Title: | mimager: The Microarray Imager |
---|---|
Description: | Easily visualize and inspect microarrays for spatial artifacts. |
Authors: | Aaron Wolen [aut, cre, cph] |
Maintainer: | Aaron Wolen <[email protected]> |
License: | MIT + file LICENSE |
Version: | 1.31.0 |
Built: | 2024-12-04 06:01:33 UTC |
Source: | https://github.com/bioc/mimager |
Determines the rank of values within each matrix of a three-dimensional array.
arank(x, na.last = TRUE, ties.method = "first")
arank(x, na.last = TRUE, ties.method = "first")
x |
a three-dimensional |
na.last |
for controlling the treatment of |
ties.method |
a character string specifying how ties are treated, see ‘Details’; can be abbreviated. |
an array
with the same dimensions as x
Other array.transformations: arle
# microarray visualization if (require(affydata, quietly = TRUE)) { data("Dilution", package = "affydata") x <- arank(marray(Dilution, transpose = TRUE)) }
# microarray visualization if (require(affydata, quietly = TRUE)) { data("Dilution", package = "affydata") x <- arank(marray(Dilution, transpose = TRUE)) }
The relative log expression (RLE) quantifies the extent to which each sample in a dataset differs from a "reference" sample, which represents each probe's median value across all samples.
arle(x, log2 = TRUE, normalize = TRUE)
arle(x, log2 = TRUE, normalize = TRUE)
x |
a three-dimensional |
log2 |
should values be $log_2$ transformed |
normalize |
should values be quantile normalized |
an array
with the same dimensions as x
Other array.transformations: arank
# microarray visualization if (require(affydata, quietly = TRUE)) { data("Dilution", package = "affydata") x <- arle(marray(Dilution, transpose = TRUE)) }
# microarray visualization if (require(affydata, quietly = TRUE)) { data("Dilution", package = "affydata") x <- arle(marray(Dilution, transpose = TRUE)) }
Convert S4 microarray data structures into a three-dimensional array of matrices, where each matrix corresponds to an individual sample's microarray with values arranged to reflect the physical position of the corresponding feature (i.e., probe) on the microarray surface.
marray(object, type = NULL, select = NULL, transpose = NULL) ## S4 method for signature 'AffyBatch' marray(object, type = "pm", select = NULL, transpose = FALSE) ## S4 method for signature 'PLMset' marray(object, type = "residuals", select = NULL, transpose = FALSE) ## S4 method for signature 'FeatureSet' marray(object, type = "pm", select = NULL, transpose = FALSE) ## S4 method for signature 'oligoPLM' marray(object, type = "residuals", select = NULL, transpose = FALSE)
marray(object, type = NULL, select = NULL, transpose = NULL) ## S4 method for signature 'AffyBatch' marray(object, type = "pm", select = NULL, transpose = FALSE) ## S4 method for signature 'PLMset' marray(object, type = "residuals", select = NULL, transpose = FALSE) ## S4 method for signature 'FeatureSet' marray(object, type = "pm", select = NULL, transpose = FALSE) ## S4 method for signature 'oligoPLM' marray(object, type = "residuals", select = NULL, transpose = FALSE)
object |
a valid Bioconductor microarray data structure |
type |
for microarray objects |
select |
a numeric, character or logical vector indicating samples to include |
transpose |
|
three-dimensional array
For microarray data structures the type
argument determines the
type of probe that should be included. The following table provides a
list of valid values for each supported microarray class:
AffyBatch
|
"all" |
"pm" |
"mm" |
- |
ExpressionFeatureSet
|
"all" |
"pm" |
"mm" |
- |
GeneFeatureSet
|
"all" |
"pm" |
- | "bg"
|
ExonFeatureSet
|
"all" |
"pm" |
"mm" |
"bg" |
SnpFeatureSet
|
"all" |
"pm" |
"mm" |
- |
if (require(affydata, quietly = TRUE)) { data("Dilution", package = "affydata") dilution.array <- marray(Dilution, select = c("20A", "10A")) }
if (require(affydata, quietly = TRUE)) { data("Dilution", package = "affydata") dilution.array <- marray(Dilution, select = c("20A", "10A")) }
Visualize microarray probe intensities arranged by their physical location on the array. A false color image is produced for each sample in the microarray object and arranged in a grid.
mimage(object, type = NULL, select = NULL, colors = NULL, legend.label = NULL, nrow = NULL, ncol = NULL, fixed = FALSE, empty.rows = "fill", empty.thresh = 0.6, transform = NULL, trim = 0.01, fontsize = 12) ## S4 method for signature 'AffyBatch' mimage(object, type = "pm", select = NULL, colors = NULL, legend.label = "Intensity", nrow = NULL, ncol = NULL, fixed = FALSE, empty.rows = "fill", empty.thresh = 0.6, transform = log2, trim = 0.01, fontsize = 12) ## S4 method for signature 'PLMset' mimage(object, type = "residuals", select = NULL, colors = NULL, legend.label = type, nrow = NULL, ncol = NULL, fixed = FALSE, empty.rows = "fill", empty.thresh = 0.6, transform = identity, trim = 0.01, fontsize = 12) ## S4 method for signature 'FeatureSet' mimage(object, type = "pm", select = NULL, colors = NULL, legend.label = "Intensity", nrow = NULL, ncol = NULL, fixed = FALSE, empty.rows = "fill", empty.thresh = 0.6, transform = log2, trim = 0.01, fontsize = 12) ## S4 method for signature 'oligoPLM' mimage(object, type = "residuals", select = NULL, colors = NULL, legend.label = type, nrow = NULL, ncol = NULL, fixed = FALSE, empty.rows = "fill", empty.thresh = 0.6, transform = identity, trim = 0.01, fontsize = 12) ## S4 method for signature 'array' mimage(object, type = NULL, select = NULL, colors = NULL, legend.label = "Values", nrow = NULL, ncol = NULL, fixed = FALSE, empty.rows = "ignore", empty.thresh = 1, transform = identity, trim = 0, fontsize = 12)
mimage(object, type = NULL, select = NULL, colors = NULL, legend.label = NULL, nrow = NULL, ncol = NULL, fixed = FALSE, empty.rows = "fill", empty.thresh = 0.6, transform = NULL, trim = 0.01, fontsize = 12) ## S4 method for signature 'AffyBatch' mimage(object, type = "pm", select = NULL, colors = NULL, legend.label = "Intensity", nrow = NULL, ncol = NULL, fixed = FALSE, empty.rows = "fill", empty.thresh = 0.6, transform = log2, trim = 0.01, fontsize = 12) ## S4 method for signature 'PLMset' mimage(object, type = "residuals", select = NULL, colors = NULL, legend.label = type, nrow = NULL, ncol = NULL, fixed = FALSE, empty.rows = "fill", empty.thresh = 0.6, transform = identity, trim = 0.01, fontsize = 12) ## S4 method for signature 'FeatureSet' mimage(object, type = "pm", select = NULL, colors = NULL, legend.label = "Intensity", nrow = NULL, ncol = NULL, fixed = FALSE, empty.rows = "fill", empty.thresh = 0.6, transform = log2, trim = 0.01, fontsize = 12) ## S4 method for signature 'oligoPLM' mimage(object, type = "residuals", select = NULL, colors = NULL, legend.label = type, nrow = NULL, ncol = NULL, fixed = FALSE, empty.rows = "fill", empty.thresh = 0.6, transform = identity, trim = 0.01, fontsize = 12) ## S4 method for signature 'array' mimage(object, type = NULL, select = NULL, colors = NULL, legend.label = "Values", nrow = NULL, ncol = NULL, fixed = FALSE, empty.rows = "ignore", empty.thresh = 1, transform = identity, trim = 0, fontsize = 12)
object |
a valid Bioconductor microarray data structure |
type |
for microarray objects |
select |
a numeric, character or logical vector indicating samples to include |
colors |
a vector of colors used to represent probe values |
legend.label |
Legend label |
nrow |
optional, number of rows in grid layout |
ncol |
optional, number of columns in grid layout |
fixed |
Force images to assume a fixed aspect ratio corresponding to their physical dimensions |
empty.rows |
Should empty rows be filled with values from neighboring
rows (the default, |
empty.thresh |
what proportion of features must be missing from a row to consider that row empty |
transform |
a function to be applied to the values prior to visualizatio |
trim |
a percentile (default = |
fontsize |
font size for labels and legend |
invisibly a gtable
matrix of grobs
By default, a 98% winsorization is performed prior to visualization, pulling
in values outside of the 1st and 99th percentiles to their respective
endpoints. This can be modified using the trim
argument to provide
either a new percentile, or a range of 2 values defining the min/max of the
trimmed endpoints. Set trim = 0
to avoid trimming entirely.
As a result of platform design, the presence unindexed probes or probe
selection by the user (e.g., including only "pm"
probes), the
matrix
-representation of a microarray can contain numerous rows
comprised entirely (or mostly) of missing values, which may produce
undesirable rasterization artifacts in the microarray image. To avoid this,
empty rows are filled with values from a neighboring row. The threshold for
what constitutes an empty row can be tweaked with the empty.thresh
argument.
For microarray data structures the type
argument determines the
type of probe that should be included. The following table provides a
list of valid values for each supported microarray class:
AffyBatch
|
"all" |
"pm" |
"mm" |
- |
ExpressionFeatureSet
|
"all" |
"pm" |
"mm" |
- |
GeneFeatureSet
|
"all" |
"pm" |
- | "bg"
|
ExonFeatureSet
|
"all" |
"pm" |
"mm" |
"bg" |
SnpFeatureSet
|
"all" |
"pm" |
"mm" |
- |
# standard array visualization mimage(iris3) # microarray visualization if (require(affydata, quietly = TRUE)) { data("Dilution", package = "affydata") mimage(Dilution, select = c("20A", "10A")) }
# standard array visualization mimage(iris3) # microarray visualization if (require(affydata, quietly = TRUE)) { data("Dilution", package = "affydata") mimage(Dilution, select = c("20A", "10A")) }
mimager simplifies the creation of microarray images (sometimes called "pseudo-images") for the purpose of identifying problematic regional aberrations. Notable features include support for many of Bioconductor's core microarray data structures, providng compatibility with a variety of common microarray platforms, and the ability to visualize multiple microarrays simultaneously.
The following Bioconductor microarray data structures are currently supported:
AffyBatch-class
for Affymetrix GeneChip
probe level data
PLMset-class
for probe-level
linear models fitted to Affymetrix GeneChip probe level data
FeatureSet-class
for storing
Expression/Exon/SNP data from a variety of oligonucleotide platforms
oligoPLM-class
for probe-level linear models
fitted to any of the FeatureSet
-like classes