Title: | Methods for fitting probe-level models |
---|---|
Description: | A package that extends and improves the functionality of the base affy package. Routines that make heavy use of compiled code for speed. Central focus is on implementation of methods for fitting probe-level models and tools using these models. PLM based quality assessment tools. |
Authors: | Ben Bolstad <[email protected]> |
Maintainer: | Ben Bolstad <[email protected]> |
License: | GPL (>= 2) |
Version: | 1.83.2 |
Built: | 2024-12-19 02:50:17 UTC |
Source: | https://github.com/bioc/affyPLM |
This function background corrects PM probe data using LESN - Low End Signal is Noise concepts.
bg.correct.LESN(object, method=2, baseline=0.25, theta=4)
bg.correct.LESN(object, method=2, baseline=0.25, theta=4)
object |
an |
method |
an integer code specifying which method to use |
baseline |
A baseline value to use |
theta |
A parameter used in the background correction process |
This method will be more formally documented at a later date.
The basic concept is to consider that the lowest end of intensites is most likely just noise (and should be heavily corrected) and the highest end signals are most likely signal and should have little adjustment. Low end signals are made much smaller while high end signals get less adjustment relative adjustment.
An AffyBatch
Ben Bolstad [email protected]
Bolstad, BM (2004) Low Level Analysis of High-density Oligonucleotide Array Data: Background, Normalization and Summarization. PhD Dissertation. University of California, Berkeley.
if (require(affydata)) { data(Dilution) Dilution.example.bgcorrect <- bg.correct.LESN(Dilution) }
if (require(affydata)) { data(Dilution) Dilution.example.bgcorrect <- bg.correct.LESN(Dilution) }
This function converts an
AffyBatch
into an
PLMset
by fitting a specified robust linear model to the
probe level data.
fitPLM(object,model=PM ~ -1 + probes +samples, variable.type=c(default="factor"), constraint.type=c(default="contr.treatment"), subset=NULL, background=TRUE, normalize=TRUE, background.method="RMA.2", normalize.method="quantile", background.param=list(), normalize.param=list(), output.param=verify.output.param(), model.param=verify.model.param(object, model), verbosity.level=0)
fitPLM(object,model=PM ~ -1 + probes +samples, variable.type=c(default="factor"), constraint.type=c(default="contr.treatment"), subset=NULL, background=TRUE, normalize=TRUE, background.method="RMA.2", normalize.method="quantile", background.param=list(), normalize.param=list(), output.param=verify.output.param(), model.param=verify.model.param(object, model), verbosity.level=0)
object |
an |
model |
A formula describing the model to fit. This is slightly different from the standard method of specifying formulae in R. Read the description below |
variable.type |
a way to specify whether variables in the model are factors or standard variables |
constraint.type |
should factor variables sum to zero or have first variable set to zero (endpoint constraint) |
subset |
a vector with the names of probesets to be used. If NULL then all probesets are used. |
normalize |
logical value. If |
background |
logical value. If |
background.method |
name of background method to use. |
normalize.method |
name of normalization method to use. |
background.param |
A list of parameters for background routines |
normalize.param |
A list of parameters for normalization routines |
output.param |
A list of parameters controlling optional output from the routine. |
model.param |
A list of parameters controlling model procedure |
verbosity.level |
An integer specifying how much to print out. Higher values indicate more verbose. A value of 0 will print nothing |
This function fits robust Probe Level linear Models to all the probesets in
an AffyBatch
. This is carried out
on a probeset by probeset basis. The user has quite a lot of control
over which model is used and what outputs are stored. For more details
please read the vignette.
An PLMset
Ben Bolstad [email protected]
Bolstad, BM (2004) Low Level Analysis of High-density Oligonucleotide Array Data: Background, Normalization and Summarization. PhD Dissertation. University of California, Berkeley.
if (require(affydata)) { data(Dilution) Pset <- fitPLM(Dilution, model=PM ~ -1 + probes + samples) se(Pset)[1:5,] image(Pset) NUSE(Pset) #now lets try a wider class of models ## Not run: Pset <- fitPLM(Dilution,model=PM ~ -1 + probes +liver, normalize=FALSE,background=FALSE) ## End(Not run) ## Not run: coefs(Pset)[1:10,] ## Not run: Pset <- fitPLM(Dilution,model=PM ~ -1 + probes + liver + scanner, normalize=FALSE,background=FALSE) ## End(Not run) coefs(Pset)[1:10,] #try liver as a covariate logliver <- log2(c(20,20,10,10)) ## Not run: Pset <- fitPLM(Dilution, model=PM~-1+probes+logliver+scanner, normalize=FALSE, background=FALSE, variable.type=c(logliver="covariate")) ## End(Not run) coefs(Pset)[1:10,] #try a different se.type ## Not run: Pset <- fitPLM(Dilution, model=PM~-1+probes+scanner, normalize=FALSE,background=FALSE,m odel.param=list(se.type=2)) ## End(Not run) se(Pset)[1:10,] }
if (require(affydata)) { data(Dilution) Pset <- fitPLM(Dilution, model=PM ~ -1 + probes + samples) se(Pset)[1:5,] image(Pset) NUSE(Pset) #now lets try a wider class of models ## Not run: Pset <- fitPLM(Dilution,model=PM ~ -1 + probes +liver, normalize=FALSE,background=FALSE) ## End(Not run) ## Not run: coefs(Pset)[1:10,] ## Not run: Pset <- fitPLM(Dilution,model=PM ~ -1 + probes + liver + scanner, normalize=FALSE,background=FALSE) ## End(Not run) coefs(Pset)[1:10,] #try liver as a covariate logliver <- log2(c(20,20,10,10)) ## Not run: Pset <- fitPLM(Dilution, model=PM~-1+probes+logliver+scanner, normalize=FALSE, background=FALSE, variable.type=c(logliver="covariate")) ## End(Not run) coefs(Pset)[1:10,] #try a different se.type ## Not run: Pset <- fitPLM(Dilution, model=PM~-1+probes+scanner, normalize=FALSE,background=FALSE,m odel.param=list(se.type=2)) ## End(Not run) se(Pset)[1:10,] }
Create boxplots of M or M vs A plots. Where M is determined relative to a specified chip or to a pseudo-median reference chip.
... |
Additional parameters for the routine |
A |
A vector to plot along the horizonal axis |
M |
A vector to plot along vertical axis |
subset |
A set of indices to use when drawing the loess curve |
show.statistics |
If true some summary statistics of the M values are drawn |
span |
span to be used for loess fit. |
family.loess |
|
cex |
Size of text when writing summary statistics on plot |
Allows the user to apply normalization routines to ExpressionSets.
normalize.ExpressionSet.quantiles(eset, transfn=c("none","log","antilog")) normalize.ExpressionSet.loess(eset, transfn=c("none","log","antilog"),...) normalize.ExpressionSet.contrasts(eset, span = 2/3, choose.subset=TRUE, subset.size=5000, verbose=TRUE, family="symmetric", transfn=c("none","log","antilog")) normalize.ExpressionSet.qspline(eset, transfn=c("none","log","antilog"),...) normalize.ExpressionSet.invariantset(eset,prd.td=c(0.003, 0.007), verbose=FALSE, transfn=c("none","log","antilog"), baseline.type=c("mean","median","pseudo-mean","pseudo-median")) normalize.ExpressionSet.scaling(eset, trim=0.02, baseline=-1, transfn=c("none","log","antilog"))
normalize.ExpressionSet.quantiles(eset, transfn=c("none","log","antilog")) normalize.ExpressionSet.loess(eset, transfn=c("none","log","antilog"),...) normalize.ExpressionSet.contrasts(eset, span = 2/3, choose.subset=TRUE, subset.size=5000, verbose=TRUE, family="symmetric", transfn=c("none","log","antilog")) normalize.ExpressionSet.qspline(eset, transfn=c("none","log","antilog"),...) normalize.ExpressionSet.invariantset(eset,prd.td=c(0.003, 0.007), verbose=FALSE, transfn=c("none","log","antilog"), baseline.type=c("mean","median","pseudo-mean","pseudo-median")) normalize.ExpressionSet.scaling(eset, trim=0.02, baseline=-1, transfn=c("none","log","antilog"))
eset |
|
span |
parameter to be passed to the function
|
choose.subset |
use a subset of values to establish the normalization relationship |
subset.size |
number to use for subset |
verbose |
verbosity flag |
family |
parameter to be passed to the function
|
prd.td |
cutoff parameter (details in the bibliographic reference) |
trim |
How much to trim from the top and bottom before computing the mean when using the scaling normalization |
baseline |
Index of array to use as baseline, negative values (-1,-2,-3,-4) control different baseline selection methods |
transfn |
Transform the ExpressionSet before normalizing. Useful when dealing with expression values that are log-scale |
baseline.type |
A method of selecting the baseline array |
... |
Additional parameters that may be passed to the normalization routine |
This function carries out normalization of expression values. In general you should either normalize at the probe level or at the expression value level, not both.
Typing normalize.ExpressionSet.methods
should give you a list of
methods that you may use. note that you can also use the
normalize
function on ExpressionSets. Use method
to select the
normalization method.
A normalized ExpressionSet
.
Ben Bolstad, [email protected]
Bolstad, BM (2004) Low Level Analysis of High-density Oligonucleotide Array Data: Background, Normalization and Summarization. PhD Dissertation. University of California, Berkeley.
if (require(affydata)) { data(Dilution) eset <- rma(Dilution, normalize=FALSE, background=FALSE) normalize(eset) }
if (require(affydata)) { data(Dilution) eset <- rma(Dilution, normalize=FALSE, background=FALSE) normalize(eset) }
Using a normalization based upon quantiles, this function normalizes a matrix of probe level intensities.
normalize.AffyBatch.quantiles.probeset(abatch,type=c("separate","pmonly","mmonly","together"),use.median=FALSE,use.log=TRUE)
normalize.AffyBatch.quantiles.probeset(abatch,type=c("separate","pmonly","mmonly","together"),use.median=FALSE,use.log=TRUE)
abatch |
An |
type |
how should MM and PM values be handled |
use.median |
use median rather than mean |
use.log |
take logarithms, then normalize |
This function applies the quantile method in a probeset specific manner.
In particular a probeset summary is normalized using the quantile method and then the probes adjusted accordingly.
A normalized AffyBatch
.
Ben Bolstad, [email protected]
Bolstad, B (2001) Probe Level Quantile Normalization of High Density Oligonucleotide Array Data. Unpublished manuscript http://oz.berkeley.edu/~bolstad/stuff/qnorm.pdf
Bolstad, B. M., Irizarry R. A., Astrand, M, and Speed, T. P. (2003) A Comparison of Normalization Methods for High Density Oligonucleotide Array Data Based on Bias and Variance. Bioinformatics 19(2) ,pp 185-193. http://www.stat.berkeley.edu/~bolstad/normalize/normalize.html
Allows the user to apply scaling normalization.
normalize.scaling(X,trim=0.02, baseline=-1, log.scalefactors=FALSE) normalize.AffyBatch.scaling(abatch, type=c("together","pmonly","mmonly","separate"), trim=0.02, baseline=-1, log.scalefactors=FALSE)
normalize.scaling(X,trim=0.02, baseline=-1, log.scalefactors=FALSE) normalize.AffyBatch.scaling(abatch, type=c("together","pmonly","mmonly","separate"), trim=0.02, baseline=-1, log.scalefactors=FALSE)
X |
A matrix. The columns of which are to be normalized. |
abatch |
An |
type |
A parameter controlling how normalization is applied to the Affybatch. |
trim |
How much to trim from the top and bottom before computing the mean when using the scaling normalization. |
baseline |
Index of array to use as baseline, negative values (-1,-2,-3,-4) control different baseline selection methods. |
log.scalefactors |
Compute the scale factors based on log2 transformed data. |
These function carries out scaling normalization of expression values.
A normalized ExpressionSet
.
Ben Bolstad, [email protected]
if (require(affydata)) { data(Dilution) normalize.AffyBatch.scaling(Dilution) }
if (require(affydata)) { data(Dilution) normalize.AffyBatch.scaling(Dilution) }
This is a class representation for Probe level Linear Models fitted to Affymetrix GeneChip probe level data.
Objects can be created using the function fitPLM
probe.coefs
:Object of class "matrix". Contains model coefficients related to probe effects.
se.probe.coefs
:Object of class "matrix". Contains standard error estimates for the probe coefficients.
chip.coefs
:Object of class "matrix". Contains model coefficients related to chip (or chip level) effects for each fit.
se.chip.coefs
:Object of class "matrix". Contains standard error estimates for the chip coefficients.
const.coefs
:Object of class "matrix". Contains model coefficients related to intercept effects for each fit.
se.const.coefs
:Object of class "matrix". Contains standard error estimates for the intercept estimates
model.description
:Object of class "character". This string describes the probe level model fitted.
weights
:List of objects of class "matrix". Contains probe weights for each fit. The matrix has columns for chips and rows are probes.
phenoData
:Object of class "phenoData" This is an
instance of class phenoData
containing the patient
(or case) level data. The columns of the pData slot of this
entity represent variables and the rows represent patients or cases.
annotation
A character string identifying the
annotation that may be used for the ExpressionSet
instance.
experimentData
:Object of class "MIAME". For
compatibility with previous version of this class description can
also be a "character". The class characterOrMIAME
has been
defined just for this.
cdfName
:A character string giving the name of the cdfFile.
nrow
:Object of class "numeric". Number of rows in chip.
ncol
:Object of class "numeric". Number of cols in chip.
narrays
:Object of class "numeric". Number of arrays used in model fit.
normVec
:Object of class "matrix". For storing normalization vector(s). Not currentl used
varcov
:Object of class "list". A list of variance/covariance matrices.
residualSE
:Object of class "matrix". Contains residual standard error and df.
residuals
:List of objects of class "matrix". Contains residuals from model fit (if stored).
model.call
:Object of class "call"
signature(object = "PLMset")
: replaces the weights.
signature(object = "PLMset")
: extracts the
model fit weights.
signature(object = "PLMset")
: replaces the
chip coefs.
signature(object = "PLMset")
: extracts the
chip coefs.
signature(object = "PLMset")
: extracts the
standard error estimates of the chip coefs.
signature(object = "PLMset")
: replaces the
standard error estimates of the chip coefs.
signature(object = "PLMset")
: extracts the
probe coefs.
signature(object = "PLMset")
: extracts the
standard error estimates of the probe coefs.
signature(object = "PLMset")
: extracts the
intercept coefs.
signature(object = "PLMset")
: extracts the
standard error estimates of the intercept coefs.
signature(object = "PLMset")
: retrieve
the environment that defines the location of probes by probe set.
signature(x = "PLMset")
: creates an image
of the robust linear model fit weights for each sample.
signature(object = "PLMset", which =
"character")
: returns a list with locations of the probes in
each probe set. The list names defines the probe set
names. which
can be "pm", "mm", or "both". If "both" then
perfect match locations are given followed by mismatch locations.
signature(object = "PLMset")
: gives a boxplot of
M's for each chip. The M's are computed relative to a "median"
chip.
signature(x = "PLMset")
: will return the normalization vector
(if it has been stored).
signature(x = "PLMset")
: will return the residual SE
(if it has been stored).
signature(x = "PLMset")
: Boxplot of Normalized
Unscaled Standard Errors (NUSE).
signature(x = "PLMset")
: Boxplot of Normalized
Unscaled Standard Errors (NUSE) or NUSE values.
signature(x = "PLMset")
: Relative Log Expression
boxplot or values.
This class is better described in the vignette.
B. M. Bolstad [email protected]
Bolstad, BM (2004) Low Level Analysis of High-density Oligonucleotide Array Data: Background, Normalization and Summarization. PhD Dissertation. University of California, Berkeley.
This function converts a PLMset to an ExpressionSet. This is often useful since many Bioconductor functions operate on ExpressionSet objects.
PLMset2exprSet(pset) pset2eset(pset)
PLMset2exprSet(pset) pset2eset(pset)
pset |
The |
These functions convert PLMset objects to ExpressionSet
objects.
This is often useful since many Bioconductor functions operate on
ExpressionSet
objects. Note that the function pset2eset
is a wrapper for PLMset2exprSet
.
returns a ExpressionSet
Ben Bolstad [email protected]
if (require(affydata)) { data(Dilution) Pset <- fitPLM(Dilution) eset <- pset2eset(Pset) }
if (require(affydata)) { data(Dilution) Pset <- fitPLM(Dilution) eset <- pset2eset(Pset) }
This function pre-processes an AffyBatch
.
preprocess(object, subset=NULL, normalize=TRUE, background=TRUE, background.method="RMA.2", normalize.method="quantile", background.param=list(), normalize.param=list(), verbosity.level=0)
preprocess(object, subset=NULL, normalize=TRUE, background=TRUE, background.method="RMA.2", normalize.method="quantile", background.param=list(), normalize.param=list(), verbosity.level=0)
object |
an |
subset |
a vector with the names of probesets to be used. If NULL then all probesets are used. |
normalize |
logical value. If |
background |
logical value. If |
background.method |
name of background method to use. |
normalize.method |
name of normalization method to use. |
background.param |
list of parameters for background correction methods |
normalize.param |
list of parameters for normalization methods |
verbosity.level |
An integer specifying how much to print out. Higher values indicate more verbose. A value of 0 will print nothing |
This function carries out background correction and normalization
pre-processing steps. It does not summarize to produce gene expression
measures. All the same pre-processing methods supplied by
threestep
are supported by this function.
An AffyBatch
Ben Bolstad [email protected]
Bolstad, BM (2004) Low Level Analysis of High-density Oligonucleotide Array Data: Background, Normalization and Summarization. PhD Dissertation. University of California, Berkeley.
if (require(affydata)) { data(Dilution) # should be equivalent to the bg and norm of rma() abatch.preprocessed <- preprocess(Dilution) }
if (require(affydata)) { data(Dilution) # should be equivalent to the bg and norm of rma() abatch.preprocessed <- preprocess(Dilution) }
These are routines used for coloring pseudo chip images.
pseudoPalette(low = "white", high = c("green", "red"), mid = NULL,k =50) pseudoColorBar(x, horizontal = TRUE, col = heat.colors(50), scale = 1:length(x),k = 11, log.ticks=FALSE,...)
pseudoPalette(low = "white", high = c("green", "red"), mid = NULL,k =50) pseudoColorBar(x, horizontal = TRUE, col = heat.colors(50), scale = 1:length(x),k = 11, log.ticks=FALSE,...)
low |
color at low end of scale |
high |
color at high end of scale |
mid |
color at exact middle of scale |
k |
number of colors to have |
x |
A data series |
horizontal |
If |
col |
colors for color bar |
scale |
tickmarks for |
log.ticks |
use a log type transformation to assign the colors |
... |
additional parameters to plotting routine |
Adapted from similar tools in maPlots pacakge.
Ben Bolstad [email protected]
Read RMAExpress computed binary output files into a matrix or ExpressionSet
ReadRMAExpress(filename, return.value=c("ExpressionSet","matrix"))
ReadRMAExpress(filename, return.value=c("ExpressionSet","matrix"))
filename |
The name of the file containing RMAExpress output to be read in |
return.value |
should a |
returns an ExpressionSet
Ben Bolstad [email protected]
http://rmaexpress.bmbolstad.com
This function converts an
AffyBatch
into an
PLMset
by fitting a multichip model. In particular we
concentrate on the RMA model.
rmaPLM(object, subset=NULL, normalize=TRUE, background=TRUE, background.method="RMA.2", normalize.method="quantile", background.param=list(), normalize.param=list(), output.param=list(), model.param=list(), verbosity.level=0)
rmaPLM(object, subset=NULL, normalize=TRUE, background=TRUE, background.method="RMA.2", normalize.method="quantile", background.param=list(), normalize.param=list(), output.param=list(), model.param=list(), verbosity.level=0)
object |
an |
subset |
a vector with the names of probesets to be used. If NULL then all probesets are used. |
normalize |
logical value. If |
background |
logical value. If |
background.method |
name of background method to use. |
normalize.method |
name of normalization method to use. |
background.param |
A list of parameters for background routines |
normalize.param |
A list of parameters for normalization routines |
output.param |
A list of parameters controlling optional output from the routine. |
model.param |
A list of parameters controlling model procedure |
verbosity.level |
An integer specifying how much to print out. Higher values indicate more verbose. A value of 0 will print nothing |
This function fits the RMA as a Probe Level Linear models to all the
probesets in an AffyBatch
.
An PLMset
Ben Bolstad [email protected]
Bolstad, BM (2004) Low Level Analysis of High-density
Oligonucleotide Array Data: Background, Normalization and
Summarization. PhD Dissertation. University of California,
Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B and Speed
TP (2003) Summaries of Affymetrix GeneChip probe level data
Nucleic Acids Research 31(4):e15
Bolstad, BM, Irizarry RA, Astrand, M, and Speed, TP (2003)
A Comparison of Normalization Methods for High Density
Oligonucleotide Array Data Based on Bias and Variance.
Bioinformatics 19(2):185-193
expresso
,
rma
, threestep
,fitPLM
,
threestepPLM
if (require(affydata)) { # A larger example testing weight image function data(Dilution) ## Not run: Pset <- rmaPLM(Dilution,output.param=list(weights=TRUE)) ## Not run: image(Pset) }
if (require(affydata)) { # A larger example testing weight image function data(Dilution) ## Not run: Pset <- rmaPLM(Dilution,output.param=list(weights=TRUE)) ## Not run: image(Pset) }
This function converts an
AffyBatch
into an
ExpressionSet
using a three
step expression measure.
threestep(object, subset=NULL, normalize=TRUE, background=TRUE, background.method="RMA.2", normalize.method="quantile", summary.method="median.polish", background.param=list(), normalize.param=list(), summary.param=list(), verbosity.level=0)
threestep(object, subset=NULL, normalize=TRUE, background=TRUE, background.method="RMA.2", normalize.method="quantile", summary.method="median.polish", background.param=list(), normalize.param=list(), summary.param=list(), verbosity.level=0)
object |
an |
subset |
a vector with the names of probesets to be used.
If |
normalize |
logical value. If |
background |
logical value. If |
background.method |
name of background method to use. |
normalize.method |
name of normalization method to use. |
summary.method |
name of summary method to use. |
background.param |
list of parameters for background correction methods. |
normalize.param |
list of parameters for normalization methods. |
summary.param |
list of parameters for summary methods. |
verbosity.level |
An integer specifying how much to print out. Higher values indicate more verbose. A value of 0 will print nothing. |
This function computes the expression measure using threestep methods. Greater details can be found in a vignette.
Ben Bolstad [email protected]
Bolstad, BM (2004) Low Level Analysis of High-density Oligonucleotide Array Data: Background, Normalization and Summarization. PhD Dissertation. University of California, Berkeley.
if (require(affydata)) { data(Dilution) # should be equivalent to rma() eset <- threestep(Dilution) # Using Tukey Biweight summarization eset <- threestep(Dilution, summary.method="tukey.biweight") # Using Average Log2 summarization eset <- threestep(Dilution, summary.method="average.log") # Using IdealMismatch background and Tukey Biweight and no normalization. eset <- threestep(Dilution, normalize=FALSE,background.method="IdealMM", summary.method="tukey.biweight") # Using average.log summarization and no background or normalization. eset <- threestep(Dilution, background=FALSE, normalize=FALSE, background.method="IdealMM",summary.method="tukey.biweight") # Use threestep methodology with the rlm model fit eset <- threestep(Dilution, summary.method="rlm") # Use threestep methodology with the log of the average # eset <- threestep(Dilution, summary.method="log.average") # Use threestep methodology with log 2nd largest method eset <- threestep(Dilution, summary.method="log.2nd.largest") eset <- threestep(Dilution, background.method="LESN2") }
if (require(affydata)) { data(Dilution) # should be equivalent to rma() eset <- threestep(Dilution) # Using Tukey Biweight summarization eset <- threestep(Dilution, summary.method="tukey.biweight") # Using Average Log2 summarization eset <- threestep(Dilution, summary.method="average.log") # Using IdealMismatch background and Tukey Biweight and no normalization. eset <- threestep(Dilution, normalize=FALSE,background.method="IdealMM", summary.method="tukey.biweight") # Using average.log summarization and no background or normalization. eset <- threestep(Dilution, background=FALSE, normalize=FALSE, background.method="IdealMM",summary.method="tukey.biweight") # Use threestep methodology with the rlm model fit eset <- threestep(Dilution, summary.method="rlm") # Use threestep methodology with the log of the average # eset <- threestep(Dilution, summary.method="log.average") # Use threestep methodology with log 2nd largest method eset <- threestep(Dilution, summary.method="log.2nd.largest") eset <- threestep(Dilution, background.method="LESN2") }
This function converts an
AffyBatch
into an
PLMset
using a three step expression measure.
threestepPLM(object,subset=NULL, normalize=TRUE, background=TRUE, background.method="RMA.2", normalize.method="quantile", summary.method="median.polish", background.param = list(), normalize.param=list(), output.param=list(), model.param=list(), verbosity.level=0)
threestepPLM(object,subset=NULL, normalize=TRUE, background=TRUE, background.method="RMA.2", normalize.method="quantile", summary.method="median.polish", background.param = list(), normalize.param=list(), output.param=list(), model.param=list(), verbosity.level=0)
object |
an |
subset |
a vector with the names of probesets to be used. If NULL then all probesets are used. |
normalize |
logical value. If |
background |
logical value. If |
background.method |
name of background method to use. |
normalize.method |
name of normalization method to use. |
summary.method |
name of summary method to use. |
background.param |
list of parameters for background correction methods |
normalize.param |
list of parameters for normalization methods |
output.param |
list of parameters for output methods |
model.param |
list of parameters for model methods |
verbosity.level |
An integer specifying how much to print out. Higher values indicate more verbose. A value of 0 will print nothing |
This function computes the expression measure using threestep
methods. It returns a PLMset
. The most important
difference is that the PLMset allows you to access the residuals
which the threestep
function does not do.
An PLMset
Ben Bolstad [email protected]
Bolstad, BM (2004) Low Level Analysis of High-density Oligonucleotide Array Data: Background, Normalization and Summarization. PhD Dissertation. University of California, Berkeley.
expresso
,
rma
, threestep
,
rmaPLM
, fitPLM
if (require(affydata)) { data(Dilution) # should be equivalent to rma() ## Not run: eset <- threestepPLM(Dilution) }
if (require(affydata)) { data(Dilution) # should be equivalent to rma() ## Not run: eset <- threestepPLM(Dilution) }