bias:
If not specified, no normalization will be carried out in this step. |
criterion |
Character string specifying the criterion: If no specification, |
Typical systematic non-biological variations of a two-color cDNA
microarray include the dependence of ratio measurements (M) on
intensity (), print-tip IDs (
), plate IDs (
) and spatial
heterogeneity of the slide (Spatial 2D). The sequential normalization
procedure in
seqWithinNorm
normalizes a slide in a sequential
fashion: ->
->
-> Spatial2D. In each step
one kind of variation is targeted for correction, and the user chooses
the normalization method as desired. We calculate the AIC/BIC
criterion along the normalization steps, but they are not used for
selection of models.
An object of class "list":
normdata |
an object of class
|
res |
a list of the sequential normalization result for each slide within the marray dataset. Each list component is also a list containing the name of the biases, deviance, equivalent number of parameters, AIC/BIC value for a certain slide. |
Yuanyuan Xiao, [email protected],
Jean Yee Hwa Yang, [email protected]
Y. H. Yang, S. Dudoit, P. Luu, and T. P. Speed (2001). Normalization for cDNA microarray data. In M. L. Bittner, Y. Chen, A. N. Dorsel, and E. R. Dougherty (eds), Microarrays: Optical Technologies and Informatics, Vol. 4266 of Proceedings of SPIE.
D. L. Wilson, M. J. Buckley, C. A. Helliwell and I. W. Wilson (2003). New normalization methods for cDNA microarray data. Bioinformatics, Vol. 19, pp. 1325-1332.
stepWithinNorm
, withinNorm
,
fitWithin
, fit2DWithin
,
calcAIC
, calcBIC
.
# Examples use swirl dataset, for description type ? swirl data(swirl) # Apply sequential normalization for the first slide # default: loess(A)->median(PT)->median(PL)-> none (Spatial2D) ## Not run: res.swirl1 <- seqWithinNorm(swirl[,1]) # normalized data norm.swirl <- res.swirl1[[1]] # sequential normalization information step.swirl <- res.swirl1[[2]] ## End(Not run) # median(A)->median(PT)->median(PL)->none(Spatial2D) res.swirl <- seqWithinNorm(swirl[,1], A="median",PT="median",PL="median",Spatial2D="none")
# Examples use swirl dataset, for description type ? swirl data(swirl) # Apply sequential normalization for the first slide # default: loess(A)->median(PT)->median(PL)-> none (Spatial2D) ## Not run: res.swirl1 <- seqWithinNorm(swirl[,1]) # normalized data norm.swirl <- res.swirl1[[1]] # sequential normalization information step.swirl <- res.swirl1[[2]] ## End(Not run) # median(A)->median(PT)->median(PL)->none(Spatial2D) res.swirl <- seqWithinNorm(swirl[,1], A="median",PT="median",PL="median",Spatial2D="none")
This function conducts cDNA microarray normalization in a stepwise fashion. In a two-color cDNA array setting, within-slide normalization calibrates signals from the two channels to remove non-biological variation introduced by various processing steps.
stepWithinNorm(marraySet, subset=TRUE, wf.loc, criterion = c("BIC", "AIC"), loss.fun = square)
stepWithinNorm(marraySet, subset=TRUE, wf.loc, criterion = c("BIC", "AIC"), loss.fun = square)
marraySet |
Object of class |
subset |
A "logical" or "numeric" vector indicating the subset of points used to compute the normalization values. |
wf.loc |
Object of class |
criterion |
Character string specifying the criterion used for the selection of the
best normalization procedure in each step. This argument can be
specified using the first letter of each method; if no
specification is made, the default is
|
loss.fun |
loss function; default set at using residual sum of squares. |
Typical systematic non-biological variations of a two-color cDNA
microarray include the dependence of ratio measurements (M) on
intensity (A), print-tip IDs (PT), plate IDs (PL) and spatial
heterogeneity of the slide (SP). The stepwise normalization procedure
normalizes a slide in a stepwise fashion. In each step one kind of
variation is targeted for correction. Within each step, various
candidate models are assessed for their adequacy with respect to the
observed data. The assessment is made based on a common model
selection criterion, AIC (see calcAIC
) or BIC (see
calcBIC
), and the best model is then chosen for the specified
step.
The argument wf.loc
is a list of steps. Each step is also a
list of models. The user uses the function fitWithin
or
fit2DWithin
to specify a model. Below is a table of how
to do so:
systematic variation | model | function |
intensity (A) | median | fitWithin(fun="medfit") |
A | robust linear | fitWithin(fun="rlmfit") |
A | robust nonlinear | fitWithin(fun="loessfit") |
print-tip (PT) | median | fitWithin(z.fun="maPrintTip", fun="medfit") |
PT | robust linear | fitWithin(z.fun="maPrintTip", fun="rlmfit") |
PT | robust nonlinear | fitWithin(z.fun="maPrintTip",fun="loessfit") |
plate (PL) | median | fitWithin(z.fun="maCompPlate", fun="medfit") |
PL | robust linear | fitWithin(z.fun="maComplate", fun="rlmfit") |
PL | robust nonlinear | fitWithin(z.fun="maCompPlate", fun="loessfit") |
spatial (SP) | robust linear | fit2DWithin(fun="rlm2Dfit") |
SP | robust nonlinear(span=0.2) | fit2DWithin(fun="loess2Dfit", span=0.2) |
SP | anova | fit2DWithin(fun="aov2Dfit") |
SP | spatial median (11X11) | fit2DWithin(fun="spatialMedfit", width=11) |
If the wf.loc
is not specified by the user, the default
procedure conducts normalization in four steps: A -> PT -> PL -> SP
and models are as described in the table above. The user can choose
not to follow such a procedure by passing in a different list,
however we advocate normalizing the intensity (A) variation first as
it is usually the source of most variation in most slides. The list
can be easier specified using the function makeStepList
by
inputing models as character strings, see makeStepList
for details.
An object of class "list":
normdata |
an object of class |
res |
a dataframe of the stepwise normalization result, containing the name of the model chosen for each step, deviance, equivalent number of parameters, AIC/BIC value. |
Yuanyuan Xiao, [email protected],
Jean Yee Hwa Yang, [email protected]
Y. H. Yang, S. Dudoit, P. Luu, and T. P. Speed (2001). Normalization for cDNA microarray data. In M. L. Bittner, Y. Chen, A. N. Dorsel, and E. R. Dougherty (eds), Microarrays: Optical Technologies and Informatics, Vol. 4266 of Proceedings of SPIE.
D. L. Wilson, M. J. Buckley, C. A. Helliwell and I. W. Wilson (2003). New normalization methods for cDNA microarray data. Bioinformatics, Vol. 19, pp. 1325-1332.
seqWithinNorm
, withinNorm
,
fitWithin
, fit2DWithin
,
calcAIC
, calcBIC
.
# Examples use swirl dataset, for description type ? swirl data(swirl) # Apply stepwise normalization for the first slide res.swirl1 <- stepWithinNorm(swirl[,1]) # normalized data norm.swirl <- res.swirl1[[1]] # stepwise procedure step.swirl <- res.swirl1[[2]] # using a stepwise procedure different than the default # corrects intensity (A) and print-tip (PT), this can be # carried out in two ways: # 1) steps <- list( wholeChipA = list(med = fitWithin(fun="medfit"), rlm = fitWithin(fun="rlmfit"), loess = fitWithin(fun="loessfit")), printTipA = list(med = fitWithin(z.fun="maPrintTip", fun="medfit"), rlm = fitWithin(z.fun="maPrintTip", fun="rlmfit"), loess = fitWithin(z.fun="maPrintTip",fun="loessfit"))) #2) steps <- makeStepList(PL=NULL, Spatial2D=NULL) ## Not run: res.swirl <- stepWithinNorm(swirl[,1], wf.loc=steps) ## End(Not run) # using AIC criterion for the first slide ## Not run: res.swirl <- stepWithinNorm(swirl[,1], criterion="A") ## End(Not run)
# Examples use swirl dataset, for description type ? swirl data(swirl) # Apply stepwise normalization for the first slide res.swirl1 <- stepWithinNorm(swirl[,1]) # normalized data norm.swirl <- res.swirl1[[1]] # stepwise procedure step.swirl <- res.swirl1[[2]] # using a stepwise procedure different than the default # corrects intensity (A) and print-tip (PT), this can be # carried out in two ways: # 1) steps <- list( wholeChipA = list(med = fitWithin(fun="medfit"), rlm = fitWithin(fun="rlmfit"), loess = fitWithin(fun="loessfit")), printTipA = list(med = fitWithin(z.fun="maPrintTip", fun="medfit"), rlm = fitWithin(z.fun="maPrintTip", fun="rlmfit"), loess = fitWithin(z.fun="maPrintTip",fun="loessfit"))) #2) steps <- makeStepList(PL=NULL, Spatial2D=NULL) ## Not run: res.swirl <- stepWithinNorm(swirl[,1], wf.loc=steps) ## End(Not run) # using AIC criterion for the first slide ## Not run: res.swirl <- stepWithinNorm(swirl[,1], criterion="A") ## End(Not run)
This function is a wrapper function around fitWtihin
and
fit2DWithin
. It allows the user to choose from a set of
thirteen basic location normalization procedures. The function
operates on an object of class marrayRaw
or marrayNorm
and returns an object of
class marrayNorm
.
withinNorm(marraySet, y = "maM", subset = TRUE, norm = c("none", "median", "rlm", "loess", "medianPrintTip", "rlmPrintTip", "loessPrintTip", "medianPlate", "rlmPlate", "loessPlate", "aov2D", "rlm2D", "loess2D", "spatialMedian"), ...)
withinNorm(marraySet, y = "maM", subset = TRUE, norm = c("none", "median", "rlm", "loess", "medianPrintTip", "rlmPrintTip", "loessPrintTip", "medianPlate", "rlmPlate", "loessPlate", "aov2D", "rlm2D", "loess2D", "spatialMedian"), ...)
marraySet |
Object of class |
y |
Name of accessor method for spot statistics, usually the
log-ratio |
subset |
A "logical" or "numeric" vector indicating the subset of points used to compute the normalization values. |
norm |
A character string specifying the normalization procedures:
|
... |
Misc arguments for the specified |
The function withinNorm
dispatches to the function
fitWithin
or fit2DWithin
with specified
arguments according to the choice of norm
. For instance,
when norm="loess"
for global intensity dependent robust
nonlinear normalization, withinNorm
calls
fitWithin(fun="loess")
with the default span parameter set
at 0.4. If a different span is preferred, it should be input by
span=0.2
through the argument ...
in the
withinNorm
function (see example below). For more details see
fitWithin
, fit2DWithin
and individual
fitting functions such as loessfit
.
An object of class marrayNorm
,
containing the normalized intensity data.
Yuanyuan Xiao, [email protected],
Jean Yee Hwa Yang, [email protected]
Y. H. Yang, S. Dudoit, P. Luu, and T. P. Speed (2001). Normalization for cDNA microarray data. In M. L. Bittner, Y. Chen, A. N. Dorsel, and E. R. Dougherty (eds), Microarrays: Optical Technologies and Informatics, Vol. 4266 of Proceedings of SPIE.
D. L. Wilson, M. J. Buckley, C. A. Helliwell and I. W. Wilson (2003). New normalization methods for cDNA microarray data. Bioinformatics, Vol. 19, pp. 1325-1332.
seqWithinNorm
, stepWithinNorm
,
fitWithin
, fit2DWithin
,
loessfit
, rlmfit
.
# Examples use swirl dataset, for description type ? swirl data(swirl) # Apply loess normalization for the first slide, span=0.4 ## Not run: res.swirl1 <- withinNorm(swirl[,1], norm="loess") ## End(Not run) # Apply loess normalization for the first slide, span=0.2 ## Not run: res.swirl1 <- withinNorm(swirl[,1], norm="loess", span=0.2) ## End(Not run)
# Examples use swirl dataset, for description type ? swirl data(swirl) # Apply loess normalization for the first slide, span=0.4 ## Not run: res.swirl1 <- withinNorm(swirl[,1], norm="loess") ## End(Not run) # Apply loess normalization for the first slide, span=0.2 ## Not run: res.swirl1 <- withinNorm(swirl[,1], norm="loess", span=0.2) ## End(Not run)