Title: | Exploratory analysis for two-color spotted microarray data |
---|---|
Description: | Class definitions for two-color spotted microarray data. Fuctions for data input, diagnostic plots, normalization and quality checking. |
Authors: | Yee Hwa (Jean) Yang <[email protected]> with contributions from Agnes Paquet and Sandrine Dudoit. |
Maintainer: | Yee Hwa (Jean) Yang <[email protected]> |
License: | LGPL |
Version: | 1.85.0 |
Built: | 2024-11-19 03:40:13 UTC |
Source: | https://github.com/bioc/marray |
Subsetting methods were defined for the microarray classes,
marrayInfo
,
marrayLayout
,marrayRaw
and
marrayNorm
. These methods create instances of the given
class, for a subset of spots and/or arrays in a batch.
generic method.
x[i, j]
extract object of class "marrayInfo"
for spots or arrays with indices i and labels with indices j.
x[i]
extract object of class "marrayLayout"
for spots with indices i.
x[i, j]
extract object of class "marrayRaw"
for spots with indices i and arrays with indices j.
x[i, j]
extract object of class "marrayNorm"
for spots with indices i and arrays with indices j.
The function boxplot
produces boxplots of microarray spot
statistics for the classes "marrayRaw"
,
"marrayNorm"
.
We encourage users to use boxplot
rather than maBoxplot
.
The name of the arguments have changed slightly.
## S4 method for signature 'marrayRaw' boxplot(x, xvar="maPrintTip", yvar="maM", ...) ## S4 method for signature 'marrayNorm' boxplot(x, xvar="maPrintTip", yvar="maM", ...)
## S4 method for signature 'marrayRaw' boxplot(x, xvar="maPrintTip", yvar="maM", ...) ## S4 method for signature 'marrayNorm' boxplot(x, xvar="maPrintTip", yvar="maM", ...)
x |
Microarray object of class |
xvar |
Name of accessor method for the spot statistic used to
stratify the data, typically a slot name for the microarray layout
object (see |
yvar |
Name of accessor method for the spot statistic of
interest, typically a slot name for the microarray object |
... |
Optional graphical parameters, see |
If there are more than one array in the batch, the function produces a
boxplot for each array in the batch. Such plots are useful when
assessing the need for between array normalization, for example, to deal
with scale differences among different arrays. Default graphical
parameters are chosen for convenience using the function
maDefaultPar
(e.g. color palette, axis labels, plot
title) but the user has the option to overwrite these parameters at any
point.
Jean Yang and Sandrine Dudoit
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software, Springer, New York.
# To see the demo type demo(marrayPlots) # Examples use swirl dataset, for description type ? swirl data(swirl) # Boxplots of pre-normalization log-ratios M for each of the 16 # print-tip-groups for the Swirl 93 array. # - Default arguments boxplot(swirl[,3]) # All spots boxplot(swirl[,3], xvar=NULL, col="green") # Boxplots of pre-normalization red foreground intensities for each grid row # for the Swirl 81 array. boxplot(swirl[,1], xvar="maGridRow", yvar = "maRf", main = "Swirl array 81: pre-normalization red foreground intensity") # Boxplots of pre-normalization log-ratios for each array in swirl boxplot(swirl, main="Swirl arrays: pre-normalization log-ratios")
# To see the demo type demo(marrayPlots) # Examples use swirl dataset, for description type ? swirl data(swirl) # Boxplots of pre-normalization log-ratios M for each of the 16 # print-tip-groups for the Swirl 93 array. # - Default arguments boxplot(swirl[,3]) # All spots boxplot(swirl[,3], xvar=NULL, col="green") # Boxplots of pre-normalization red foreground intensities for each grid row # for the Swirl 81 array. boxplot(swirl[,1], xvar="maGridRow", yvar = "maRf", main = "Swirl array 81: pre-normalization red foreground intensity") # Boxplots of pre-normalization log-ratios for each array in swirl boxplot(swirl, main="Swirl arrays: pre-normalization log-ratios")
Combine a series of marrayRaw
, marrayNorm
and
marrayInfo
objects.
## S3 method for class 'marrayRaw' cbind(..., deparse.level=1) ## S3 method for class 'marrayNorm' cbind(..., deparse.level=1) ## S3 method for class 'marrayInfo' rbind(..., deparse.level=1)
## S3 method for class 'marrayRaw' cbind(..., deparse.level=1) ## S3 method for class 'marrayNorm' cbind(..., deparse.level=1) ## S3 method for class 'marrayInfo' rbind(..., deparse.level=1)
... |
|
deparse.level |
not currently used, see |
cbind
combines data objects assuming the same gene lists but
different arrays.
rbind
combines data objects assuming equivalent arrays, i.e., the
same RNA targets, but different genes.
For cbind
, the matrices o f expression data from the individual
objects are cbinded.
The data.frames of target information, if they exist, are rbinded.
The combined data object will preserve any additional components or
attributes found in the first object to be combined.
For rbind
, the matrices of expression data are rbinded while the
target information, in any, is unchanged.
Jean Yang
cbind
in the base package.
Check that the foreground and backgruond intensities are stored in the same order as provided in the first column of target file.
checkTargetInfo(mraw)
checkTargetInfo(mraw)
mraw |
Object of class |
A logical value. This function returns "TRUE" if the first column from the Target information is the same order as the foreground and backgruond intensities.
Yee Hwa (Jean) Yang
datadir <- system.file("swirldata", package="marray") swirl.targets <- read.marrayInfo(file.path(datadir, "SwirlSample.txt")) data(swirl) swirl@maTargets <- swirl.targets checkTargetInfo(swirl) checkTargetInfo(swirl[, 2:4]) ## reorder swirl@maTargets <- swirl.targets[c(2:4, 1),] checkTargetInfo(swirl)
datadir <- system.file("swirldata", package="marray") swirl.targets <- read.marrayInfo(file.path(datadir, "SwirlSample.txt")) data(swirl) swirl@maTargets <- swirl.targets checkTargetInfo(swirl) checkTargetInfo(swirl[, 2:4]) ## reorder swirl@maTargets <- swirl.targets[c(2:4, 1),] checkTargetInfo(swirl)
Coercing methods were defined to convert microarray objects of one class
into objects of another class, e.g., instances of the
"marrayRaw"
class into instances of the
"marrayNorm"
class.
convert an object of class
"marrayRaw"
into an object of class
"marrayNorm"
.
Use Package convert to convert object to other data types such as
ExpressionSet
and MAList
.
Retrieve the number of rows (genes) and columns (arrays) for an marrayRaw, marrayNorm or marrayInfo object.
## S3 method for class 'marrayRaw' dim(x)
## S3 method for class 'marrayRaw' dim(x)
x |
an object of class |
Microarray data objects share many analogies with ordinary matrices in which the rows correspond to spots or genes and the columns to arrays. These methods allow one to extract the size of microarray data objects in the same way that one would do for ordinary matrices.
A consequence is that row and column commands nrow(x)
, ncol(x)
and so on also work.
Numeric vector of length 2. The first element is the number of rows (genes) and the second is the number of columns (arrays).
modified from Gordon Smyth's function
dim
in the base package.
M <- A <- matrix(11:14,4,2) rownames(M) <- rownames(A) <- c("a","b","c","d") colnames(M) <- colnames(A) <- c("A1","A2") MA <- new("marrayNorm", maM=M,maA=A) dim(MA) dim(M)
M <- A <- matrix(11:14,4,2) rownames(M) <- rownames(A) <- c("a","b","c","d") colnames(M) <- colnames(A) <- c("A1","A2") MA <- new("marrayNorm", maM=M,maA=A) dim(MA) dim(M)
Search gene ID with a vector of accession number from gene names or ID values.
findID(text, Gnames = gnames, ID = "Name")
findID(text, Gnames = gnames, ID = "Name")
text |
A character strings of gene names or id names. |
Gnames |
An objects of |
ID |
The column of ID corresponding to 'text'. |
A numeric vector the gene ID.
Yee Hwa (Jean) Yang
data(swirl) findID("fb24a09", swirl, ID="ID") findID("geno1", swirl)
data(swirl) findID("fb24a09", swirl, ID="ID") findID("geno1", swirl)
Given a set of index to a data.frame containing gene names information. We create a web page with one element per genes that contains URLs links to various external database links. E.g Operon oligodatabase , Riken, GenBank and PubMed web sites.
htmlPage(genelist, filename = "GeneList.html", geneNames = Gnames, mapURL = SFGL, othernames, title, table.head, table.center = TRUE, disp = c("browser", "file")[1]) table2html(restable, filename = "GeneList.html", mapURL = SFGL, title, table.head, table.center = TRUE, disp = c("browser", "file")[1])
htmlPage(genelist, filename = "GeneList.html", geneNames = Gnames, mapURL = SFGL, othernames, title, table.head, table.center = TRUE, disp = c("browser", "file")[1]) table2html(restable, filename = "GeneList.html", mapURL = SFGL, title, table.head, table.center = TRUE, disp = c("browser", "file")[1])
restable |
A data.frame that contains only the information you wish to display in the html file. The rows corresponds to a different DNA spots. |
genelist |
A numeric vector of index to a data.frame |
filename |
The name of the file to store the HTML in. |
geneNames |
A data.frame containing the information related the each DNA spots. |
mapURL |
A matrix of characters containing the URL for various
external database. E.g |
othernames |
A data.frame containing other information. |
title |
Title of the HTML page |
table.head |
A character vector of column labels for the table |
table.center |
A logical indicating whether the table should be centered |
disp |
Either "File" or "Browser" (default is Browser). File will save the information in html file, while Browser will create an html files and display information in the user's browser. |
This function is an extension to ll.htmlpage
No value is return, the function produce a html file "filename" and output the results in a browser.
Yee Hwa Yang
ll.htmlpage
, URLstring
, widget.mapGeneInfo
##library(annotate) data(swirl) Gnames <- maGeneTable(swirl) swirlmap <- mapGeneInfo(Name = "none", ID="genbank") ## htmlPage(100:110, geneNames = Gnames, mapURL = swirlmap, title="Swirl") moreinfo <- round(maM(swirl), 2) swirlmap <- mapGeneInfo(Name = "pubmed", ID="genbank") ##htmlPage(100:110, geneNames = Gnames, mapURL = swirlmap, othernames=moreinfo, title="Swirl", disp="file")
##library(annotate) data(swirl) Gnames <- maGeneTable(swirl) swirlmap <- mapGeneInfo(Name = "none", ID="genbank") ## htmlPage(100:110, geneNames = Gnames, mapURL = swirlmap, title="Swirl") moreinfo <- round(maM(swirl), 2) swirlmap <- mapGeneInfo(Name = "pubmed", ID="genbank") ##htmlPage(100:110, geneNames = Gnames, mapURL = swirlmap, othernames=moreinfo, title="Swirl", disp="file")
We encourage users calling "image" rather than "maImage". The name of
the arguments are change slightly.
The function image
creates spatial images of shades of gray or
colors that correspond to the values of a statistic for each spot on the
array. The statistic can be the intensity log-ratio M, a spot quality
measure (e.g. spot size or shape), or a test statistic. This function
can be used to explore whether there are any spatial effects in the
data, for example, print-tip or cover-slip effects.
## S4 method for signature 'marrayRaw' image(x, xvar = "maM", subset = TRUE, col, contours=FALSE, bar = TRUE, overlay=NULL, ol.col=1, colorinfo=FALSE, ...) ## S4 method for signature 'marrayNorm' image(x, xvar = "maM", subset = TRUE, col, contours=FALSE, bar = TRUE, overlay=NULL, ol.col=1, colorinfo=FALSE, ...)
## S4 method for signature 'marrayRaw' image(x, xvar = "maM", subset = TRUE, col, contours=FALSE, bar = TRUE, overlay=NULL, ol.col=1, colorinfo=FALSE, ...) ## S4 method for signature 'marrayNorm' image(x, xvar = "maM", subset = TRUE, col, contours=FALSE, bar = TRUE, overlay=NULL, ol.col=1, colorinfo=FALSE, ...)
x |
Microarray object of class |
xvar |
Name of accessor function for the spot statistic of interest,
typically a slot name for the microarray object |
subset |
A "logical" or "numeric" vector indicating the subset of spots to display on the image. |
col |
List of colors such as that generated by rainbow, heat.colors,
topo.colors, terrain.colors, or similar
functions. In addition to these color palette functions, a new
function |
contours |
If |
bar |
If |
overlay |
A logical vector of spots to be highlighted on the image plots. |
ol.col |
Color of the overlay spots. |
colorinfo |
A logical value indicating whether the function should return the color scale information. |
... |
Optional graphical parameters, see |
This function calls the general function maImage.func
,
which is not specific to microarray data. If there are more than one
array in the batch, the plot is done for the first array, by
default. Default color palettes were set for different types of spot
statistics using the maPalette
function. When
x=c("maM", "maMloc", "maMscale")
, a green-to-red color palette
is used. When x=c("maGb", "maGf", "maLG")
, a white-to-green
color palette is used. When x=c("maRb", "maRf", "maLR")
, a
white-to-red color palette is used. The user has the option to
overwrite these parameters at any point.
If colorinfo
is set to TRUE, the following list with elements will be returned.
x.col |
vector of colors to be used for calibration color bar. |
x.bar |
vector of values to be used for calibration color bar. |
summary |
six number summary of the spot statistics, from the function |
Jean Yang and Sandrine Dudoit
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software, Springer, New York.
maImage
, maImage.func
,
maColorBar
, maPalette
# Examples use swirl dataset, for description type ? swirl data(swirl) # Microarray color palettes Gcol <- maPalette(low = "white", high = "green", k = 50) Rcol <- maPalette(low = "white", high = "red", k = 50) BYcol <- maPalette(low = "blue", mid="gray", high = "yellow", k = 50) # Color images of green and red background and foreground intensities ##image(swirl[, 2], xvar ="maGb") ##image(swirl[, 2], xvar ="maGf", subset = TRUE, col = Gcol, contours = FALSE, bar = TRUE, main="Swirl array 93") ##image(swirl[, 1], xvar ="maRb", contour=TRUE) ##image(swirl[, 4], xvar ="maRf", bar=FALSE) # Color images of pre-normalization intensity log-ratios ##image(swirl[, 1]) # Color images with overlay spots ##image(swirl[, 3], xvar = "maA", overlay = maTop(maA(swirl[, 3]), h = 0.1, l = 0.1), bar = TRUE, main = "Image of A values with % 10 tails highlighted") # Color image of print-tip-group ##image(swirl[, 1],xvar = "maPrintTip")
# Examples use swirl dataset, for description type ? swirl data(swirl) # Microarray color palettes Gcol <- maPalette(low = "white", high = "green", k = 50) Rcol <- maPalette(low = "white", high = "red", k = 50) BYcol <- maPalette(low = "blue", mid="gray", high = "yellow", k = 50) # Color images of green and red background and foreground intensities ##image(swirl[, 2], xvar ="maGb") ##image(swirl[, 2], xvar ="maGf", subset = TRUE, col = Gcol, contours = FALSE, bar = TRUE, main="Swirl array 93") ##image(swirl[, 1], xvar ="maRb", contour=TRUE) ##image(swirl[, 4], xvar ="maRf", bar=FALSE) # Color images of pre-normalization intensity log-ratios ##image(swirl[, 1]) # Color images with overlay spots ##image(swirl[, 3], xvar = "maA", overlay = maTop(maA(swirl[, 3]), h = 0.1, l = 0.1), bar = TRUE, main = "Image of A values with % 10 tails highlighted") # Color image of print-tip-group ##image(swirl[, 1],xvar = "maPrintTip")
Internal marray functions
These are not to be called by the user.
This function performs robust local regression of a variable z
on predictor variables x
and y
, separately within values of a fourth variable g
. It is used by maNorm2D
for 2D spatial location normalization.
ma2D(x, y, z, g, w=NULL, subset=TRUE, span=0.4, ...)
ma2D(x, y, z, g, w=NULL, subset=TRUE, span=0.4, ...)
x |
A numeric vector of predictor variables. |
y |
A numeric vector of predictor variables. |
z |
A numeric vector of responses. |
g |
Variables used to stratify the data. |
w |
An optional numeric vector of weights. |
subset |
A "logical" or "numeric" vector indicating the subset of points used to compute the fits. |
span |
The argument |
... |
Misc arguments |
z
is regressed on x
and y
, separately within values of g
using the loess
function.
A numeric vector of fitted values.
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine.
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software, Springer, New York.
# See examples for maNormMain.
# See examples for maNormMain.
The function maBoxplot
produces boxplots of microarray spot
statistics for the classes marrayRaw
and
marrayNorm
.We encourage users to use "boxplot" rather than "maBoxplot". The name of the arguments have changed.
maBoxplot(m, x="maPrintTip", y="maM", ...)
maBoxplot(m, x="maPrintTip", y="maM", ...)
m |
Microarray object of class |
x |
Name of accessor method for the spot statistic used to stratify the data, typically a slot name for the microarray layout object (see |
y |
Name of accessor method for the spot statistic of interest, typically a slot name for the microarray object |
... |
Optional graphical parameters, see |
If there are more than one array in the batch, the function produces a boxplot for each array in the batch. Such plots are useful when assessing the need for between array normalization, for example, to deal with scale differences among different arrays. Default graphical parameters are chosen for convenience using the function maDefaultPar
(e.g. color palette, axis labels, plot title) but the user has the option to overwrite these parameters at any point.
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine.
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software, Springer, New York.
## see example in boxplot
## see example in boxplot
This function produces a color image (color bar) which can be used for
the legend to another color image obtained from the functions
image
, maImage
, or
maImage.func
.
maColorBar(x, horizontal=TRUE, col=heat.colors(50), scale=1:length(x), k=10, ...)
maColorBar(x, horizontal=TRUE, col=heat.colors(50), scale=1:length(x), k=10, ...)
x |
If "numeric", a vector containing the "z" values in the color image, i.e., the values which are represented in the color image. Otherwise, a "character" vector representing colors. |
horizontal |
If |
col |
Vector of colors such as that generated by
|
scale |
A "numeric" vector specifying the "z" values in the color
image. This is used when the argument |
k |
Object of class "numeric", for the number of labels displayed on the bar. |
... |
Optional graphical parameters, see |
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine, Yee Hwa (Jean) Yang.
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software, Springer, New York.
image
, maImage
, maImage.func
, maPalette
.
par(mfrow=c(3,1)) Rcol <- maPalette(low="white", high="red", k=10) Gcol <- maPalette(low="white", high="green", k=50) RGcol <- maPalette(low="green", high="red", k=100) maColorBar(Rcol) maColorBar(Gcol, scale=c(-5,5)) maColorBar(1:50, col=RGcol) par(mfrow=c(1,3)) x<-seq(-1, 1, by=0.01) maColorBar(x, col=Gcol, horizontal=FALSE, k=11) maColorBar(x, col=Gcol, horizontal=FALSE, k=21) maColorBar(x, col=Gcol, horizontal=FALSE, k=51)
par(mfrow=c(3,1)) Rcol <- maPalette(low="white", high="red", k=10) Gcol <- maPalette(low="white", high="green", k=50) RGcol <- maPalette(low="green", high="red", k=100) maColorBar(Rcol) maColorBar(Gcol, scale=c(-5,5)) maColorBar(1:50, col=RGcol) par(mfrow=c(1,3)) x<-seq(-1, 1, by=0.01) maColorBar(x, col=Gcol, horizontal=FALSE, k=11) maColorBar(x, col=Gcol, horizontal=FALSE, k=21) maColorBar(x, col=Gcol, horizontal=FALSE, k=51)
This function generates grid and spot matrix coordinates from ranges of rows and columns for the grid and spot matrices. Spots on the array are numbered consecutively starting from the top left grid and the top left spot within each grid.
maCompCoord(grows, gcols, srows, scols)
maCompCoord(grows, gcols, srows, scols)
grows |
numeric vector of grid rows. |
gcols |
numeric vector of grid columns. |
srows |
numeric vector of spot rows. |
scols |
numeric vector of spot columns. |
a matrix of spot four-coordinates, with rows corresponding to spots and columns to grid row, grid column, spot row, and spot column coordinates.
Yee Hwa (Jean) Yang, Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine.
marrayLayout
, maCoord2Ind
,
maInd2Coord
, maCompInd
.
maCompCoord(1:2,1,1:4,1:3)
maCompCoord(1:2,1,1:4,1:3)
This function generates spot indices from ranges of rows and columns for the grid and spot matrices. Spots on the array are numbered consecutively starting from the top left grid and the top left spot within each grid.
maCompInd(grows, gcols, srows, scols, L)
maCompInd(grows, gcols, srows, scols, L)
grows |
numeric vector of grid rows. |
gcols |
numeric vector of grid columns. |
srows |
numeric vector of spot rows. |
scols |
numeric vector of spot columns. |
L |
object of class |
a numeric vector of spot indices.
Yee Hwa (Jean) Yang, Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine.
marrayLayout
, maCoord2Ind
,
maInd2Coord
, maCompCoord
.
L <- new("marrayLayout", maNgr=4, maNgc=4, maNsr=22, maNsc=24) maCompInd(1:2,1,1:4,1:3,L)
L <- new("marrayLayout", maNgr=4, maNgc=4, maNsr=22, maNsc=24) maCompInd(1:2,1,1:4,1:3,L)
Take a matrix of cooordiates and generate a marrayLayout object.
maCompLayout(mat, ncolumns = 4)
maCompLayout(mat, ncolumns = 4)
mat |
a matrix of coordinates, this can either be n by 3 matrix with columns (Block, Row, Column) or n by 4 matrix with columns (Grid.R, Grid.C, Spot.R, Spot.C) |
ncolumns |
For n by 3 matrix, the number of meta-grid columns. By default, it is set to 4. |
An object of class "marrayLayout"
.
Jean Yang
X <- cbind(Block = c(1,1,2,2,3,3,4,4), Rows=c(1,2,1,2,1,2,1,2), Columns=rep(1,8)) maCompLayout(X, ncolumns=2)
X <- cbind(Block = c(1,1,2,2,3,3,4,4), Rows=c(1,2,1,2,1,2,1,2), Columns=rep(1,8)) maCompLayout(X, ncolumns=2)
This function is used for composite normalization with intensity dependent weights. The function should be used as an argument to the main normalization function maNormMain
. It only applies when two normalization procedures are combined.
maCompNormA() maCompNormEq()
maCompNormA() maCompNormEq()
A function which takes as arguments x
and n
, the spot average log-intensities A and the number of normalization procedures. This latter function returns a matrix of weights for combining two normalization procedures, rows correspond to spots and columns to normalization procedures. The weights for the first procedure are given by the empirical cumulative distribution function of the spot average log-intensities A. Note that when performing composite normalization as described in Yang et al. (2002), the first normalization procedure is the global fit and the second procedure is the within-print-tip-group fit.
For maCompEq
, equal weights are given for each procedure.
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine, Yee Hwa (Jean) Yang.
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software, Springer, New York.
Y. H. Yang, S. Dudoit, P. Luu, D. M. Lin, V. Peng, J. Ngai, and T. P. Speed (2002). Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Research, Vol. 30, No. 4.
maNormMain
, maNormLoess
, ecdf
.
# See examples for maNormMain
# See examples for maNormMain
This function generates plate IDs from the dimensions of the grid and spot matrices. Note that this function only applies to arrays with a regular plate layout, where the number of spots is a multiple of the number of wells on a plate (usually 96 or 384) and each well contributes exactly one spot. It should thus be used with caution.
maCompPlate(x, n=384)
maCompPlate(x, n=384)
x |
object of class |
n |
object of class "numeric", number of wells in each plate, usually 384 or 96. |
Having plate IDs may be useful for the purpose of
normalization. Normalization by plate can be done using the function
maNormMain
.
a vector of plate IDs (factor
).
Yee Hwa (Jean) Yang, Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine.
marrayLayout
, marrayRaw
,
marrayNorm
L<-new("marrayLayout", maNgr=4, maNgc=4, maNsr=22, maNsc=24) plate<-maCompPlate(L,384) table(plate) maPlate(L)<-plate
L<-new("marrayLayout", maNgr=4, maNgc=4, maNsr=22, maNsc=24) plate<-maCompPlate(L,384) table(plate) maPlate(L)<-plate
This functions converts grid and spot matrix coordinates (four coordinates) to spot indices, where spots on the array are numbered consecutively starting from the top left grid and the top left spot within each grid.
maCoord2Ind(x, L)
maCoord2Ind(x, L)
x |
a matrix of spot four-coordinates, with rows corresponding to spots and columns to grid row, grid column, spot row, and spot column coordinates. |
L |
an object of class |
a numeric vector of spot indices.
Yee Hwa (Jean) Yang, Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine.
marrayLayout
, maInd2Coord
,
maCompCoord
, maCompInd
.
L <- new("marrayLayout", maNgr=4, maNgc=4, maNsr=22, maNsc=24) coord<-cbind(rep(2,4),rep(1,4),rep(1,4),1:4) maCoord2Ind(coord, L)
L <- new("marrayLayout", maNgr=4, maNgc=4, maNsr=22, maNsc=24) coord<-cbind(rep(2,4),rep(1,4),rep(1,4),1:4) maCoord2Ind(coord, L)
This function returns default graphical parameters for microarray objects. The parameters may be passed as arguments to the functions maBoxplot
and maPlot
.
maDefaultPar(m, x, y, z)
maDefaultPar(m, x, y, z)
m |
Microarray object of class |
x |
Name of accessor method for the abscissa spot statistic,
typically a slot name for the microarray object |
y |
Name of accessor method for the ordinate spot statistic,
typically a slot name for the microarray object |
z |
Name of accessor method for the spot statistic used to
stratify the data, typically a slot name for the microarray layout
object (see |
A list with elements
def.box |
default graphical parameters for |
def.plot |
default graphical parameters for |
def.lines |
default graphical parameters for functions such as |
def.legend |
default graphical parameters for functions such as |
def.text |
default graphical parameters for functions such as |
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine.
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software, Springer, New York.
maBoxplot
, maPlot
,
maLegendLines
, maLoessLines
,
maText
, maDotsDefaults
.
# See examples for maPlot.
# See examples for maPlot.
This function may be used to compare default graphical parameters for microarray diagnostic plots to user supplied parameters given in ...
. User supplied parameters overwrite the defaults. It is used in maBoxplot
, maPlot
, and maImage
.
maDotsDefaults(dots, defaults)
maDotsDefaults(dots, defaults)
dots |
List of user supplied parameters, e.g. from |
defaults |
List of default parameters, e.g. from the function |
args |
List of graphical parameters. |
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine.
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software, Springer, New York.
maDefaultPar
, maBoxplot
, maPlot
, maImage
.
dots<-list(xlab="X1", ylab="Y1") defaults<-list(xlab="X1", ylab="Y2", col=2) pars<-maDotsDefaults(dots, defaults) do.call("plot",c(list(x=1:10), pars))
dots<-list(xlab="X1", ylab="Y1") defaults<-list(xlab="X1", ylab="Y2", col=2) pars<-maDotsDefaults(dots, defaults) do.call("plot",c(list(x=1:10), pars))
This function may be used to replace default arguements for any functions to user supplied parameters.
maDotsMatch(dots, defaults)
maDotsMatch(dots, defaults)
dots |
List of user supplied argements, e.g. from |
defaults |
List of formal arguments of a function, e.g. from the
function |
args |
List of argument of a function. |
Jean Yee Hwa Yang
dots<-list(x=1:10, y=11:20) argsfun <- maDotsMatch(dots, formals(args(plot))) do.call("plot", argsfun)
dots<-list(x=1:10, y=11:20) argsfun <- maDotsMatch(dots, formals(args(plot))) do.call("plot", argsfun)
ControlCode is a matrix representing certain regular expression pattern and the control status of the spotted probe sequences. This function uses ‘grep’ searches for matches to ‘pattern’ (its first argument) within the character vector ‘x’ (second argument).
maGenControls(Gnames, controlcode, id = "ID")
maGenControls(Gnames, controlcode, id = "ID")
Gnames |
An object of class |
controlcode |
A character matrix of n by 2 columns. The first column contains a few regular expression of spotted probe sequences and the second column contains the corresponding control status. |
id |
the column number of column name in |
A vector of characters recording the control status of the spotted probe sequences.
Jean Yee Hwa Yang
data(swirl) maControls(swirl) <- maGenControls(maGnames(swirl), id="Name") table(maControls(swirl))
data(swirl) maControls(swirl) <- maGenControls(maGnames(swirl), id="Name") table(maControls(swirl))
This function produces a table of spot coordinates and gene names for
objects of class "marrayRaw"
and
"marrayNorm"
.
maGeneTable(object)
maGeneTable(object)
object |
microarray object of class |
an object of class data.frame
, with rows corresponding
to spotted probe sequences. The first four columns are the grid matrix
and spot matrix coordinates, and the remaining columns are the spot
descriptions stored in the maGnames
slot of the microarray
object.
Yee Hwa (Jean) Yang
marrayInfo
, marrayLayout
, marrayRaw
, marrayNorm
, maCompCoord
.
# Example uses swirl dataset, for description type ? swirl data(swirl) tab<-maGeneTable(swirl) tab[1:10,]
# Example uses swirl dataset, for description type ? swirl data(swirl) tab<-maGeneTable(swirl) tab[1:10,]
We encourage users calling "image" rather than "maImage". The name of the arguments are change slightly.
The function maImage
creates spatial images of shades of gray or colors that correspond to the values of a statistic for each spot on the array. The statistic can be the intensity log-ratio M, a spot quality measure (e.g. spot size or shape), or a test statistic. This function can be used to explore whether there are any spatial effects in the data, for example, print-tip or cover-slip effects.
maImage(m, x="maM", subset=TRUE, col, contours=FALSE, bar=TRUE, overlay=NULL, ol.col=1, colorinfo=FALSE, ...)
maImage(m, x="maM", subset=TRUE, col, contours=FALSE, bar=TRUE, overlay=NULL, ol.col=1, colorinfo=FALSE, ...)
m |
Microarray object of class |
x |
Name of accessor function for the spot statistic of interest, typically a slot name for the microarray object |
subset |
A "logical" or "numeric" vector indicating the subset of spots to display on the image. |
col |
List of colors such as that generated by rainbow, heat.colors, topo.colors, terrain.colors, or similar functions. In addition to these color palette functions, a new function |
contours |
If |
bar |
If |
overlay |
A logical vector of spots to be highlighted on the image plots. |
ol.col |
Color of the overlay spots. |
colorinfo |
A logical value indicating whether the function should return the color scale information. |
... |
Optional graphical parameters, see |
This function calls the general function maImage.func
, which is not specific to microarray data. If there are more than one array in the batch, the plot is done for the first array, by default. Default color palettes were set for different types of spot statistics using the maPalette
function. When x=c("maM", "maMloc", "maMscale")
, a green-to-red color palette is used. When x=c("maGb", "maGf", "maLG")
, a white-to-green color palette is used. When x=c("maRb", "maRf", "maLR")
, a white-to-red color palette is used. The user has the option to overwrite these parameters at any point.
If colorinfo
is set to TRUE, the following list with elements will be returned.
x.col |
vector of colors to be used for calibration color bar. |
x.bar |
vector of values to be used for calibration color bar. |
summary |
six number summary of the spot statistics, from the function |
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine.
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software, Springer, New York.
image
, maImage.func
, maColorBar
, maPalette
, summary
.
# To see the demo type demo(marrayPlots) # Examples use swirl dataset, for description type ? swirl data(swirl) # Microarray color palettes Gcol <- maPalette(low = "white", high = "green", k = 50) Rcol <- maPalette(low = "white", high = "red", k = 50) RGcol <- maPalette(low = "green", high = "red", k = 50) # Color images of green and red background and foreground intensities maImage(swirl[, 3], x="maGb") maImage(swirl[, 3], x = "maGf", subset = TRUE, col = Gcol, contours = FALSE, bar = TRUE, main="Swirl array 93") maImage(swirl[, 3], x = "maRb", contour=TRUE) maImage(swirl[, 3], x = "maRf", bar=FALSE) # Color images of pre-normalization intensity log-ratios maImage(swirl[, 1]) maImage(swirl[, 3], x = "maM", subset = maTop(maM(swirl[, 3]), h = 0.1, l = 0.1), col = RGcol, contours = FALSE, bar = TRUE, main = "Swirl array 93: image of pre-normalization M for % 10 tails") # Color image of print-tip-group maImage(swirl[, 1],x="maPrintTip")
# To see the demo type demo(marrayPlots) # Examples use swirl dataset, for description type ? swirl data(swirl) # Microarray color palettes Gcol <- maPalette(low = "white", high = "green", k = 50) Rcol <- maPalette(low = "white", high = "red", k = 50) RGcol <- maPalette(low = "green", high = "red", k = 50) # Color images of green and red background and foreground intensities maImage(swirl[, 3], x="maGb") maImage(swirl[, 3], x = "maGf", subset = TRUE, col = Gcol, contours = FALSE, bar = TRUE, main="Swirl array 93") maImage(swirl[, 3], x = "maRb", contour=TRUE) maImage(swirl[, 3], x = "maRf", bar=FALSE) # Color images of pre-normalization intensity log-ratios maImage(swirl[, 1]) maImage(swirl[, 3], x = "maM", subset = maTop(maM(swirl[, 3]), h = 0.1, l = 0.1), col = RGcol, contours = FALSE, bar = TRUE, main = "Swirl array 93: image of pre-normalization M for % 10 tails") # Color image of print-tip-group maImage(swirl[, 1],x="maPrintTip")
This function creates spatial images of shades of gray or colors that correspond to the values of a statistic for each spot on the array. The statistic can be the intensity log-ratio M, a spot quality measure (e.g. spot size or shape), or a test statistic. This function can be used to explore whether there are any spatial effects in the data, for example, print-tip or cover-slip effects. This function is called by maImage
.
maImage.func(x, L, subset=TRUE, col=heat.colors(12), contours=FALSE, overlay=NULL, ol.col=1, ...)
maImage.func(x, L, subset=TRUE, col=heat.colors(12), contours=FALSE, overlay=NULL, ol.col=1, ...)
x |
A "numeric" vector of spot statistics. |
L |
An object of class |
subset |
A "logical" or "numeric" vector indicating the subset of spots to display on the image. |
col |
A list of colors such as that generated by rainbow, heat.colors, topo.colors, terrain.colors, or similar functions. In addition to these color palette functions, a new function |
contours |
If |
overlay |
A logical vector of spots to be highlighted on the image plots. |
ol.col |
Color of the overlay spots. |
... |
Optional graphical parameters, see |
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine.
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software, Springer, New York.
image
, maImage
, maColorBar
, maPalette
.
# See examples for image.
# See examples for image.
This functions converts spot indices to grid and spot matrix coordinates (four coordinates), where spots on the array are numbered consecutively starting from the top left grid and the top left spot within each grid.
maInd2Coord(x, L)
maInd2Coord(x, L)
x |
a numeric vector of spot indices. |
L |
an object of class |
a matrix of spot four-coordinates, with rows corresponding to spots and columns to grid row, grid column, spot row, and spot column coordinates.
Yee Hwa (Jean) Yang, Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine.
marrayLayout
, maCoord2Ind
,
maCompCoord
, maCompInd
.
L <- new("marrayLayout", maNgr=4, maNgc=4, maNsr=22, maNsc=24) maInd2Coord(c(1:10,529:538), L)
L <- new("marrayLayout", maNgr=4, maNgc=4, maNsr=22, maNsc=24) maInd2Coord(c(1:10,529:538), L)
This function may be used to add a legend for lines in plots such as those produced by plot
, maPlot
, or maPlot.func
.
maLegendLines(legend="", col=2, lty=1, lwd=2.5, ncol=1, ...)
maLegendLines(legend="", col=2, lty=1, lwd=2.5, ncol=1, ...)
legend |
A vector of "character" strings to appear in the legend. |
col |
Line colors for the legend. |
lty |
Line types for the legend. |
lwd |
Line widths for the legend. |
ncol |
The number of columns in which to set the legend items (default is 1, a vertical legend). |
... |
Optional graphical parameters, see |
A function with bindings for legend
, col
, lty
, lwd
, ncol
, and ...
. This latter function takes as arguments x
and y
, the coordinates for the location of the legend on the plot, and it adds the legend to the current plot.
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine.
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software, Springer, New York.
# See examples for maPlot.
# See examples for maPlot.
This function performs robust local regression of a variable y
on predictor variable x
, separately within values of a third variable z
. It is used by maNormLoess
for intensity dependent location normalization.
maLoess(x, y, z, w=NULL, subset=TRUE, span=0.4, ...)
maLoess(x, y, z, w=NULL, subset=TRUE, span=0.4, ...)
x |
A numeric vector of predictor variables. |
y |
A numeric vector of responses. |
z |
Variables used to stratify the data. |
w |
An optional numeric vector of weights. |
subset |
A "logical" or "numeric" vector indicating the subset of points used to compute the fits. |
span |
The argument |
... |
Misc arguments. |
y
is regressed on x
, separately within values of z
using the loess
function.
A numeric vector of fitted values.
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine.
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software, Springer, New York.
Y. H. Yang, S. Dudoit, P. Luu, and T. P. Speed (2001). Normalization for cDNA microarray data. In M. L. Bittner, Y. Chen, A. N. Dorsel, and E. R. Dougherty (eds), Microarrays: Optical Technologies and Informatics, Vol. 4266 of Proceedings of SPIE.
Y. H. Yang, S. Dudoit, P. Luu, D. M. Lin, V. Peng, J. Ngai, and T. P. Speed (2002). Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Research, Vol. 30, No. 4.
maNormMain
, maNormLoess
, loess
.
# See examples for maNormMain.
# See examples for maNormMain.
This function may be used to compute and plot loess or lowess fits for an existing plot. The plot can be produced by plot
, maPlot
, or maPlot.func
.
maLoessLines(subset=TRUE, weights=NULL, loess.args=list(span = 0.4, degree=1, family="symmetric", control=loess.control(trace.hat = "approximate", iterations=5, surface="direct")), col=2, lty=1, lwd=2.5, ...) maLowessLines(subset = TRUE, f = 0.3, col = 2, lty = 1, lwd = 2.5, ...)
maLoessLines(subset=TRUE, weights=NULL, loess.args=list(span = 0.4, degree=1, family="symmetric", control=loess.control(trace.hat = "approximate", iterations=5, surface="direct")), col=2, lty=1, lwd=2.5, ...) maLowessLines(subset = TRUE, f = 0.3, col = 2, lty = 1, lwd = 2.5, ...)
subset |
A "logical" or "numeric" vector indicating the subset of points used to compute the fits. |
weights |
Optional "numeric" vector of weights – for |
loess.args |
List of optional arguments for the |
f |
The smoother span for the |
col |
The fitted line colors. |
lty |
The fitted line types. |
lwd |
The fitted line widths. |
... |
Optional graphical parameters, see |
A function with bindings for subset
, weights
, loess.args
, col
, lty
, lwd
, and ...
. This latter function takes as arguments x
and y
, the abscissa and ordinates of points on the plot, and z
a vector of discrete values used to stratify the points. Loess (or lowess) fits are performed separately within values of z
.
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine.
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software, Springer, New York.
loess
, lowess
, maPlot
, maPlot.func
.
# See examples for maPlot.
# See examples for maPlot.
This function computes the median absolute deviation (MAD) of values in y
separately within values of x
. It is used by maNormMAD
for MAD scale normalization.
maMAD(x, y, geo=TRUE, subset=TRUE)
maMAD(x, y, geo=TRUE, subset=TRUE)
x |
Variables used to stratify the data. |
y |
A numeric vector. |
geo |
If |
subset |
A "logical" or "numeric" vector indicating the subset of points used to compute the MAD. |
A numeric vector of MAD values.
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine.
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software, Springer, New York.
Y. H. Yang, S. Dudoit, P. Luu, and T. P. Speed (2001). Normalization for cDNA microarray data. In M. L. Bittner, Y. Chen, A. N. Dorsel, and E. R. Dougherty (eds), Microarrays: Optical Technologies and Informatics, Vol. 4266 of Proceedings of SPIE.
Y. H. Yang, S. Dudoit, P. Luu, D. M. Lin, V. Peng, J. Ngai, and T. P. Speed (2002). Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Research, Vol. 30, No. 4.
# See examples for maNormMain.
# See examples for maNormMain.
This function computes the median of values in y
separately within values of x
. It is used by maNormMed
for median location normalization.
maMed(x, y, subset=TRUE)
maMed(x, y, subset=TRUE)
x |
Variables used to stratify the data. |
y |
A numeric vector. |
subset |
A "logical" or "numeric" vector indicating the subset of points used to compute the median. |
A numeric vector of median values.
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine.
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software, Springer, New York.
Y. H. Yang, S. Dudoit, P. Luu, and T. P. Speed (2001). Normalization for cDNA microarray data. In M. L. Bittner, Y. Chen, A. N. Dorsel, and E. R. Dougherty (eds), Microarrays: Optical Technologies and Informatics, Vol. 4266 of Proceedings of SPIE.
Y. H. Yang, S. Dudoit, P. Luu, D. M. Lin, V. Peng, J. Ngai, and T. P. Speed (2002). Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Research, Vol. 30, No. 4.
maNormMain
, maNormMed
, median
.
# See examples for maNormMain.
# See examples for maNormMain.
This function is a simple wrapper function around the main normalization function maNormMain
. It allows the user to choose from a set of six basic location and scale normalization procedures. The function operates on an object of class "marrayRaw"
(or possibly "marrayNorm"
, if normalization is performed in several steps) and returns an object of class "marrayNorm"
.
maNorm(mbatch, norm=c("printTipLoess", "none", "median", "loess", "twoD", "scalePrintTipMAD"), subset=TRUE, span=0.4, Mloc=TRUE, Mscale=TRUE, echo=FALSE, ...)
maNorm(mbatch, norm=c("printTipLoess", "none", "median", "loess", "twoD", "scalePrintTipMAD"), subset=TRUE, span=0.4, Mloc=TRUE, Mscale=TRUE, echo=FALSE, ...)
mbatch |
Object of class |
norm |
Character string specifying the normalization procedures:
This argument can be specified using the first letter of each method. |
subset |
A "logical" or "numeric" vector indicating the subset of points used to compute the normalization values. |
span |
The argument |
Mloc |
If |
Mscale |
If |
echo |
If |
... |
Misc arguments |
See maNormMain
for details and also more general procedures.
mnorm |
An object of class |
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine.
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software, Springer, New York.
Y. H. Yang, S. Dudoit, P. Luu, and T. P. Speed (2001). Normalization for cDNA microarray data. In M. L. Bittner, Y. Chen, A. N. Dorsel, and E. R. Dougherty (eds), Microarrays: Optical Technologies and Informatics, Vol. 4266 of Proceedings of SPIE.
Y. H. Yang, S. Dudoit, P. Luu, D. M. Lin, V. Peng, J. Ngai, and T. P. Speed (2002). Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Research, Vol. 30, No. 4.
# Examples use swirl dataset, for description type ? swirl data(swirl) # Global median normalization for swirl arrays 2 and 3 mnorm<-maNorm(swirl[,2:3], norm="median", echo=TRUE) # Within-print-tip-group loess location normalization for swirl array 1 mnorm<-maNorm(swirl[,1], norm="p", span=0.45)
# Examples use swirl dataset, for description type ? swirl data(swirl) # Global median normalization for swirl arrays 2 and 3 mnorm<-maNorm(swirl[,2:3], norm="median", echo=TRUE) # Within-print-tip-group loess location normalization for swirl array 1 mnorm<-maNorm(swirl[,1], norm="p", span=0.45)
This function is used for 2D spatial location normalization, using the robust local regression function loess
. It should be used as an argument to the main normalization function maNormMain
.
maNorm2D(x="maSpotRow", y="maSpotCol", z="maM", g="maPrintTip", w=NULL, subset=TRUE, span=0.4, ...)
maNorm2D(x="maSpotRow", y="maSpotCol", z="maM", g="maPrintTip", w=NULL, subset=TRUE, span=0.4, ...)
x |
Name of accessor method for spot row coordinates, usually |
y |
Name of accessor method for spot column coordinates, usually |
z |
Name of accessor method for spot statistics, usually the log-ratio |
g |
Name of accessor method for print-tip-group indices, usually |
w |
An optional numeric vector of weights. |
subset |
A "logical" or "numeric" vector indicating the subset of points used to compute the fits. |
span |
The argument |
... |
Misc arguments |
The spot statistic named in z
is regressed on spot row and column coordinates, separately within print-tip-group, using the loess
function.
A function with bindings for the above arguments. This latter function takes as argument an object of class "marrayRaw"
(or possibly "marrayNorm"
), and returns a vector of fitted values to be substracted from the raw log-ratios. It calls the function ma2D
, which is not specific to microarray objects.
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine.
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software, Springer, New York.
maNormMain
, ma2D
, loess
.
# See examples for maNormMain.
# See examples for maNormMain.
This function is used for intensity dependent location normalization, using the robust local regression function loess
. It should be used as an argument to the main normalization function maNormMain
.
maNormLoess(x="maA", y="maM", z="maPrintTip", w=NULL, subset=TRUE, span=0.4, ...)
maNormLoess(x="maA", y="maM", z="maPrintTip", w=NULL, subset=TRUE, span=0.4, ...)
x |
Name of accessor method for spot statistics, usually |
y |
Name of accessor method for spot statistics, usually |
z |
Name of accessor method for spot statistic used to stratify the data, usually a layout parameter, e.g. |
w |
An optional numeric vector of weights. |
subset |
A "logical" or "numeric" vector indicating the subset of points used to compute the fits. |
span |
The argument |
... |
Misc arguments |
A function with bindings for the above arguments. This latter function takes as argument an object of class "marrayRaw"
(or possibly "marrayNorm"
), and returns a vector of fitted values to be substracted from the raw log-ratios. It calls the function maLoess
, which is not specific to microarray objects.
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine.
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software, Springer, New York.
Y. H. Yang, S. Dudoit, P. Luu, and T. P. Speed (2001). Normalization for cDNA microarray data. In M. L. Bittner, Y. Chen, A. N. Dorsel, and E. R. Dougherty (eds), Microarrays: Optical Technologies and Informatics, Vol. 4266 of Proceedings of SPIE.
Y. H. Yang, S. Dudoit, P. Luu, D. M. Lin, V. Peng, J. Ngai, and T. P. Speed (2002). Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Research, Vol. 30, No. 4.
# See examples for maNormMain.
# See examples for maNormMain.
This function is used for scale normalization using the median absolute deviation (MAD) of intensity log-ratios for a group of spots. It can be used for within or between array normalization. The function should be used as an argument to the main normalization function maNormMain
.
maNormMAD(x=NULL, y="maM", geo=TRUE, subset=TRUE)
maNormMAD(x=NULL, y="maM", geo=TRUE, subset=TRUE)
x |
Name of accessor function for spot statistic used to stratify the data, usually a layout parameter, e.g. |
y |
Name of accessor function for spot statistics, usually
|
geo |
If |
subset |
A "logical" or "numeric" vector indicating the subset of points used to compute the scale normalization values. |
A function with bindings for the above arguments. This latter function takes as argument an object of class "marrayRaw"
(or possibly "marrayNorm"
), and returns a vector of values used to scale the location normalized log-ratios. It calls the function maMAD
, which is not specific to microarray objects.
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine.
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software, Springer, New York.
Y. H. Yang, S. Dudoit, P. Luu, and T. P. Speed (2001). Normalization for cDNA microarray data. In M. L. Bittner, Y. Chen, A. N. Dorsel, and E. R. Dougherty (eds), Microarrays: Optical Technologies and Informatics, Vol. 4266 of Proceedings of SPIE.
Y. H. Yang, S. Dudoit, P. Luu, D. M. Lin, V. Peng, J. Ngai, and T. P. Speed (2002). Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Research, Vol. 30, No. 4.
maNormMain
, maMAD
, mad
.
# See examples for maNormMain.
# See examples for maNormMain.
This is the main function for location and scale normalization of cDNA microarray data. Normalization is performed for a batch of arrays using location and scale normalization procedures specified by the lists of functions f.loc
and f.scale
. Typically, only one function is given in each list, otherwise composite normalization is performed using the weights computed by the functions a.loc
and a.scale
. The function operates on an object of class "marrayRaw"
(or possibly "marrayNorm"
, if normalization is performed in several steps) and returns an object of class "marrayNorm"
. Simple wrapper functions are provided by maNorm
and maNormScale
.
maNormMain(mbatch, f.loc=list(maNormLoess()), f.scale=NULL, a.loc=maCompNormEq(), a.scale=maCompNormEq(), Mloc=TRUE, Mscale=TRUE, echo=FALSE)
maNormMain(mbatch, f.loc=list(maNormLoess()), f.scale=NULL, a.loc=maCompNormEq(), a.scale=maCompNormEq(), Mloc=TRUE, Mscale=TRUE, echo=FALSE)
mbatch |
An object of class |
f.loc |
A list of location normalization functions, e.g., |
f.scale |
A list of scale normalization functions, .e.g, |
a.loc |
For composite normalization, a function for computing the weights used in combining several location normalization functions, e.g., |
a.scale |
For composite normalization, a function for computing the weights used in combining several scale normalization functions. |
Mloc |
If |
Mscale |
If |
echo |
If |
When both location and scale normalization functions (f.loc
and f.scale
) are passed, location normalization is performed before scale normalization. That is, scale values are computed for the location normalized log-rations. The same results could be obtained by two applications of the function maNormMain
, first with only the location normalization function and f.scale=NULL
, and second with only the scale normalization function and f.loc=NULL
.
mnorm |
An object of class |
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine.
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software, Springer, New York.
Y. H. Yang, S. Dudoit, P. Luu, and T. P. Speed (2001). Normalization for cDNA microarray data. In M. L. Bittner, Y. Chen, A. N. Dorsel, and E. R. Dougherty (eds), Microarrays: Optical Technologies and Informatics, Vol. 4266 of Proceedings of SPIE.
Y. H. Yang, S. Dudoit, P. Luu, D. M. Lin, V. Peng, J. Ngai, and T. P. Speed (2002). Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Research, Vol. 30, No. 4.
maNorm
, maNormScale
, maNormLoess
, maLoess
,
maNormMAD
, maMAD
,
maNormMed
, maMed
,
maNorm2D
, ma2D
,
maCompNormA
, maCompNormEq
.
# Examples use swirl dataset, for description type ? swirl data(swirl) # Within-print-tip-group loess location normalization of batch swirl # - Default normalization swirl.norm<-maNormMain(swirl) boxplot(swirl.norm) boxplot(swirl.norm[,3]) plot(swirl.norm[,3]) # Global median normalization for arrays 81 and 82 swirl.norm <- maNormMain(swirl[,1:2], f.loc = list(maNormMed(x=NULL,y="maM"))) # Global loess normalization for array 81 swirl.norm <- maNormMain(swirl[,1], f.loc = list(maNormLoess(x="maA",y="maM",z=NULL))) # Composite normalization as in Yang et al. (2002) # No MSP controls are available here, so all spots are used for illustration # purposes swirl.norm <- maNormMain(swirl[,1], f.loc = list(maNormLoess(x="maA",y="maM",z=NULL),maNormLoess(x="maA",y="maM",z="maPrintTip")), a.loc=maCompNormA())
# Examples use swirl dataset, for description type ? swirl data(swirl) # Within-print-tip-group loess location normalization of batch swirl # - Default normalization swirl.norm<-maNormMain(swirl) boxplot(swirl.norm) boxplot(swirl.norm[,3]) plot(swirl.norm[,3]) # Global median normalization for arrays 81 and 82 swirl.norm <- maNormMain(swirl[,1:2], f.loc = list(maNormMed(x=NULL,y="maM"))) # Global loess normalization for array 81 swirl.norm <- maNormMain(swirl[,1], f.loc = list(maNormLoess(x="maA",y="maM",z=NULL))) # Composite normalization as in Yang et al. (2002) # No MSP controls are available here, so all spots are used for illustration # purposes swirl.norm <- maNormMain(swirl[,1], f.loc = list(maNormLoess(x="maA",y="maM",z=NULL),maNormLoess(x="maA",y="maM",z="maPrintTip")), a.loc=maCompNormA())
This function is used for location normalization using the median of
intensity log-ratios for a group of spots. The function should be used
as an argument to the main normalization function maNormMain
.
maNormMed(x=NULL, y="maM", subset=TRUE)
maNormMed(x=NULL, y="maM", subset=TRUE)
x |
Name of accessor method for spot statistic used to stratify the
data, usually a layout parameter, e.g. |
y |
Name of accessor method for spot statistics, usually |
subset |
A "logical" or "numeric" vector indicating the subset of points used to compute the location normalization values. |
A function with bindings for the above arguments. This latter function takes as
argument an object of class "marrayRaw"
(or possibly
"marrayNorm"
), and returns a vector of fitted values to be
subtracted from the raw log-ratios. It calls the function maMed
,
which is not specific to microarray objects.
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine.
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for
exploratory analysis and normalization of cDNA microarray data.
In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors,
The Analysis of Gene Expression Data: Methods and Software, Springer,
New York.
Y. H. Yang, S. Dudoit, P. Luu, and T. P. Speed (2001). Normalization for cDNA
microarray data. In M. L. Bittner, Y. Chen, A. N. Dorsel, and E. R. Dougherty
(eds), Microarrays: Optical Technologies and Informatics,
Vol. 4266 of Proceedings of SPIE.
Y. H. Yang, S. Dudoit, P. Luu, D. M. Lin, V. Peng, J. Ngai, and T. P. Speed (2002). Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Research, Vol. 30, No. 4.
# See examples for maNormMain.
# See examples for maNormMain.
This function is a simple wrapper function around the main normalization
function maNormMain
. It allows the user to choose from a
set of two basic scale normalization procedures. The function operates
on an object of class "marrayRaw"
(or possibly
"marrayNorm"
, if normalization is performed in several
steps) and returns an object of class "marrayNorm"
. This
function can be used to conormalize a batch of arrays
(norm="globalMAD"
option).
maNormScale(mbatch, norm=c("globalMAD", "printTipMAD"), subset=TRUE, geo=TRUE, Mscale=TRUE, echo=FALSE)
maNormScale(mbatch, norm=c("globalMAD", "printTipMAD"), subset=TRUE, geo=TRUE, Mscale=TRUE, echo=FALSE)
mbatch |
An object of class |
norm |
A character string specifying the normalization procedures:
This argument can be specified using the first letter of each method. |
subset |
A "logical" or "numeric" vector indicating the subset of points used to compute the normalization values. |
geo |
If |
Mscale |
If |
echo |
If |
See maNormMain
for details and more general procedures.
mnorm |
An object of class |
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine.
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software, Springer, New York.
Y. H. Yang, S. Dudoit, P. Luu, and T. P. Speed (2001). Normalization for cDNA microarray data. In M. L. Bittner, Y. Chen, A. N. Dorsel, and E. R. Dougherty (eds), Microarrays: Optical Technologies and Informatics, Vol. 4266 of Proceedings of SPIE.
Y. H. Yang, S. Dudoit, P. Luu, D. M. Lin, V. Peng, J. Ngai, and T. P. Speed (2002). Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Research, Vol. 30, No. 4.
# Examples use swirl dataset, for description type ? swirl data(swirl) # Global median normalization followed by global MAD normalization for # only arrays 2 and 3 in the batch swirl mnorm1<-maNorm(swirl[,2:3], norm="m") mnorm2<-maNormScale(mnorm1, norm="g")
# Examples use swirl dataset, for description type ? swirl data(swirl) # Global median normalization followed by global MAD normalization for # only arrays 2 and 3 in the batch swirl mnorm1<-maNorm(swirl[,2:3], norm="m") mnorm2<-maNormScale(mnorm1, norm="g")
This function converts a numeric vector of indices to a logical vector. It is used for subsetting purposes.
maNum2Logic(n=length(subset), subset=TRUE)
maNum2Logic(n=length(subset), subset=TRUE)
n |
the length of the logical vector to be produced. |
subset |
a numeric vector of indices. A logical vector may also be supplied, in which case it is also the value of the function. |
a logical vector.
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine.
maNum2Logic(10, 1:3)
maNum2Logic(10, 1:3)
This function returns a vector of color names corresponding to a range of colors specified in the arguments.
maPalette(low = "white", high = c("green", "red"), mid=NULL, k =50)
maPalette(low = "white", high = c("green", "red"), mid=NULL, k =50)
low |
Color for the lower end of the color palette, specified using any of the three kinds of R colors, i.e., either a color name (an element of |
high |
Color for the upper end of the color palette, specified
using any of the three kinds of R colors, i.e., either a color name
(an element of |
mid |
Color for the middle portion of the color palette, specified using any of the three kinds of R colors, i.e., either a color name (an element of |
k |
Number of colors in the palette. |
A "character" vector of color names. This can be used to create a user-defined color palette for subsequent graphics by palette
, in a col=
specification in graphics functions, or in par
.
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine, Yee Hwa (Jean) Yang.
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software, Springer, New York.
image
, maColorBar
, maImage
, maImage.func
.
par(mfrow=c(1,4)) pal <- maPalette(low="red", high="green") maColorBar(seq(-2,2, 0.2), col=pal, horizontal=FALSE, k=21) pal <- maPalette(low="red", high="green", mid="yellow") maColorBar(seq(-2,2, 0.2), col=pal, horizontal=FALSE, k=21) pal <- maPalette() maColorBar(seq(-2,2, 0.2), col=pal, horizontal=FALSE, k=21) pal <- maPalette(low="purple", high="purple",mid="white") maColorBar(seq(-2,2, 0.2), col=pal, horizontal=FALSE, k=21)
par(mfrow=c(1,4)) pal <- maPalette(low="red", high="green") maColorBar(seq(-2,2, 0.2), col=pal, horizontal=FALSE, k=21) pal <- maPalette(low="red", high="green", mid="yellow") maColorBar(seq(-2,2, 0.2), col=pal, horizontal=FALSE, k=21) pal <- maPalette() maColorBar(seq(-2,2, 0.2), col=pal, horizontal=FALSE, k=21) pal <- maPalette(low="purple", high="purple",mid="white") maColorBar(seq(-2,2, 0.2), col=pal, horizontal=FALSE, k=21)
These functions are used with htmlPage
.
The function mapGeneInfo
, takes all the arguments and generate
a character matrix of two columns. The first columns representing the
name of the argument and the second columns represents the value of an
argument.
The function widget.mapGeneInfo
allows the user to enter this
information interactively.
mapGeneInfo(widget = FALSE, Gnames, Name = "pubmed", ID = "genbank", ACC = "SMDacc", ...) widget.mapGeneInfo(Gnames)
mapGeneInfo(widget = FALSE, Gnames, Name = "pubmed", ID = "genbank", ACC = "SMDacc", ...) widget.mapGeneInfo(Gnames)
widget |
A logical value specifying if widgets should be used. |
Name |
The external database for spot description, E.g. "pubmed". |
ID |
The external database for spot ID, E.g. "operon", "Riken", "locuslink". |
ACC |
The external database for gene accession number, E.g. "genebank". |
Gnames |
An object of class |
... |
Other column names |
The function mapGeneInfo
generates a character matrix with the
first column representing the column headings of "Gnames" and the
second column representing the corresponding names in the list
URLstring
. For example, if a particular column in "Gnames"
with column names "ID" contains genebank accession number, then the
function mapGeneInfo
generates a row containing "ID" in the
first column and "genbank" in the second. Examples are SFGL
and UCBFGL
.
URLstring
is a list contains the URL to various external
database, E.g. operon, Riken, genbank.
The current choices are:
"pubmed", "locuslink", "riken", "SMDclid", "SMDacc", "operonh2", "operonh1" ,
"operonm2", "operonm1" and "genbank" .
"SMDclid" and "SMDacc" are links to Stanford Microarray Databases.
Jean Yee Hwa Yang
mapGeneInfo(ID="genebank", ll="locuslink") mapGeneInfo(ID="locuslink", Sample.ID="riken")
mapGeneInfo(ID="genebank", ll="locuslink") mapGeneInfo(ID="locuslink", Sample.ID="riken")
The function maPlot
produces scatter-plots of
microarray spot statistics for the classes "marrayRaw"
and "marrayNorm"
.
It also allows the user to highlight and annotate subsets of points on the plot, and display fitted
curves from robust local regression or other smoothing procedures.
maPlot(m, x="maA", y="maM", z="maPrintTip", lines.func, text.func, legend.func, ...)
maPlot(m, x="maA", y="maM", z="maPrintTip", lines.func, text.func, legend.func, ...)
m |
Microarray object of class |
x |
Name of accessor function for the abscissa spot statistic, typically a slot name for the microarray object |
y |
Name of accessor function for the ordinate spot statistic, typically a slot name for the microarray object |
z |
Name of accessor method for the spot statistic used to stratify the data, typically a slot name for the microarray layout object (see |
lines.func |
Function for computing and plotting smoothed fits of |
text.func |
Function for highlighting a subset of points, e.g., |
legend.func |
Function for adding a legend to the plot, e.g. |
... |
Optional graphical parameters, see |
This function calls the general function maPlot.func
, which is not specific to microarray data. If there are more than one array in the batch, the plot is done for the first array, by default. Default graphical parameters are chosen for convenience using the function maDefaultPar
(e.g. color palette, axis labels, plot title) but the user has the option to overwrite these parameters at any point.
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine.
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software, Springer, New York.
maPlot.func
, maDefaultPar
, maLoessLines
, maLegendLines
, maText
, plot
, lowess
, loess
, legend
.
# To see the demo type demo(marrayPlots) # Examples use swirl dataset, for description type ? swirl data(swirl) # - Default arguments maPlot(swirl) # Lowess fit using all spots maPlot(swirl, z=NULL, legend.func=NULL) # Loess fit using all spots maPlot(swirl, z=NULL, legend.func=maLegendLines(legend="All spots",col="green"), lines.func=maLoessLines(loess.args=list(span=0.3),col="green")) # Pre-normalization MA-plot for the Swirl 81 array, with the lowess fits for # individual grid columns and 1% tails of M highlighted defs <- maDefaultPar(swirl[, 1], x = "maA", y = "maM", z = "maGridCol") legend.func <- do.call("maLegendLines", defs$def.legend) lines.func <- do.call("maLowessLines", c(list(TRUE, f = 0.3), defs$def.lines)) text.func<-maText(subset=maTop(maM(swirl)[,1],h=0.01,l=0.01), labels="o", col="violet") maPlot(swirl[, 1], x = "maA", y = "maM", z = "maGridCol", lines.func=lines.func, text.func = text.func, legend.func=legend.func, main = "Swirl array 81: pre-normalization MA-plot")
# To see the demo type demo(marrayPlots) # Examples use swirl dataset, for description type ? swirl data(swirl) # - Default arguments maPlot(swirl) # Lowess fit using all spots maPlot(swirl, z=NULL, legend.func=NULL) # Loess fit using all spots maPlot(swirl, z=NULL, legend.func=maLegendLines(legend="All spots",col="green"), lines.func=maLoessLines(loess.args=list(span=0.3),col="green")) # Pre-normalization MA-plot for the Swirl 81 array, with the lowess fits for # individual grid columns and 1% tails of M highlighted defs <- maDefaultPar(swirl[, 1], x = "maA", y = "maM", z = "maGridCol") legend.func <- do.call("maLegendLines", defs$def.legend) lines.func <- do.call("maLowessLines", c(list(TRUE, f = 0.3), defs$def.lines)) text.func<-maText(subset=maTop(maM(swirl)[,1],h=0.01,l=0.01), labels="o", col="violet") maPlot(swirl[, 1], x = "maA", y = "maM", z = "maGridCol", lines.func=lines.func, text.func = text.func, legend.func=legend.func, main = "Swirl array 81: pre-normalization MA-plot")
This function produces scatter-plots of x
vs. y
. It also allows the user to highlight and annotate subsets of points on the plot, and display fitted curves from robust local regression or other smoothing procedures.
maPlot.func(x, y, z, lines.func = maLowessLines(subset = TRUE, f = 0.3, col = 1:length(unique(z)), lty = 1, lwd = 2.5), text.func = maText(), legend.func = maLegendLines(legend = as.character(unique(z)), col = 1:length(unique(z)), lty = 1, lwd = 2.5, ncol = 1), ...)
maPlot.func(x, y, z, lines.func = maLowessLines(subset = TRUE, f = 0.3, col = 1:length(unique(z)), lty = 1, lwd = 2.5), text.func = maText(), legend.func = maLegendLines(legend = as.character(unique(z)), col = 1:length(unique(z)), lty = 1, lwd = 2.5, ncol = 1), ...)
x |
A "numeric" vector for the abscissa. |
y |
A "numeric" vector for the ordinates. |
z |
A vector of statistic used to stratify the data, smoothed curves are fitted separately within values of |
lines.func |
A function for computing and plotting smoothed fits of |
text.func |
A function for highlighting a subset of points, e.g., |
legend.func |
A function for adding a legend to the plot, e.g. |
... |
Optional graphical parameters, see |
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine.
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software, Springer, New York.
maPlot
, maLoessLines
, maLegendLines
, maText
, plot
, lowess
, loess
, legend
.
# See examples for maPlot.
# See examples for maPlot.
This class is used to store information on target samples hybridized to a batch of arrays or probe sequences spotted onto these arrays. It is not specific to the microarray context.
Objects can be created by calls of the form new('marrayInfo',
maLabels = ...., # Object of class character
maInfo = ...., # Object of class data.frame
maNotes = ...., # Object of class character
)
maLabels
:Object of class "character"
, vector of spot or array labels.
maInfo
:Object of class "data.frame"
. If the object of class "marrayInfo"
is used to describe probe sequences, rows of maInfo
correspond to spots and columns to various gene identifiers and annotations.
If the object of class "marrayInfo"
is used to describe target samples hybridized to the arrays, rows of maInfo
correspond to arrays and columns to various descriptions of the hybridizations, e.g., names of Cy3 and Cy5 samples, labels for the arrays etc.
maNotes
:Object of class "character"
, any notes on the target samples or spotted probe sequences.
signature(x = "marrayInfo")
: subsetting operator for spots on the array or arrays in the batch, ensures that all slots are subset properly.
signature(object = "marrayRaw", value = "marrayInfo")
: slot assignment method.
signature(object = "marrayNorm", value = "marrayInfo")
: slot assignment method.
signature(object = "marraySpots", value = "marrayInfo")
: slot assignment method.
signature(object = "marrayInfo")
: slot accessor method.
signature(object = "marrayInfo", value = "data.frame")
: slot assignment method.
signature(object = "marrayInfo")
: slot accessor method.
signature(object = "marrayInfo", value = "character")
: slot assignment method.
signature(object = "marrayInfo", value = "numeric")
: slot assignment method.
signature(object = "marrayInfo")
: slot accessor method.
signature(object = "marrayInfo", value = "character")
: slot assignment method.
signature(object = "marrayRaw", value = "marrayInfo")
: slot assignment method.
signature(object = "marrayNorm", value = "marrayInfo")
: slot assignment method.
signature(x = "marrayInfo")
: print method for "marrayInfo"
class.
Jean Yang and Sandrine Dudoit
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software, Springer, New York.
marrayLayout
, marrayRaw
, marrayNorm
.
## See marrayRaw
## See marrayRaw
This class is used to keep track of important layout parameters for two-color cDNA microarrays. It contains slots for: the total number of spotted probe sequences on the array, the dimensions of the spot and grid matrices, the plate origin of the probes, information on spotted control sequences (e.g. probe sequences which should have equal abundance in the two target samples, such as housekeeping genes). The terms print-tip-group, grid, spot matrix, and sector are used interchangeably and refer to a set of spots printed using the same print-tip.
Objects can be created by calls of the form new('marrayLayout',
maNgr = ...., # Object of class numeric
maNgc = ...., # Object of class numeric
maNsr = ...., # Object of class numeric
maNsc = ...., # Object of class numeric
maNspots = ...., # Object of class numeric
maSub = ...., # Object of class logical
maPlate = ...., # Object of class factor
maControls = ...., # Object of class factor
maNotes = ...., # Object of class character
)
maNgr
:Object of class "numeric"
, number of rows for the grid matrix.
maNgc
:Object of class "numeric"
, number of columns for the grid matrix.
maNsr
:Object of class "numeric"
, number of rows for the spot matrices.
maNsc
:Object of class "numeric"
, number of columns for the spot matrices.
maNspots
:Object of class "numeric"
, total number of spots on the array, equal to .
maSub
:Object of class "logical"
, indicating which spots are currently being considered.
maPlate
:Object of class "factor"
, recording the plate origin of the spotted probe sequences.
maControls
:Object of class "factor"
, recording the control status of the spotted probe sequences.
maNotes
:Object of class "character"
, any notes concerning the microarray layout, e.g., printing conditions.
signature(x = "marrayLayout")
: subsetting operator for spots on the array, ensures that all slots are subset properly.
signature(object = "marrayLayout")
: slot assignment method.
signature(object = "marrayLayout")
: slot accessor method.
signature(object = "marrayLayout")
: method which computes a vector of grid column coordinates for each spot.
signature(object = "marrayLayout")
: method which computes a vector of grid row coordinates for each spot.
signature(object = "marrayRaw", value = "marrayLayout")
: slot assignment method.
signature(object = "marrayNorm", value = "marrayLayout")
: slot assignment method.
signature(object = "marrayLayout")
: slot accessor method.
signature(object = "marrayLayout", value = "numeric")
: slot assignment method.
signature(object = "marrayLayout")
: slot accessor method.
signature(object = "marrayLayout", value = "numeric")
: slot assignment method.
signature(object = "marrayLayout")
: slot accessor method.
signature(object = "marrayLayout", value = "character")
: slot assignment method.
signature(object = "marrayLayout")
: slot accessor method.
signature(object = "marrayLayout", value = "numeric")
: slot assignment method.
signature(object = "marrayLayout")
: slot accessor method.
signature(object = "marrayLayout", value = "numeric")
: slot assignment method.
signature(object = "marrayLayout")
: slot accessor method.
signature(object = "marrayLayout", value = "numeric")
: slot assignment method.
signature(object = "marrayLayout")
: slot accessor method.
signature(object = "marrayLayout")
: slot assignment method.
signature(object = "marrayLayout")
: method which computes a vector of print-tip-group indices for each spot.
signature(object = "marrayLayout")
: method which computes a vector of spot column coordinates for each spot.
signature(object = "marrayLayout")
: method which computes a vector of spot row coordinates for each spot.
signature(object = "marrayLayout")
: slot accessor method.
signature(object = "marrayLayout", value = "logical")
: slot assignment method.
signature(object = "marrayLayout", value = "numeric")
: slot assignment method.
signature(x = "marrayLayout")
: print method for "marrayLayout"
class.
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine.
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software, Springer, New York.
marrayRaw
, marrayNorm
,
marrayInfo
and [-methods
.
## See marrayRaw
## See marrayRaw
This class represents post-normalization intensity data for a batch of cDNA microarrays. A batch of arrays consists of a collection of arrays with the same layout ("marrayLayout"
). The class contains slots for the average log-intensities A, the normalized log-ratios M, the location and scale normalization values, the layout of the arrays, and descriptions of the target samples hybridized to the arrays and probe sequences spotted onto the arrays.
Objects can be created by calls of the form
new('marrayNorm',
maA = ...., # Object of class matrix
maM = ...., # Object of class matrix
maMloc = ...., # Object of class matrix
maMscale = ...., # Object of class matrix
maW = ...., # Object of class matrix
maLayout = ...., # Object of class marrayLayout
maGnames = ...., # Object of class marrayInfo
maTargets = ...., # Object of class marrayInfo
maNotes = ...., # Object of class character
maNormCall = ...., # Object of class call
)
maA
:Object of class "matrix"
, average log-intensities (base 2) A, rows correspond to spotted probe sequences, columns to arrays in the batch.
maM
:Object of class "matrix"
, intensity log-ratios (base 2) M, rows correspond to spotted probe sequences, columns to arrays in the batch.
maMloc
:Object of class "matrix"
, location normalization values, rows correspond to spotted probe sequences, columns to arrays in the batch.
maMscale
:Object of class "matrix"
, scale normalization values, rows correspond to spotted probe sequences, columns to arrays in the batch.
maW
:Object of class "matrix"
, spot quality weights, rows correspond to spotted probe sequences, columns to arrays in the batch.
maLayout
:Object of class "marrayLayout"
, layout parameters for cDNA microarrays.
maGnames
:Object of class "marrayInfo"
, description of spotted probe sequences.
maTargets
:Object of class "marrayInfo"
, description of target samples hybridized to the arrays.
maNotes
:Object of class "character"
, any notes concerning the microarray experiments, e.g. hybridization or scanning conditions.
maNormCall
:Object of class "call"
, function call for normalizing the batch of arrays.
signature(x = "marrayNorm")
: subsetting operator for spots on the array and arrays in the batch, ensures that all slots are subset properly.
signature(from = "marrayRaw", to = "marrayNorm")
: coerce an object of class "marrayRaw"
into an object of class marrayNorm
.
signature(object = "marrayNorm")
: slot accessor method.
signature(object = "marrayNorm", value = "matrix")
: slot assignment method.
signature(object = "marrayNorm")
: slot assignment method.
signature(object = "marrayNorm")
: slot accessor method.
signature(object = "marrayNorm")
: slot accessor method.
signature(object = "marrayNorm", value = "marrayInfo")
: slot assignment method.
signature(object = "marrayNorm")
: method which computes a vector of grid column coordinates for each spot.
signature(object = "marrayNorm")
: method which computes a vector of grid row coordinates for each spot.
signature(object = "marrayNorm")
: slot accessor method.
signature(object = "marrayNorm", value = "marrayLayout")
: slot assignment method.
signature(object = "marrayNorm")
: slot accessor method.
signature(object = "marrayNorm", value = "matrix")
: slot assignment method.
signature(object = "marrayNorm")
: slot accessor method.
signature(object = "marrayNorm", value = "matrix")
: slot assignment method.
signature(object = "marrayNorm")
: slot accessor method.
signature(object = "marrayNorm", value = "matrix")
: slot assignment method.
signature(object = "marrayNorm")
: slot accessor method.
signature(object = "marrayNorm", value = "numeric")
: slot assignment method.
signature(object = "marrayNorm")
: slot accessor method.
signature(object = "marrayNorm", value = "numeric")
: slot assignment method.
signature(object = "marrayNorm")
: slot accessor method.
signature(object = "marrayNorm")
: slot accessor method.
signature(object = "marrayNorm", value = "character")
: slot assignment method.
signature(object = "marrayNorm")
: slot accessor method.
signature(object = "marrayNorm")
: slot accessor method.
signature(object = "marrayNorm", value = "numeric")
: slot assignment method.
signature(object = "marrayNorm")
: slot accessor method.
signature(object = "marrayNorm", value = "numeric")
: slot assignment method.
signature(object = "marrayNorm")
: slot accessor method.
signature(object = "marrayNorm", value = "numeric")
: slot assignment method.
signature(object = "marrayNorm")
: slot accessor method.
signature(object = "marrayNorm")
: slot assignment method.
signature(object = "marrayNorm")
: method which computes a vector of print-tip-group indices for each spot.
signature(object = "marrayNorm")
: method which computes a vector of spot column coordinates for each spot.
signature(object = "marrayNorm")
: method which computes a vector of spot row coordinates for each spot.
signature(object = "marrayNorm")
: slot accessor method.
signature(object = "marrayNorm")
: slot assignment method.
signature(object = "marrayNorm")
: slot accessor method.
signature(object = "marrayNorm", value = "marrayInfo")
: slot assignment method.
signature(object = "marrayNorm")
: slot accessor method.
signature(object = "marrayNorm", value = "matrix")
: slot assignment method.
signature(x = "marrayNorm")
: print method for "marrayNorm"
class.
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine.
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software, Springer, New York.
marrayLayout
, marrayRaw
,
marrayInfo
# Examples use swirl dataset, for description type ? swirl data(swirl) # Median normalization mnorm<-maNorm(swirl[,2:3],norm="m") # Object of class marrayNorm for the second and third swirl arrays mnorm # Function call maNormCall(mnorm) # Object of class marrayInfo -- Probe sequences maGnames(mnorm) # Object of class marrayInfo -- Target samples maTargets(mnorm) # Density plot of log-ratios M for third array plot(density(maM(mnorm[,2])), lwd=2, col=2, main="Density plots of log-ratios M") lines(density(maM(swirl[,3])), lwd=2) abline(v=0) legend(2,1,c("Pre-normalization","Post-normalization"))
# Examples use swirl dataset, for description type ? swirl data(swirl) # Median normalization mnorm<-maNorm(swirl[,2:3],norm="m") # Object of class marrayNorm for the second and third swirl arrays mnorm # Function call maNormCall(mnorm) # Object of class marrayInfo -- Probe sequences maGnames(mnorm) # Object of class marrayInfo -- Target samples maTargets(mnorm) # Density plot of log-ratios M for third array plot(density(maM(mnorm[,2])), lwd=2, col=2, main="Density plots of log-ratios M") lines(density(maM(swirl[,3])), lwd=2) abline(v=0) legend(2,1,c("Pre-normalization","Post-normalization"))
This class represents pre-normalization intensity data for
a batch of cDNA microarrays. A batch of arrays consists of a
collection of arrays with the same layout
("marrayLayout"
). The class contains slots for the green
(Cy3) and red (Cy5) foreground and background intensities, the layout
of the arrays, and descriptions of the target samples hybridized to
the arrays and probe sequences spotted onto the arrays.
Objects can be created by calls of the form
new('marrayRaw',
maRf = ...., # Object of class matrix
maGf = ...., # Object of class matrix
maRb = ...., # Object of class matrix
maGb = ...., # Object of class matrix
maW = ...., # Object of class matrix
maLayout = ...., # Object of class marrayLayout
maGnames = ...., # Object of class marrayInfo
maTargets = ...., # Object of class marrayInfo
maNotes = ...., # Object of class character
)
maRf
:Object of class "matrix"
, red foreground intensities, rows correspond to spotted probe sequences, columns to arrays in the batch.
maGf
:Object of class "matrix"
, green foreground intensities, rows correspond to spotted probe sequences, columns to arrays in the batch.
maRb
:Object of class "matrix"
, red background intensities, rows correspond to spotted probe sequences, columns to arrays in the batch.
maGb
:Object of class "matrix"
, green background intensities, rows correspond to spotted probe sequences, columns to arrays in the batch.
maW
:Object of class "matrix"
, spot quality weights, rows correspond to spotted probe sequences, columns to arrays in the batch.
maLayout
:Object of class "marrayLayout"
, layout parameters for the cDNA microarrays.
maGnames
:Object of class "marrayInfo"
, description of spotted probe sequences.
maTargets
:Object of class "marrayInfo"
, description of target samples hybridized to the arrays.
maNotes
:Object of class "character"
, any notes concerning the microarray experiments, e.g. hybridization or scanning conditions.
signature(x = "marrayRaw")
: subsetting operator for spots on the array and arrays in the batch, ensures that all slots are subset properly.
signature(from = "marrayRaw", to = "marrayNorm")
: coerce an object of class "marrayRaw"
into an object of class "marrayNorm"
.
signature(object = "marrayRaw")
: function which computes average log-intensities (base 2) A for an object of class "marrayRaw"
.
signature(object = "marrayRaw")
: slot assignment method.
signature(object = "marrayRaw")
: slot accessor method.
signature(object = "marrayRaw")
: slot accessor method.
signature(object = "marrayRaw", value = "matrix")
: slot assignment method.
signature(object = "marrayRaw", value = "NULL")
: slot assignment method.
signature(object = "marrayRaw")
: slot accessor method.
signature(object = "marrayRaw", value = "matrix")
: slot assignment method.
signature(object = "marrayRaw")
: slot accessor method.
signature(object = "marrayRaw", value = "marrayInfo")
: slot assignment method.
signature(object = "marrayRaw")
: method which computes a vector of grid column coordinates for each spot.
signature(object = "marrayRaw")
: method which computes a vector of grid row coordinates for each spot.
signature(object = "marrayRaw")
: slot accessor method.
signature(object = "marrayRaw", value = "marrayLayout")
: slot assignment method.
signature(object = "marrayRaw")
: method which computes green log-intensities (base 2) for an object of class "marrayRaw"
.
signature(object = "marrayRaw")
: method which computes red log-intensities (base 2) for an object of class "marrayRaw"
.
signature(object = "marrayRaw")
: method which computes intensity log-ratios (base 2) M for an object of class "marrayRaw"
.
signature(object = "marrayRaw")
: slot accessor method.
signature(object = "marrayRaw", value = "numeric")
: slot assignment method.
signature(object = "marrayRaw")
: slot accessor method.
signature(object = "marrayRaw", value = "numeric")
: slot assignment method.
signature(object = "marrayRaw")
: slot accessor method.
signature(object = "marrayRaw", value = "character")
: slot assignment method.
signature(object = "marrayRaw")
: slot accessor method.
signature(object = "marrayRaw")
: slot accessor method.
signature(object = "marrayRaw", value = "numeric")
: slot assignment method.
signature(object = "marrayRaw")
: slot accessor method.
signature(object = "marrayRaw", value = "numeric")
: slot assignment method.
signature(object = "marrayRaw")
: slot accessor method.
signature(object = "marrayRaw", value = "numeric")
: slot assignment method.
signature(object = "marrayRaw")
: slot accessor method.
signature(object = "marrayRaw")
: slot assignment method.
signature(object = "marrayRaw")
: method which computes a vector of print-tip-group indices for each spot.
signature(object = "marrayRaw")
: slot accessor method.
signature(object = "marrayRaw", value = "matrix")
: slot assignment method.
signature(object = "marrayRaw", value = "NULL")
: slot assignment method.
signature(object = "marrayRaw")
: slot accessor method.
signature(object = "marrayRaw", value = "matrix")
: slot assignment method.
signature(object = "marrayRaw")
: method which computes a vector of spot column coordinates for each spot.
signature(object = "marrayRaw")
: method which computes a vector of spot row coordinates for each spot.
signature(object = "marrayRaw")
: slot accessor method.
signature(object = "marrayRaw")
: slot assignment method.
signature(object = "marrayRaw")
: slot accessor method.
signature(object = "marrayRaw", value = "marrayInfo")
: slot assignment method.
signature(object = "marrayRaw")
: slot accessor method.
signature(object = "marrayRaw", value = "matrix")
: slot assignment method.
signature(x = "marrayRaw")
: print method for "marrayRaw"
class.
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine.
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software, Springer, New York.
marrayLayout
, marrayNorm
, marrayInfo
.
# Examples use swirl dataset, for description type ? swirl require(limma) data(swirl) # Object of class marrayRaw for the 4 swirl arrays swirl # Object of class marrayLayout maLayout(swirl) # Access only the first 100 spots of the third array swirl[1:100,3] # Accessor methods -- How many spots on the array maNspots(swirl) # Density plot of log-ratios M for third array plot(density(maM(swirl[,3]))) # Assignment methods -- Replace maNotes slot maNotes(swirl) maNotes(swirl)<-"This is a zebrafish microarray" maNotes(swirl)
# Examples use swirl dataset, for description type ? swirl require(limma) data(swirl) # Object of class marrayRaw for the 4 swirl arrays swirl # Object of class marrayLayout maLayout(swirl) # Access only the first 100 spots of the third array swirl[1:100,3] # Accessor methods -- How many spots on the array maNspots(swirl) # Density plot of log-ratios M for third array plot(density(maM(swirl[,3]))) # Assignment methods -- Replace maNotes slot maNotes(swirl) maNotes(swirl)<-"This is a zebrafish microarray" maNotes(swirl)
Select genes by considering the union
or
intersect
of multiple statistics.
maSelectGnames(statdata, crit1 = 50, crit2 = crit1, sub = TRUE, selectstat, operate = c("intersect", "union"))
maSelectGnames(statdata, crit1 = 50, crit2 = crit1, sub = TRUE, selectstat, operate = c("intersect", "union"))
statdata |
A numerical matrix where the rows corresponds to genes and the columns corresponds to various statistics corresponding to a particular gene. |
crit1 |
The number of points to be selected. If crit1 < 1, the crit1*100% spots with the smallest M values will be selected. If crit1 >= 1, the crit spots with the smallest M values are selected. |
crit2 |
Similar to "crit1". If crit2 < 1, the crit2*100% spots with the largest M values will be selected. If crit2 >= 1, the crit2 spots with the largest M values are selected. |
sub |
A "logical" or "numeric" vector indicating the subset of genes to be consider. |
selectstat |
A integer value indicating the statistics where the final ranking is based on. |
operate |
The operation used to combined different rankings |
This functions calls stat.gnames
to select say the 100
most extreme genes from various statistics and combined the different
gene lists by either union or intersection.
A vector of numeric values.
Jean Yee Hwa Yang
X <- matrix(rnorm(1000), 100,10) Xstat <- cbind(mean=apply(X, 1, mean, na.rm=TRUE), var=apply(X, 1, var, na.rm=TRUE)) maSelectGnames(Xstat, crit1=50)
X <- matrix(rnorm(1000), 100,10) Xstat <- cbind(mean=apply(X, 1, mean, na.rm=TRUE), var=apply(X, 1, var, na.rm=TRUE)) maSelectGnames(Xstat, crit1=50)
This function may be used to highlight a subset of points on an existing
plot, such as a plot produced by plot
,
maPlot
, or maPlot.func
.
maText(subset=NULL, labels=as.character(1:length(subset)), ...)
maText(subset=NULL, labels=as.character(1:length(subset)), ...)
subset |
A "logical" or "numeric" vector indicating the subset of points to highlight. |
labels |
One or more character strings or expressions specifying the text to be written. |
... |
Optional graphical parameters, see |
A function with bindings for subset
, labels
, and ...
. This latter function takes as arguments x
and y
, the absissa and ordinates of points on the plot.
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine.
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software, Springer, New York.
# See examples for maPlot.
# See examples for maPlot.
This function determines which values in a numeric vector are above or below user supplied cut-offs.
maTop(x, h=1, l=1)
maTop(x, h=1, l=1)
x |
A "numeric" vector. |
h |
A "numeric", upper cut-off. |
l |
A "numeric", lower cut-off. |
A "logical" vector indicating which entries are above or below the cut-offs.
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine.
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software, Springer, New York.
# See examples for maPlot.
# See examples for maPlot.
Taking target file information and flip the dye swaps experiments.
maTwoSamples(targetfile, normdata, Trt, Ctl, targetID = "TargetName", slidesID = "Slides", dyesID = "Dyes", RedID = 5, path = ".", output = TRUE)
maTwoSamples(targetfile, normdata, Trt, Ctl, targetID = "TargetName", slidesID = "Slides", dyesID = "Dyes", RedID = 5, path = ".", output = TRUE)
targetfile |
A data.frame containing target samples information. |
normdata |
A R object of class 'marrayNorm' |
Trt |
A character string representing "treatment" sample. |
Ctl |
A character string representing "controls" sample. |
targetID |
A character string representing the column name in 'targetfile' containing target samples information. |
slidesID |
A character string representing the column name in 'targetfile' containing the slide label. |
dyesID |
A character string representing the column name in 'targetfile' containing dye labeled information. |
RedID |
The character use to represent the Cy5 dye. |
path |
A character string representing the data directory. By default this is set to the current working directory ("."). |
output |
Save and tab delimited file |
An objects of 'marrayNorm' with the dye assignment adjusted.
Yee Hwa (Jean) Yang
Basic statistical functions for handling missing values or NA.
In log.na
, sum.na
, mean.na
and var.na
,
quantile.na
, length.na
, missing values are omitted
from the calculation.
The function cor.na
calls cor
with the argument
use="pairwise.complete.obs"
.
The function order.na
only handles vector arguments and not
lists. However, it gives the option of omitting the NAs
(na.last=NA
), of placing the NAs at the start of the ordered
vector (na.last=F
) or at the end (na.last=T
).
The function scale.na
is a modified version of
scale
which allows NAs in the variance calculation. If
scale = T
, the function f
in scale.na
uses
var.na
to perform the variance calculation.
The function prod.na
is similar to the prod
function with na.rm=TRUE
. This function returns the product of
all the values present in its arguments, omitting any missing values.
Yee Hwa Yang, [email protected]
log
, sum
, mean
,
var
, cor
, order
,
scale
, prod
.
This functions looks the operon ID and determine whether it belongs to "Human Genome Oligo Set V1", "Human Genome Oligo Set V2", "Mouse Genome Oligo Set V1" or "Mouse Genome Oligo Set V2".
opVersionID(opID)
opVersionID(opID)
opID |
A character strings representing operon ID |
A value "operonh1", "operonh2", "operonm1" or "operonm2" to represents "Human Genome Oligo Set V1", "Human Genome Oligo Set V2", "Mouse Genome Oligo Set V1" or "Mouse Genome Oligo Set V2".
Jean Yee Hwa Yang
opVersionID("M000205_01") URLstring[opVersionID("M000205_01")]
opVersionID("M000205_01") URLstring[opVersionID("M000205_01")]
The function maPlot
or plot
produces scatter-plots of
microarray spot statistics for the classes "marrayRaw"
,
"marrayNorm"
. It also allows the user to highlight and
annotate subsets of points on the plot, and display fitted curves from
robust local regression or other smoothing procedures.
## S3 method for class 'marrayRaw' plot(x, xvar = "maA", yvar = "maM", zvar="maPrintTip", lines.func,text.func,legend.func, ...) ## S3 method for class 'marrayNorm' plot(x, xvar = "maA", yvar = "maM", zvar="maPrintTip", lines.func,text.func,legend.func, ...) addText(object, xvar="maA", yvar="maM", subset=NULL, labels=as.character(1:length(subset)), ...) addPoints(object, xvar="maA", yvar="maM", subset=TRUE, ...) addLines(object, xvar="maA", yvar="maM", zvar="maPrintTip", subset=TRUE, ...) ## S4 method for signature 'marrayRaw' text(x, xvar = "maA", yvar = "maM", ...) ## S4 method for signature 'marrayNorm' text(x, xvar = "maA", yvar = "maM", ...) ## S4 method for signature 'marrayRaw' lines(x, xvar = "maA", yvar = "maM", zvar = "maPrintTip", ...) ## S4 method for signature 'marrayNorm' lines(x, xvar = "maA", yvar = "maM", zvar = "maPrintTip",...) ## S4 method for signature 'marrayRaw' points(x, xvar = "maA", yvar = "maM", ...) ## S4 method for signature 'marrayNorm' points(x, xvar = "maA", yvar = "maM", ...)
## S3 method for class 'marrayRaw' plot(x, xvar = "maA", yvar = "maM", zvar="maPrintTip", lines.func,text.func,legend.func, ...) ## S3 method for class 'marrayNorm' plot(x, xvar = "maA", yvar = "maM", zvar="maPrintTip", lines.func,text.func,legend.func, ...) addText(object, xvar="maA", yvar="maM", subset=NULL, labels=as.character(1:length(subset)), ...) addPoints(object, xvar="maA", yvar="maM", subset=TRUE, ...) addLines(object, xvar="maA", yvar="maM", zvar="maPrintTip", subset=TRUE, ...) ## S4 method for signature 'marrayRaw' text(x, xvar = "maA", yvar = "maM", ...) ## S4 method for signature 'marrayNorm' text(x, xvar = "maA", yvar = "maM", ...) ## S4 method for signature 'marrayRaw' lines(x, xvar = "maA", yvar = "maM", zvar = "maPrintTip", ...) ## S4 method for signature 'marrayNorm' lines(x, xvar = "maA", yvar = "maM", zvar = "maPrintTip",...) ## S4 method for signature 'marrayRaw' points(x, xvar = "maA", yvar = "maM", ...) ## S4 method for signature 'marrayNorm' points(x, xvar = "maA", yvar = "maM", ...)
x |
Microarray object of class |
object |
Microarray object of class |
xvar |
Name of accessor function for the abscissa spot statistic, typically a slot name for the microarray object |
yvar |
Name of accessor function for the ordinate spot statistic, typically a slot name for the microarray object |
zvar |
Name of accessor method for the spot statistic used to stratify the data, typically a slot name for the microarray layout object (see |
lines.func |
Function for computing and plotting smoothed fits of |
text.func |
Function for highlighting a subset of points, e.g., |
legend.func |
Function for adding a legend to the plot, e.g. |
subset |
logical vector or numeric values indicating the subset of points to be plotted. |
labels |
One or more character strings or expressions specifying the text to be written. |
... |
Optional graphical parameters, see |
This function calls the general function maPlot.func
,
which is not specific to microarray data. If there are more than one
array in the batch, the plot is done for the first array, by
default. Default graphical parameters are chosen for convenience using
the function maDefaultPar
(e.g. color palette, axis
labels, plot title) but the user has the option to overwrite these
parameters at any point.
Jean Yee Hwa Yang
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software, Springer, New York.
maPlot.func
, maDefaultPar
, maLoessLines
, maLegendLines
, maText
, plot
, lowess
, loess
, legend
.
# To see the demo type demo(marrayPlots) # Examples use swirl dataset, for description type ? swirl data(swirl) # Pre-normalization MA-plot for the Swirl 93 array, with the lowess fits for # individual print-tip-groups. # - Default arguments plot(swirl[,3]) # Lowess fit using all spots plot(swirl[,3], zvar=NULL, legend.func=NULL) # Loess fit using all spots plot(swirl[,3], zvar=NULL, legend.func=maLegendLines(legend="All spots",col="green"), lines.func=maLoessLines(loess.args=list(span=0.3),col="green"))
# To see the demo type demo(marrayPlots) # Examples use swirl dataset, for description type ? swirl data(swirl) # Pre-normalization MA-plot for the Swirl 93 array, with the lowess fits for # individual print-tip-groups. # - Default arguments plot(swirl[,3]) # Lowess fit using all spots plot(swirl[,3], zvar=NULL, legend.func=NULL) # Loess fit using all spots plot(swirl[,3], zvar=NULL, legend.func=maLegendLines(legend="All spots",col="green"), lines.func=maLoessLines(loess.args=list(span=0.3),col="green"))
Reading a standard Gal file containing gene information.
read.Galfile(galfile, path = ".", info.id = c("ID", "Name"), layout.id =c(Block="Block", Row="Row", Column="Column"), labels = "ID", notes = "", sep = "\t", skip = NULL, ncolumns=4, ...)
read.Galfile(galfile, path = ".", info.id = c("ID", "Name"), layout.id =c(Block="Block", Row="Row", Column="Column"), labels = "ID", notes = "", sep = "\t", skip = NULL, ncolumns=4, ...)
galfile |
a character string representing the Gal file. |
path |
a character string representing the data directory. By default this is set to the current working directory ("."). |
info.id |
the column numbers or names in ‘fname’ that contain the required information. |
layout.id |
the column names in ‘fname’ that specified the printer layout information. |
labels |
the column number in |
notes |
object of class character, vector of explanatory text |
sep |
the field separator character. Values on each line of the file are separated by this character. The default is to read a tab delimited file. |
skip |
the number of lines of the data file to skip before beginning to read data. |
ncolumns |
an integer representing the number of columns of sub-array (print-tips) on a slides. |
... |
further arguments to |
gnames |
An object of class |
layout |
An object of class |
Yee Hwa (Jean) Yang
read.marrayInfo
, read.marrayLayout
library(marray) datadir <- system.file("swirldata", package="marray") try <- read.Galfile(galfile="fish.gal", path=datadir) names(try) try$layout try$gnames
library(marray) datadir <- system.file("swirldata", package="marray") try <- read.Galfile(galfile="fish.gal", path=datadir) names(try) try$layout try$gnames
This function creates objects of class marrayInfo
. The marrayInfo
class is used to store
information regarding the target mRNA samples co-hybridized on the arrays or
the spotted probe sequences (e.g. data frame of gene names, annotations, and other identifiers).
read.marrayInfo(fname, info.id=NULL, labels=NULL, notes=fname, sep="\t",skip=0, quote="\"", ...)
read.marrayInfo(fname, info.id=NULL, labels=NULL, notes=fname, sep="\t",skip=0, quote="\"", ...)
fname |
the name of the file that stores information on target samples or probe sequences. This is usually a file obtained from a database. |
info.id |
the column numbers in |
labels |
the column number in |
notes |
object of class character, vector of explanatory text |
sep |
the field separator character. Values on each line of the file are separated by this character. The default is to read a tab delimited file. |
skip |
the number of lines of the data file to skip before beginning to read data. |
quote |
the set of quoting characters. By default, this is disable by setting ‘quote="\""’. |
... |
further arguments to |
An object of class marrayInfo
.
Jean Yang, [email protected]
http://www.bioconductor.org/
datadir <- system.file("swirldata", package="marray") ## Reading target sample information swirl.samples <- read.marrayInfo(file.path(datadir, "SwirlSample.txt")) ## Reading probe sequence information swirl.gnames <- read.marrayInfo(file.path(datadir, "fish.gal"), info.id=4:5, labels=5, skip=21)
datadir <- system.file("swirldata", package="marray") ## Reading target sample information swirl.samples <- read.marrayInfo(file.path(datadir, "SwirlSample.txt")) ## Reading probe sequence information swirl.gnames <- read.marrayInfo(file.path(datadir, "fish.gal"), info.id=4:5, labels=5, skip=21)
This function creates objects of class marrayLayout
to store layout parameters for two-color cDNA microarrays.
read.marrayLayout(fname = NULL, ngr, ngc, nsr, nsc, pl.col = NULL, ctl.col = NULL, sub.col = NULL, notes = fname, skip, sep = "\t", quote = "\"", ...)
read.marrayLayout(fname = NULL, ngr, ngc, nsr, nsc, pl.col = NULL, ctl.col = NULL, sub.col = NULL, notes = fname, skip, sep = "\t", quote = "\"", ...)
fname |
the name of the file that stores plate and control information. This is usually a file obtained from a database. |
ngr |
the number of rows of grids per image. |
ngc |
the number of columns of grids per image. |
nsr |
the number of rows of spots per grid. |
nsc |
the number of columns of spots per grid. |
pl.col |
the column number in |
ctl.col |
the column number in |
sub.col |
the column number in |
notes |
object of class character, vector of explanatory text. |
skip |
the number of lines of the data file to skip before beginning to read data. |
sep |
the field separator character. Values on each line of the file are separated by this character. The default is to read a tab delimited file. |
quote |
the set of quoting characters. By default, this is disable by setting ‘quote="\""’. |
... |
further arguments to |
An object of class marrayLayout
.
Jean Yang [email protected]
http://www.bioconductor.org/
datadir <- system.file("swirldata", package="marray") ### Reading in control information from file skip <- grep("Row", readLines(file.path(datadir,"fish.gal"), n=100)) - 1 swirl.layout <- read.marrayLayout(fname=file.path(datadir,"fish.gal"), ngr=4, ngc=4, nsr=22, nsc=24, ctl.col=4, skip=skip) ### Setting control information. swirl.gnames <- read.marrayInfo(file.path(datadir,"fish.gal"), info.id=4:5, labels=5, skip=21) x <- maInfo(swirl.gnames)[,1] y <- rep(0, maNspots(swirl.layout)) y[x == "control"] <- 1 slot(swirl.layout, "maControls") <- as.factor(y)
datadir <- system.file("swirldata", package="marray") ### Reading in control information from file skip <- grep("Row", readLines(file.path(datadir,"fish.gal"), n=100)) - 1 swirl.layout <- read.marrayLayout(fname=file.path(datadir,"fish.gal"), ngr=4, ngc=4, nsr=22, nsc=24, ctl.col=4, skip=skip) ### Setting control information. swirl.gnames <- read.marrayInfo(file.path(datadir,"fish.gal"), info.id=4:5, labels=5, skip=21) x <- maInfo(swirl.gnames)[,1] y <- rep(0, maNspots(swirl.layout)) y[x == "control"] <- 1 slot(swirl.layout, "maControls") <- as.factor(y)
This function reads in cDNA microarray data from a directory and creates objects of
class "marrayRaw"
from spot quantification data files obtained from image analysis software or databases.
read.marrayRaw(fnames, path=".", name.Gf=NULL, name.Gb=NULL, name.Rf=NULL, name.Rb=NULL,name.W=NULL, layout=NULL, gnames=NULL, targets=NULL, notes=NULL, skip=NULL, sep=" ", quote="\"", DEBUG=FALSE, ...) read.GenePix(fnames = NULL, path = NULL, name.Gf = "F532 Median", name.Gb ="B532 Median", name.Rf = "F635 Median", name.Rb = "B635 Median", name.W ="Flags", layout = NULL, gnames = NULL, targets = NULL, notes = NULL, skip=NULL, sep = " ", quote = "\"", DEBUG=FALSE, ...) read.SMD(fnames = NULL, path = NULL, name.Gf = "Ch1 Intensity (Median)", name.Gb = "Ch1 Background (Median)", name.Rf = "Ch2 Intensity (Median)", name.Rb = "Ch2 Background (Median)", name.W = NULL, info.id = c("Name", "Clone ID"), layout = NULL, gnames = NULL, targets = NULL, notes = NULL, skip = NULL, sep = "\t", quote = "\"", DEBUG=FALSE, ...) read.Spot(fnames = NULL, path = ".", name.Gf = "Gmean", name.Gb = "morphG", name.Rf = "Rmean", name.Rb = "morphR",name.W = NULL, layout = NULL, gnames = NULL, targets = NULL, notes = NULL, skip = NULL, sep = "\t", quote = "\"", DEBUG=FALSE, ...) read.Agilent(fnames = NULL, path=NULL, name.Gf = "gMedianSignal", name.Gb = "gBGMedianSignal", name.Rf = "rMedianSignal", name.Rb = "rBGMedianSignal", name.W= NULL, layout = NULL, gnames = NULL, targets = NULL, notes=NULL, skip=NULL, sep="\t", quote="\"", DEBUG=FALSE, info.id=NULL, ...) widget.marrayRaw(ext = c("spot", "xls", "gpr"), skip = 0, sep = "\t", quote = "\"", ...)
read.marrayRaw(fnames, path=".", name.Gf=NULL, name.Gb=NULL, name.Rf=NULL, name.Rb=NULL,name.W=NULL, layout=NULL, gnames=NULL, targets=NULL, notes=NULL, skip=NULL, sep=" ", quote="\"", DEBUG=FALSE, ...) read.GenePix(fnames = NULL, path = NULL, name.Gf = "F532 Median", name.Gb ="B532 Median", name.Rf = "F635 Median", name.Rb = "B635 Median", name.W ="Flags", layout = NULL, gnames = NULL, targets = NULL, notes = NULL, skip=NULL, sep = " ", quote = "\"", DEBUG=FALSE, ...) read.SMD(fnames = NULL, path = NULL, name.Gf = "Ch1 Intensity (Median)", name.Gb = "Ch1 Background (Median)", name.Rf = "Ch2 Intensity (Median)", name.Rb = "Ch2 Background (Median)", name.W = NULL, info.id = c("Name", "Clone ID"), layout = NULL, gnames = NULL, targets = NULL, notes = NULL, skip = NULL, sep = "\t", quote = "\"", DEBUG=FALSE, ...) read.Spot(fnames = NULL, path = ".", name.Gf = "Gmean", name.Gb = "morphG", name.Rf = "Rmean", name.Rb = "morphR",name.W = NULL, layout = NULL, gnames = NULL, targets = NULL, notes = NULL, skip = NULL, sep = "\t", quote = "\"", DEBUG=FALSE, ...) read.Agilent(fnames = NULL, path=NULL, name.Gf = "gMedianSignal", name.Gb = "gBGMedianSignal", name.Rf = "rMedianSignal", name.Rb = "rBGMedianSignal", name.W= NULL, layout = NULL, gnames = NULL, targets = NULL, notes=NULL, skip=NULL, sep="\t", quote="\"", DEBUG=FALSE, info.id=NULL, ...) widget.marrayRaw(ext = c("spot", "xls", "gpr"), skip = 0, sep = "\t", quote = "\"", ...)
fnames |
a vector of character strings containing the file names of
each spot quantification data file. These typically end in |
path |
a character string representing the data directory. By
default this is set to the current working directory ("."). In the
case where |
name.Gf |
character string for the column header for green foreground intensities. |
name.Gb |
character string for the column header for green background intensities. |
name.Rf |
character string for the column header for red foreground intensities. |
name.Rb |
character string for the column header for red background intensities. |
name.W |
character string for the column header for spot quality weights. |
layout |
object of class |
gnames |
object of class |
targets |
object of class |
notes |
object of class |
info.id |
object of class |
skip |
the number of lines of the data file to skip before beginning to read in data. |
sep |
the field separator character. Values on each line of the file are separated by this character. The default is to read a tab delimited file. |
quote |
the set of quoting characters. By default, this is
disabled by setting |
ext |
a characters string representing suffix of different image analysis output files. |
DEBUG |
a logical value, if TRUE, a series of echo statements will be printed. |
... |
further arguments to |
An object of class "marrayRaw"
.
Jean Yang, [email protected]
scan
, read.marrayLayout
,
read.marrayInfo
datadir <- system.file("swirldata", package="marray") ## Quick guide swirl.targets <- read.marrayInfo(file.path(datadir, "SwirlSample.txt")) data <- read.Spot(path=datadir, targets=swirl.targets) ## Alternate commands skip <- grep("Row", readLines(file.path(datadir,"fish.gal"), n=100)) - 1 swirl.layout <- read.marrayLayout(ngr=4, ngc=4, nsr=22, nsc=24) swirl.targets <- read.marrayInfo(file.path(datadir, "SwirlSample.txt")) swirl.gnames <- read.marrayInfo(file.path(datadir, "fish.gal"), info.id=4:5, labels=5, skip=skip) x <- maInfo(swirl.gnames)[,1] y <- rep(0, maNspots(swirl.layout)) y[x == "control"] <- 1 slot(swirl.layout, "maControls") <- as.factor(y) fnames <- dir(path=datadir,pattern="spot") swirl<- read.Spot(fnames, path=datadir, layout = swirl.layout, gnames = swirl.gnames, targets = swirl.targets)
datadir <- system.file("swirldata", package="marray") ## Quick guide swirl.targets <- read.marrayInfo(file.path(datadir, "SwirlSample.txt")) data <- read.Spot(path=datadir, targets=swirl.targets) ## Alternate commands skip <- grep("Row", readLines(file.path(datadir,"fish.gal"), n=100)) - 1 swirl.layout <- read.marrayLayout(ngr=4, ngc=4, nsr=22, nsc=24) swirl.targets <- read.marrayInfo(file.path(datadir, "SwirlSample.txt")) swirl.gnames <- read.marrayInfo(file.path(datadir, "fish.gal"), info.id=4:5, labels=5, skip=skip) x <- maInfo(swirl.gnames)[,1] y <- rep(0, maNspots(swirl.layout)) y[x == "control"] <- 1 slot(swirl.layout, "maControls") <- as.factor(y) fnames <- dir(path=datadir,pattern="spot") swirl<- read.Spot(fnames, path=datadir, layout = swirl.layout, gnames = swirl.gnames, targets = swirl.targets)
Remove NA's, NAN's and INF's from a vector.
rm.na(x)
rm.na(x)
x |
A numeric vector |
A vector with all NA's remove.
Jean Yang
x <- round(rnorm(10), 2) x[c(2,4,5)] <- NA x rm.na(x)
x <- round(rnorm(10), 2) x[c(2,4,5)] <- NA x rm.na(x)
A virtual class including the data classes marrayRaw
,
marrayNorm
, marrayInfo
, marrayLayout
,
PrinterInfo
, RGData
and MAData
, all of which typically contain large
quantities of numerical data in vector, matrices and data.frames.
A show
method is defined for objects of class
ShowLargeObject
which uses printHead
to print only the
leading elements or rows of components or slots which contain large
quantities of data.
modifid from Gordon Smyth's function
Select values based on intensities binning.
stat.confband.text(M, A, crit1=0.025, crit2=crit1, nclass=5)
stat.confband.text(M, A, crit1=0.025, crit2=crit1, nclass=5)
A |
a vector giving the x-coordinates of the points in the scatter plot. In the microarray context, this could be a vector of average log intensities. ie A |
M |
a vector giving the y-coordinates of the points in the scatter plot. In the microarray context, this could be a vector of log intensity ratios. |
crit1 |
The number of points to be selected. If crit1 < 1, the crit1*100% spots with the smallest M values will be selected. If crit1 >= 1, the crit spots with the smallest M values are selected. |
crit2 |
Similar to "crit1". If crit2 < 1, the crit2*100% spots with the largest M values will be selected. If crit2 >= 1, the crit2 spots with the largest M values are selected. |
nclass |
A single number giving the approximate number of intensity depedent groups to consider. |
A vector of selected spot index.
library(marray) data(swirl) aveA <- apply(maA(swirl), 1, mean.na) aveM <- apply(maM(swirl), 1, mean.na) stat.confband.text(aveM, aveA, crit1=20, crit2=50, nclass=5)
library(marray) data(swirl) aveA <- apply(maA(swirl), 1, mean.na) aveM <- apply(maM(swirl), 1, mean.na) stat.confband.text(aveM, aveA, crit1=20, crit2=50, nclass=5)
Lists genes and corresponding statistics in decreasing order of the
statistics. This function applies to any type of statistic, including
log ratios, one and two-sample t-statistics, and F-statistics. Missing
values are ignored, as in sort(..., na.last=NA)
.
stat.gnames(x, gnames, crit= 50)
stat.gnames(x, gnames, crit= 50)
x |
a numeric vector containing the statistics for each gene. Missing values (NAs) are allowed. |
gnames |
a character vector containing the gene names. |
crit |
specifies the number of genes to be returned. If crit < 1, the crit*100% genes with the largest x values are listed. If crit >= 1, the crit genes with the largest x values are listed. |
List containing the following components
gnames |
gene names sorted in decreasing order of the statistics in x. |
t |
statistics sorted in decreasing order. |
Yee Hwa Yang, [email protected]
Sandrine Dudoit, [email protected]
data(swirl) aveM <- apply(maM(swirl), 1, mean.na) Gnames <- maGeneTable(swirl) stat.gnames(abs(aveM), Gnames, crit=10) stat.gnames(aveM, Gnames, crit=0.01)
data(swirl) aveM <- apply(maM(swirl), 1, mean.na) Gnames <- maGeneTable(swirl) stat.gnames(abs(aveM), Gnames, crit=10) stat.gnames(aveM, Gnames, crit=0.01)
Print methods were defined for the microarray classes,
"marrayInfo"
, "marrayLayout"
,
"marrayRaw"
, "marrayNorm"
. These methods
produce summaries of the intensity and textual data stored in different
classes of microarray objects.
generic print method
for an object of class "marrayLayout"
, the method prints main layout parameters such as the number of spots and the dimensions of the spot and grid matrices.
for an object of class "marrayInfo"
, the method prints the first 10 rows of the "maInfo"
and "maLabels"
slots.
for an object of class "marrayRaw"
, the method prints a short description of the microarray layout "maLayout"
and the target samples hybridized to the arrays "maTargets"
, and a summary of the distribution of the log-ratio statistics "maM"
.
for an object of class "marrayNorm"
, the method prints a short description of the microarray layout "maLayout"
and the target samples hybridized to the arrays "maTargets"
, and a summary of the distribution of the log-ratio statistics "maM"
.
The swirlRaw
dataset consists of an object swirl
of class marrayRaw
, which represents
pre-normalization intensity data for a batch of cDNA microarrays.
This experiment was carried out
using zebrafish as a model organism to study early development in
vertebrates. Swirl is a point mutant in the BMP2 gene that affects the
dorsal/ventral body axis. Ventral fates such as blood are reduced, whereas
dorsal structures such as somites and notochord are expanded. A goal of
the Swirl experiment is to identify genes with altered expression in
the swirl mutant compared to wild-type zebrafish. Two sets of dye-swap experiments were performed, for a total of four replicate hybridizations. For
each of these hybridizations, target cDNA from the swirl mutant was labeled using
one of the Cy3 or Cy5 dyes and the target cDNA wild-type mutant was labeled using
the other dye. Target cDNA was hybridized to microarrays containing
8,448 cDNA probes, including 768 controls spots (e.g. negative, positive,
and normalization controls spots). Microarrays were printed using print-tips and are thus partitioned into a
grid matrix. Each grid consists of a
spot matrix that was printed with a single print-tip. Here, spot row and plate coordinates should coincide, as each row of spots corresponds to probe sequences from the same 384 well-plate.
Each of the four hybridizations produced
a pair of 16-bit images, which were processed using the image analysis software package Spot
. Raw images of the Cy3 and Cy5 fluorescence intensities for all fourhybridizations are available at http://fgl.lsa.berkeley.edu/Swirl/index.html.the dataset includes four output files
swirl.1.spot
,
swirl.2.spot
,
swirl.3.spot
, and
swirl.4.spot
from the Spot
package. Each of these files contains
8,448 rows and 30 columns; rows correspond to spots and columns to
different statistics from the Spot
image analysis output. The file
fish.gal
is a gal file generated by the GenePix
program; it contains information on individual probe sequences, such as gene names, spot ID, spot coordinates. Hybridization information for the mutant and wild-type target samples is stored in SwirlSample.txt
.
data(swirl)
data(swirl)
These data were provided by Katrin Wuennenberg-Stapleton from the Ngai Lab at UC Berkeley. The swirl embryos for this experiment were provided by David Kimelman and David Raible at the University of Washington.
Writes information from a list into a text file.
write.list(x, filename = "data", append = FALSE, closefile = TRUE, outfile)
write.list(x, filename = "data", append = FALSE, closefile = TRUE, outfile)
x |
the list object to be written. |
filename |
a character string representing the file name. |
append |
logical; if true, the data |
closefile |
logical indicating if the file connection should be closed. |
outfile |
file name or connections. |
This function may be called recursively if there exists list structure within a list.
Jean Yee Hwa Yang
data(swirl) test <- list(A = 1:10, B= maM(swirl)[1:10,], C=list(x=1:10, y=1:4), D = summary(maA(swirl[,1]))) write.list(test, filename="test.txt")
data(swirl) test <- list(A = 1:10, B= maM(swirl)[1:10,], C=list(x=1:10, y=1:4), D = summary(maA(swirl[,1]))) write.list(test, filename="test.txt")
Calls the function write.table with predefine argument. The entries in each line (row) are separated by tab.
write.marray(mraw, file="maRawResults.xls", val="maM", ...)
write.marray(mraw, file="maRawResults.xls", val="maM", ...)
mraw |
the object to be written, either a |
file |
a character string representing the file name. |
val |
a character string representing the slotNames to be written. |
... |
further arguments to |
see write.table
Jean Yee Hwa Yang
data(swirl) write.marray(swirl[1:10,])
data(swirl) write.marray(swirl[1:10,])
Calls the function write.table with predefine argument. The entries in each line (row) are separated by tab.
write.xls(res, file = "test.xls", ...)
write.xls(res, file = "test.xls", ...)
res |
the object to be written, typically a data frame. If not, it
is attempted to coerce |
file |
a character string representing the file name. |
... |
further arguments to |
see write.table
Jean Yee Hwa Yang
data(swirl) write.xls(maM(swirl)[1:10,], "normM.xls")
data(swirl) write.xls(maM(swirl)[1:10,], "normM.xls")