Package 'gDRutils'

Title: A package with helper functions for processing drug response data
Description: This package contains utility functions used throughout the gDR platform to fit data, manipulate data, and convert and validate data structures. This package also has the necessary default constants for gDR platform. Many of the functions are utilized by the gDRcore package.
Authors: Bartosz Czech [aut] , Arkadiusz Gladki [cre, aut] , Aleksander Chlebowski [aut], Marc Hafner [aut] , Pawel Piatkowski [aut], Dariusz Scigocki [aut], Janina Smola [aut], Sergiu Mocanu [aut], Allison Vuong [aut]
Maintainer: Arkadiusz Gladki <[email protected]>
License: Artistic-2.0
Version: 1.5.2
Built: 2024-11-08 03:23:45 UTC
Source: https://github.com/bioc/gDRutils

Help Index


Set fit parameters for an invalid fit.

Description

Set fit parameters for an invalid fit.

Usage

.set_invalid_fit_params(out, norm_values)

Arguments

out

Named list of fit parameters.

norm_values

Numeric vector used to estimate an xc50 value.

Value

Modified named list of fit parameters.

Examples

.set_invalid_fit_params(list(), norm_values = rep(0.3, 6))

add arbitrary S3 class to an object

Description

Modify and object's class attribute.

Usage

addClass(x, newClass)

Arguments

x

an object

newClass

character string; class to be added

Details

This is a simple convenience function that an item to the class attribute of an object so that it can be dispatched to a proper S3 method. This is purely for code clarity, so that individual methods do not clutter the definitions of higher order functions.

Value

The same object with an added S3 class.

Examples

addClass(data.table::data.table(), "someClass")

Aggregate a BumpyMatrix assay by a given aggregation function.

Description

Aggregation can only be performed on nested variables.

Usage

aggregate_assay(asy, by, FUN)

Arguments

asy

A BumpyMatrix object.

by

Character vector of the nested fields to aggregate by.

FUN

A function to use to aggregate the data.

Value

A BumpyMatrix object aggregated by FUN.

Examples

mae <- get_synthetic_data("finalMAE_small") 
se <- mae[[1]]
assay <- SummarizedExperiment::assay(se)
aggregate_assay(assay, FUN = mean, by = c("Barcode"))

Apply a function to every element of a bumpy matrix.

Description

Apply a user-specified function to every element of a bumpy matrix.

Usage

apply_bumpy_function(
  se,
  FUN,
  req_assay_name,
  out_assay_name,
  parallelize = FALSE,
  ...
)

Arguments

se

A SummarizedExperiment object with bumpy matrices.

FUN

A function that will be applied to each element of the matrix in assay req_assay_name. Output of the function must return a data.table.

req_assay_name

String of the assay name in the se that the FUN will act on.

out_assay_name

String of the assay name that will contain the results of the applied function.

parallelize

Logical indicating whether or not to parallelize the computation.

...

Additional args to be passed to teh FUN.

Value

The original se object with a new assay, out_assay_name.

Examples

mae <- get_synthetic_data("finalMAE_small.qs")
se <- mae[[1]]
FUN <- function(x) {
  data.table::data.table(Concentration = x$Concentration, CorrectedReadout = x$CorrectedReadout)
} 
apply_bumpy_function(
  se, 
  FUN = FUN, 
  req_assay_name = "RawTreated", 
  out_assay_name = "CorrectedReadout"
)

assert choices

Description

assert choices

Usage

assert_choices(x, choices, ...)

Arguments

x

charvec expected subset

choices

charvec reference set

...

Additional arguments to pass to checkmate::test_choice

Value

NULL

Examples

assert_choices("x", c("x","y"))

Average biological replicates on the data table side.

Description

Average biological replicates on the data table side.

Usage

average_biological_replicates_dt(
  dt,
  var,
  prettified = FALSE,
  fixed = TRUE,
  geometric_average_fields = get_header("metric_average_fields")$geometric_mean,
  fit_type_average_fields = get_header("metric_average_fields")$fit_type,
  blacklisted_fields = get_header("metric_average_fields")$blacklisted,
  add_sd = FALSE
)

Arguments

dt

data.table with Metric data

var

String representing additional metadata of replicates

prettified

Flag indicating if the provided identifiers in the dt are prettified

fixed

Flag indicating whether to add a fix for -Inf in the geometric mean.

geometric_average_fields

Character vector of column names in dt to take the geometric average of.

fit_type_average_fields

Character vector of column names in dt that should be treated as a column with fit type data

blacklisted_fields

Character vector of column names in dt that should be skipped in averaging

add_sd

Flag indicating whether to add standard deviation and count columns.

Value

data.table without replicates

Examples

dt <- data.table::data.table(a = c(1:10, 1),
b = c(rep("drugA", 10), rep("drugB", 1)))
average_biological_replicates_dt(dt, var = "a")

Calculate Standard Deviation or Return Zero

Description

This function calculates the standard deviation of a numeric vector. If the vector has a length of 1 and it is numeric, it returns 0.

Usage

calc_sd(x)

Arguments

x

A numeric vector.

Value

The standard deviation of the vector if its length is greater than 1 or it is not numeric, otherwise 0.

Examples

calc_sd(c(1, 2, 3, 4, 5)) # Should return the standard deviation
calc_sd(c(1)) # Should return 0
calc_sd(numeric(0)) # Should return NA
calc_sd(c("a", "b", "c")) # Should return NA

Cap XC50 value.

Description

Set IC50/GR50 value to Inf or -Inf based on upper and lower limits.

Usage

cap_xc50(xc50, max_conc, min_conc = NA, capping_fold = 5)

Arguments

xc50

Numeric value of the IC50/GR50 to cap.

max_conc

Numeric value of the highest concentration in a dose series used to calculate the xc50.

min_conc

Numeric value of the lowest concentration in a dose series used to calculate the xc50. If NA (default), using max_conc/1e5 instead.

capping_fold

Integer value of the fold number to use for capping. Defaults to 5.

Details

Note: xc50 and max_conc should share the same units. Ideally, the lower_cap should be based on the lowest tested concentration. However, since we don't record that, it is set 5 orders of magnitude below the highest dose.

Value

Capped IC50/GR50 value.

Examples

cap_xc50(xc50 = 1, max_conc = 2)
cap_xc50(xc50 = 2, max_conc = 5, min_conc = 1)
cap_xc50(xc50 = 26, max_conc = 5, capping_fold = 5)

Convert colData to JSON

Description

Convert colData to JSON format for elasticsearch indexing.

Usage

convert_colData_to_json(
  cdata,
  identifiers,
  req_cols = c("cellline", "cellline_name", "cellline_tissue", "cellline_ref_div_time")
)

Arguments

cdata

data.table of colData.

identifiers

charvec with identifiers

req_cols

charvec required columns

Details

Standardizes the cdata to common schema fields and tidies formatting to be condusive to joining with other JSON responses.

Value

JSON string capturing the cdata.

Examples

cdata <- data.table::data.table(
  mycellline = letters, 
  mycelllinename = letters, 
  mycelllinetissue = letters,
  cellline_ref_div_time = "cellline_ref_div_time")
identifiers <- list(cellline = "mycellline",
                    cellline_name = "mycelllinename",
                    cellline_ref_div_time = "cellline_ref_div_time",
                    cellline_tissue = "mycelllinetissue")
convert_colData_to_json(cdata, identifiers)

convert combo assays from SummarizedExperiments to the list of data.tables

Description

convert combo assays from SummarizedExperiments to the list of data.tables

Usage

convert_combo_data_to_dt(
  se,
  c_assays = get_combo_assay_names(),
  normalization_type = c("RV", "GR"),
  prettify = TRUE
)

Arguments

se

SummarizedExperiment object with dose-response data

c_assays

charvec of combo assays to be used

normalization_type

charvec of normalization_types expected in the data

prettify

boolean flag indicating whether or not to prettify the colnames of the returned data

Value

list of data.table(s) with combo data

Author(s)

Arkadiusz GÅ‚adki [email protected]

Examples

mae <- get_synthetic_data("finalMAE_combo_matrix_small.qs")
convert_combo_data_to_dt(mae[[1]])

get combo assay names based on the field name

Description

get combo assay names based on the field name

Usage

convert_combo_field_to_assay(field)

Arguments

field

String containing name of the field for which the assay name should be returned

Value

charvec

Examples

convert_combo_field_to_assay("hsa_score")

Convert a MultiAssayExperiment assay to a long data.table

Description

Convert an assay within a SummarizedExperiment object in a MultiAssayExperiment to a long data.table.

Usage

convert_mae_assay_to_dt(
  mae,
  assay_name,
  experiment_name = NULL,
  include_metadata = TRUE,
  retain_nested_rownames = FALSE,
  wide_structure = FALSE
)

Arguments

mae

A MultiAssayExperiment object holding experiments with raw and/or processed dose-response data in its assays.

assay_name

String of name of the assay to transform within an experiment of the mae.

experiment_name

String of name of the experiment in mae whose assay_name should be converted. Defaults to NULL to indicate to convert assay in all experiments into one data.table object.

include_metadata

Boolean indicating whether or not to include rowData() and colData() in the returned data.table. Defaults to TRUE.

retain_nested_rownames

Boolean indicating whether or not to retain the rownames nested within a BumpyMatrix assay. Defaults to FALSE. If the assay_name is not of the BumpyMatrix class, this argument's value is ignored. If TRUE, the resulting column in the data.table will be named as "<assay_name>_rownames".

wide_structure

Boolean indicating whether or not to transform data.table into wide format. wide_structure = TRUE requires retain_nested_rownames = TRUE however that will be validated in convert_se_assay_to_dt function

Details

NOTE: to extract information about 'Control' data, simply call the function with the name of the assay holding data on controls.

Value

data.table representation of the data in assay_name.

Author(s)

Bartosz Czech [email protected]

See Also

flatten convert_se_assay_to_dt

Examples

mae <- get_synthetic_data("finalMAE_small")
convert_mae_assay_to_dt(mae, "Metrics")

Create JSON document.

Description

Convert a MultiAssayExperiment object to a JSON document.

Usage

convert_mae_to_json(mae, with_experiments = TRUE)

Arguments

mae

SummarizedExperiment object.

with_experiments

logical convert experiment metadata as well?

Value

String representation of a JSON document.

Examples

mae <- get_synthetic_data("finalMAE_small")
convert_mae_to_json(mae)
convert_mae_to_json(mae, with_experiments = FALSE)

Convert experiment metadata to JSON format for elasticsearch indexing.

Description

Convert experiment metadata to JSON format for elasticsearch indexing.

Usage

convert_metadata_to_json(se)

Arguments

se

SummarizedExperiment object.

Value

JSON string capturing experiment metadata.

Examples

md <- list(title = "my awesome experiment",
  description = "description of experiment",
  sources = list(list(name = "GeneData_Screener", id = "QCS-12345")))
se <- SummarizedExperiment::SummarizedExperiment(metadata = md)
convert_metadata_to_json(se)

Convert rowData to JSON

Description

Convert rowData to JSON format for elasticsearch indexing.

Usage

convert_rowData_to_json(
  rdata,
  identifiers,
  req_cols = c("drug", "drug_name", "drug_moa", "duration")
)

Arguments

rdata

data.table of rowData.

identifiers

charvec with identifiers

req_cols

charvec required columns

Details

Standardizes the rdata to common schema fields and tidies formatting to be condusive to joining with other JSON responses.

Value

JSON string capturing the rdata.

Examples

rdata <- data.table::data.table(
  mydrug = letters, 
  mydrugname = letters, 
  mydrugmoa = letters, 
  Duration = 1)
identifiers <- list(drug = "mydrug", drug_name = "mydrugname", drug_moa = "mydrugmoa",
duration = "Duration")
convert_rowData_to_json(rdata, identifiers)

Convert a SummarizedExperiment assay to a long data.table and conduct some post processing steps

Description

Convert an assay within a SummarizedExperiment object to a long data.table. Then condcut some post processing steps.

Usage

convert_se_assay_to_custom_dt(se, assay_name, output_table = NULL)

Arguments

se

A SummarizedExperiment object holding raw and/or processed dose-response data in its assays.

assay_name

String of name of the assay to transform within the se.

output_table

String of type name of the output data.table

Details

Current strategy is per-assay specific.

  1. combo assays: conversion to data.table only (with wide_structure = FALSE)

  2. 'Metrics' assay can be converted to three types of outputs:

  • Metrics_initial (conversion to data.table only, with wide_structure = FALSE)

  • Metrics_raw: same as Metrics_initial followed by:

    • fix for 'EC50' and 'Metrics_rownames'

    • flatten

    • prettifying and dropping excess variables

  • Metrics (same as Metrics_raw + capVals)

  1. 'Normalization' and 'Averaged' assay:

  • conversion to data.table (with wide_structure = TRUE)

  • prettifying and dropping excess variables

NOTE: to extract information about 'Control' data, simply call the function with the name of the assay holding data on controls. To extract the reference data in to same format as 'Averaged' use convert_se_ref_assay_to_dt.

Value

data.table representation of the data in assay_name with added information from colData.

See Also

convert_se_assay_to_dt

Examples

mae <- get_synthetic_data("finalMAE_small")
se <- mae[[1]]
convert_se_assay_to_custom_dt(se, "Metrics")
convert_se_assay_to_custom_dt(se, "Metrics", output_table = "Metrics_raw")
convert_se_assay_to_custom_dt(se, "Metrics", output_table = "Metrics_initial")
convert_se_assay_to_custom_dt(se, "Averaged")

Convert a SummarizedExperiment assay to a long data.table

Description

Convert an assay within a SummarizedExperiment object to a long data.table.

Usage

convert_se_assay_to_dt(
  se,
  assay_name,
  include_metadata = TRUE,
  retain_nested_rownames = FALSE,
  wide_structure = FALSE
)

Arguments

se

A SummarizedExperiment object holding raw and/or processed dose-response data in its assays.

assay_name

String of name of the assay to transform within the se.

include_metadata

Boolean indicating whether or not to include rowData(se) and colData(se) in the returned data.table. Defaults to TRUE.

retain_nested_rownames

Boolean indicating whether or not to retain the rownames nested within a BumpyMatrix assay. Defaults to FALSE. If the assay_name is not of the BumpyMatrix class, this argument's value is ignored. If TRUE, the resulting column in the data.table will be named as "<assay_name>_rownames".

wide_structure

Boolean indicating whether or not to transform data.table into wide format. wide_structure = TRUE requires retain_nested_rownames = TRUE.

Details

NOTE: to extract information about 'Control' data, simply call the function with the name of the assay holding data on controls. To extract the reference data in to same format as 'Averaged' use convert_se_ref_assay_to_dt.

Value

data.table representation of the data in assay_name.

See Also

flatten

Examples

mae <- get_synthetic_data("finalMAE_small")
se <- mae[[1]]
convert_se_assay_to_dt(se, "Metrics")

Convert a SummarizedExperiment object to a JSON document.

Description

Convert a SummarizedExperiment object to a JSON document.

Usage

convert_se_to_json(se)

Arguments

se

SummarizedExperiment object.

Value

String representation of a JSON document.

Examples

md <- list(title = "my awesome experiment",
  description = "description of experiment",
  source = list(name = "GeneData_Screener", id = "QCS-12345"))
rdata <- data.table::data.table(
 mydrug = letters, 
  mydrugname = letters, 
  mydrugmoa = letters, 
  Duration = 1)
cdata <- data.table::data.table(mycellline = letters, mycelllinename = letters,
 mycelllinetissue = letters, cellline_ref_div_time = letters)
identifiers <- list(cellline = "mycellline",
                    cellline_name = "mycelllinename",
                    cellline_tissue = "mycelllinetissue",
                    cellline_ref_div_time = "cellline_ref_div_time",
                    drug = "mydrug",
                    drug_name = "mydrugname",
                    drug_moa = "mydrugmoa",
                    duration = "Duration")
se <- SummarizedExperiment::SummarizedExperiment(rowData = rdata,
                                                 colData = cdata)
se <- set_SE_experiment_metadata(se, md)
se <- set_SE_identifiers(se, identifiers)
convert_se_to_json(se)

Define matrix grid positions

Description

Define matrix grid positions

Usage

define_matrix_grid_positions(conc1, conc2)

Arguments

conc1

drug_1 concentration

conc2

drug_2 concentration

Details

drug_1 is diluted along the rows as the y-axis and drug_2 is diluted along the columns and will be the x-axis.

Value

list with axis grid positions

Examples

cl_name <- "cellline_BC"
drug1_name <- "drug_001"
drug2_name <- "drug_026"

se <- get_synthetic_data("combo_matrix_small")[["combination"]]
dt_average <- convert_se_assay_to_dt(se, "Averaged")[normalization_type == "GR"]

ls_axes <- define_matrix_grid_positions(
   dt_average[["Concentration"]], dt_average[["Concentration_2"]])

Demote a metadata field in the rowData or colData of a SummarizedExperiment object to a nested field of a BumpyMatrix assay.

Description

Demote a metadata field in the rowData or colData of a SummarizedExperiment object to a nested field of a BumpyMatrix assay.

Usage

demote_fields(se, fields)

Arguments

se

A SummarizedExperiment object.

fields

Character vector of metadata fields to demote as nested columns.

Details

Revert this operation using promote_fields.

Value

A SummarizedExperiment object with new dimensions resulting from demoting given fields to nested columns.

See Also

promote_fields

Examples

mae <- get_synthetic_data("finalMAE_small")
se <- mae[[1]]
se <- promote_fields(se, "ReadoutValue", 2)
demote_fields(se, "ReadoutValue")

df_to_bm_assay

Description

Convert data.table with dose-response data into a BumpyMatrix assay.

Usage

df_to_bm_assay(data, discard_keys = NULL)

Arguments

data

data.table with drug-response data

discard_keys

a vector of keys that should be discarded

Details

The 'assay' is simply a BumpyMatrix object with rownames being the treatment ids, colnames being the ids of the cell lines and values with dose-response data for given cell lines under given conditions.

Value

BumpyMatrix object

Examples

df_to_bm_assay(data.table::data.table(Gnumber = 2, clid = "A"))

extend abbreviated normalization type

Description

extend abbreviated normalization type

Usage

extend_normalization_type_name(x)

Arguments

x

string with normalization type

Value

string

Examples

extend_normalization_type_name("GR")

Fit curves

Description

Fit GR and RV curves from a data.table.

Usage

fit_curves(
  df_,
  series_identifiers,
  e_0 = 1,
  GR_0 = 1,
  n_point_cutoff = 4,
  range_conc = c(0.005, 5),
  force_fit = FALSE,
  pcutoff = 0.05,
  cap = 0.1,
  normalization_type = c("GR", "RV")
)

Arguments

df_

data.table containing data to fit. See details.

series_identifiers

character vector of the column names in data.table whose combination represents a unique series for which to fit curves.

e_0

numeric value representing the x_0 value for the RV curve. Defaults to 1.

GR_0

numeric value representing the x_0 value for the GR curve. Defaults to 1.

n_point_cutoff

integer of how many points should be considered the minimum required to try to fit a curve. Defaults to 4.

range_conc

numeric vector of length 2 indicating the lower and upper concentration ranges. Defaults to c(5e-3, 5). See details.

force_fit

boolean indicating whether or not to force a constant fit. Defaults to FALSE.

pcutoff

numeric of pvalue significance threshold above or equal to which to use a constant fit. Defaults to 0.05.

cap

numeric value capping norm_values to stay below (x_0 + cap). Defaults to 0.1.

normalization_type

character vector of types of curves to fit. Defaults to c("GR", "RV").

Details

The df_ expects the following columns:

  • RelativeViability normalized relative viability values (if normalization_type includes "RV")

  • GRvalue normalized GR values (if normalization_type includes "GR")

The range_conc is used to calculate the x_AOC_range statistic. The purpose of this statistic is to enable comparison across different experiments with slightly different concentration ranges.

Value

data.table of fit parameters as specified by the normalization_type.

Examples

df_ <- data.table::data.table(Concentration = c(0.001, 0.00316227766016838, 
0.01, 0.0316227766016838),
x_std = c(0.1, 0.1, 0.1, 0.1), normalization_types = c("RV", "RV", "RV", "RV"),
x = c(0.9999964000144, 0.999964001439942, 0.999640143942423, 0.996414342629482))

fit_curves(df_, "Concentration", normalization_type = "RV")

Flatten a table

Description

Flatten a stacked table into a wide format.

Usage

flatten(tbl, groups, wide_cols, sep = "_")

Arguments

tbl

table to flatten.

groups

character vector of column names representing uniquifying groups in expansion.

wide_cols

character vector of column names to flatten.

sep

string representing separator between wide_cols columns, used in column renaming. Defaults to "_".

Details

flattened columns will be named with original column names prefixed by wide_cols columns, concatenated together and separated by sep.

A common use case for this function is when a flattened version of the "Metrics" assay is desired.

Value

table of flattened data as defined by wide_cols.

See Also

convert_se_assay_to_dt

Examples

n <- 4
m <- 5
grid <- expand.grid(normalization_type = c("GR", "RV"),
  source = c("GDS", "GDR"))
repgrid <- data.table::rbindlist(rep(list(grid), m))
repgrid$wide <- seq(m * n)
repgrid$id <- rep(LETTERS[1:m], each = n)

groups <- colnames(grid)
wide_cols <- c("wide")

flatten(repgrid, groups = groups, wide_cols = wide_cols)

gen_synthetic_data

Description

Function for generating local synthetic data used for unit tests in modules

Usage

gen_synthetic_data(m = 1, n = 5)

Arguments

m

number of drugs

n

number of records

Value

list with drugs, cell_lines, raw_data and assay_data

Examples

gen_synthetic_data()

Identify and return additional variables in list of dt

Description

Identify and return additional variables in list of dt

Usage

get_additional_variables(dt_list, unique = FALSE, prettified = FALSE)

Arguments

dt_list

list of data.table or data.table containing additional variables

unique

logical flag indicating if all variables should be returned or only those containing more than one unique value

prettified

Flag indicating if the provided identifiers in the dt are prettified

Value

vector of variable names with additional variables

Examples

dt <- data.table::data.table(
  Gnumber = seq_len(10), 
  Concentration = runif(10), 
  Ligand = c(rep(0.5, 5), rep(0, 5))
)
get_additional_variables(dt)

Helper function to find duplicated rows in assay data

Description

Helper function to find duplicated rows in assay data

Usage

get_assay_dt_duplicated_rows(dt, output = "index")

Arguments

dt

data.table

output

string with the output format to be returned

Value

integer vector or data.table with duplicated rows

Examples

sdata <- get_synthetic_data("finalMAE_small")
smetrics_data <- convert_se_assay_to_dt(sdata[[1]], "Metrics")
get_assay_dt_duplicated_rows(smetrics_data, output = "data")
get_assay_dt_duplicated_rows(smetrics_data)

get assay names of the given se/dataset fetch the data from the se if provided as metadata use predefined values from get_env_assay_names otherwise

Description

get assay names of the given se/dataset fetch the data from the se if provided as metadata use predefined values from get_env_assay_names otherwise

Usage

get_assay_names(se = NULL, ...)

Arguments

se

SummarizedExperiment or NULL

...

Additional arguments to pass to get_env_assay_names.

Value

charvec

Author(s)

Arkadiusz GÅ‚adki [email protected]

Examples

get_assay_names()

get columns in the assay data required to have unique data

Description

get columns in the assay data required to have unique (non-duplicated) data

Usage

get_assay_req_uniq_cols(dt)

Arguments

dt

data.table with assay data

Value

charvec with columns required to have unique data

Examples

sdata <- get_synthetic_data("finalMAE_small")
smetrics_data <- convert_se_assay_to_dt(sdata[[1]], "Metrics")
get_assay_req_uniq_cols(smetrics_data)

get names of combo assays

Description

get names of combo assays

Usage

get_combo_assay_names(se = NULL, ...)

Arguments

se

SummarizedExperiment or NULL

...

Additional arguments to pass to get_assay_names.

Value

charvec of combo assay names.

Author(s)

Arkadiusz GÅ‚adki [email protected]

Examples

get_combo_assay_names()

get names of combo base assays

Description

get names of combo base assays

Usage

get_combo_base_assay_names(se = NULL, ...)

Arguments

se

SummarizedExperiment or NULL

...

Additional arguments to pass to get_combo_assay_names.

Value

charvec

Author(s)

Arkadiusz GÅ‚adki [email protected]

Examples

get_combo_base_assay_names()

get names of combo excess fields

Description

get names of combo excess fields

Usage

get_combo_excess_field_names()

Value

charvec

Examples

get_combo_excess_field_names()

get names of combo score assays

Description

get names of combo score assays

Usage

get_combo_score_assay_names(se = NULL, ...)

Arguments

se

SummarizedExperiment or NULL

...

Additional arguments to pass to get_combo_assay_names.

Value

charvec

Author(s)

Arkadiusz GÅ‚adki [email protected]

Examples

get_combo_score_assay_names()

get names of combo score fields

Description

get names of combo score fields

Usage

get_combo_score_field_names()

Value

charvec

Examples

get_combo_score_assay_names()

Get gDR default identifiers required for downstream analysis.

Description

Get gDR default identifiers required for downstream analysis.

Usage

get_default_identifiers()

Value

charvec

Examples

get_default_identifiers()

Helper function to find duplicated rows

Description

Helper function to find duplicated rows

Usage

get_duplicated_rows(x, col_names = NULL, output = "index")

Arguments

x

DataFrame or data.table

col_names

character vector, columns in which duplication are searched for

output

string with the output format to be returned - one of "index" (index of duplicates) or "data" (subset of input data with duplicates)

Value

integer vector or data.table with duplicated rows

Examples

dt <- data.table::data.table(a = c(1, 2, 3), b = c(3, 2, 2))
get_duplicated_rows(dt, "b")
get_duplicated_rows(dt, "b", output = "data")

get default assay names for the specified filters, i.e. set of assay types, assay groups and assay data types

Description

get default assay names for the specified filters, i.e. set of assay types, assay groups and assay data types

Usage

get_env_assay_names(
  type = NULL,
  group = NULL,
  data_type = NULL,
  prettify = FALSE,
  simplify = TRUE
)

Arguments

type

charvec of assay types

group

charvec of assay groups

data_type

charvec assay of data types

prettify

logical flag, prettify the assay name?

simplify

logical flag, simplify the output? will return single string instead of named vector with single element useful when function is expected to return single element/assay only

Value

charvec

Author(s)

Arkadiusz GÅ‚adki [email protected]

Examples

get_env_assay_names()

safe wrapper of Sys.getenv()

Description

So far the helper is needed to handle env vars containing : for which the backslash is automatically added in some contexts and R could not get the original value for these env vars.

Usage

get_env_var(x, ...)

Arguments

x

string with the name of the environemntal variable

...

additional params for Sys.getenev

Value

sanitized value of the env variable

Examples

get_env_var("HOME")

Get identifiers that expect only one value for each identifier.

Description

Get identifiers that expect only one value for each identifier.

Usage

get_expect_one_identifiers()

Value

charvec

Examples

get_expect_one_identifiers()

get_experiment_groups

Description

get experiment groups

Usage

get_experiment_groups(type = NULL)

Arguments

type

String indicating the name of an assay group. Defaults to all experiment groups.

Value

list with experiment groups or string (if type not NULL)

Author(s)

Arkadiusz Gladki [email protected]

Examples

get_experiment_groups()

Get descriptions for identifiers

Description

Get descriptions for identifiers

Usage

get_identifiers_dt(k = NULL, get_description = FALSE, get_example = FALSE)

Arguments

k

identifier key, string

get_description

return descriptions only, boolean

get_example

return examples only, boolean

Value

named list

Examples

get_identifiers_dt()

Get gDR synonyms for the identifiers

Description

Get gDR synonyms for the identifiers

Usage

get_idfs_synonyms()

Value

charvec

Examples

get_idfs_synonyms()

Get isobologram column names

Description

Get isobologram column names

Usage

get_isobologram_columns(k = NULL, prettify = TRUE)

Arguments

k

key

prettify

change to upper case and add underscore, iso_level –> Iso_Level

Value

character vector of isobologram column names for combination data

Examples

get_isobologram_columns()
get_isobologram_columns("iso_level", prettify = TRUE)

get_MAE_identifiers

Description

get the identifiers of all SE's in the MAE

Usage

get_MAE_identifiers(mae)

Arguments

mae

MultiAssayExperiment

Value

named list with identifiers for each SE

Examples

mae <- get_synthetic_data("finalMAE_small.qs")
get_MAE_identifiers(mae)

get_non_empty_assays

Description

get non empty assays

Usage

get_non_empty_assays(mae)

Arguments

mae

MultiAssayExperiment object

Value

charvec with non-empty experiments

Author(s)

Arkadiusz Gladki [email protected]

Examples

mae <- get_synthetic_data("finalMAE_small.qs")
get_non_empty_assays(mae)

get optional colData fields

Description

get optional colData fields

Usage

get_optional_coldata_fields(se)

Arguments

se

a SummarizedExperiment object with drug-response data generate by gDR pipeline

Value

a charvec containing the names of the optional identifiers in the SE colData


get optional rowData fields

Description

get optional rowData fields

Usage

get_optional_rowdata_fields(se)

Arguments

se

a SummarizedExperiment object with drug-response data generate by gDR pipeline

Value

a charvec containing the names of the optional identifiers in the SE rowData


Get identifiers required for downstream analysis.

Description

Get identifiers required for downstream analysis.

Usage

get_required_identifiers()

Value

charvec

Examples

get_required_identifiers()

Get settings from JSON file In most common scenario the settings are stored in JSON file to avoid hardcoding

Description

Get settings from JSON file In most common scenario the settings are stored in JSON file to avoid hardcoding

Usage

get_settings_from_json(
  s = NULL,
  json_path = system.file(package = "gDRutils", "cache.json")
)

Arguments

s

charvec with setting entry/entries

json_path

string with the path to the JSON file

Value

value/values for entry/entries from JSON file

Examples

if (!nchar(system.file(package="gDRutils"))) {
   get_settings_from_json()
}

get_supported_experiments

Description

get supported experiments

Usage

get_supported_experiments(type = NULL)

Arguments

type

String indicating the type of experiment

Value

charvec with supported experiment name(s)

Author(s)

Arkadiusz Gladki [email protected]

Examples

get_supported_experiments()

Get synthetic data from gDRtestData package

Description

Get synthetic data from gDRtestData package

Usage

get_synthetic_data(qs)

Arguments

qs

qs filename

Value

loaded data

Examples

get_synthetic_data("finalMAE_small.qs")

get_testdata

Description

Function to obtain data from gDRtestData and prepare for unit tests

Usage

get_testdata()

Value

list with drugs, cell_lines, raw_data and assay_data

Examples

get_testdata()

get_testdata_codilution

Description

Function to obtain data from gDRtestData and prepare for unit tests

Usage

get_testdata_codilution()

Value

list with drugs, cell_lines, raw_data and assay_data

Examples

get_testdata_codilution()

get_testdata_combo

Description

Function to obtain data from gDRtestData and prepare for unit tests

Usage

get_testdata_combo()

Value

list with drugs, cell_lines, raw_data and assay_data

Examples

get_testdata_combo()

check if assay data contains duplicated data

Description

An auxiliary function that checks for duplicates in the assay data

Usage

has_assay_dt_duplicated_rows(dt)

Arguments

dt

data.table with assay data

Value

logical flag indicating if a dt contains duplicated rows or not

Examples

sdata <- get_synthetic_data("finalMAE_small")
smetrics_data <- convert_se_assay_to_dt(sdata[[1]], "Metrics")
has_assay_dt_duplicated_rows(smetrics_data)

check if data.table contains duplicated data

Description

An auxiliary function that checks for duplicates in the data.table (or its subset)

Usage

has_dt_duplicated_rows(dt, col_names = NULL)

Arguments

dt

data.table

col_names

charvec with columns to be used for subsetting

Value

logical flag indicating if a dt contains duplicated rows or not

Examples

dt <- data.table::data.table(a = c(1, 2, 3), b = c(3, 2, 2))
has_dt_duplicated_rows(dt, "b")

Has Single Codrug Data

Description

Has Single Codrug Data

Usage

has_single_codrug_data(
  cols,
  prettify_identifiers = TRUE,
  codrug_identifiers = c("drug_name2", "concentration2")
)

Arguments

cols

character vector with the columns of the input data

prettify_identifiers

logical flag specifying if identifiers are expected to be prettified

codrug_identifiers

character vector with identifiers for the codrug columns

Value

logical flag

Examples

has_single_codrug_data("Drug Name")
has_single_codrug_data(c("Drug Name", "Cell Lines"))
has_single_codrug_data(c("Drug Name 2", "Concentration 2"))
has_single_codrug_data(
  get_prettified_identifiers(
    c("concentration2", "drug_name2"), 
    simplify = FALSE
  )
)

Has Valid Codrug Data

Description

Has Valid Codrug Data

Usage

has_valid_codrug_data(
  data,
  prettify_identifiers = TRUE,
  codrug_name_identifier = "drug_name2",
  codrug_conc_identifier = "concentration2"
)

Arguments

data

data.table with input data

prettify_identifiers

logical flag specifying if identifiers are expected to be prettified

codrug_name_identifier

string with the identifiers for the codrug drug_name column

codrug_conc_identifier

string with the identifiers for the codrug concentration column

Value

logical flag

Examples

dt <-
  data.table::data.table(
    "Drug Name" = letters[seq_len(3)],
    "Concentration" = seq_len(3),
    "Drug Name 2" = letters[4:6],
    "Concentration 2" = 4:6
  )
has_valid_codrug_data(dt)

dt$`Concentration 2` <- NULL
has_valid_codrug_data(dt)

Get or reset headers for one or all header field(s) respectively

Description

Get the expected header(s) for one field or reset all header fields

Usage

get_header(k = NULL)

Arguments

k

string of field (data type) to return headers for

Details

If get_header is called with no values, the entire available header list is returned.

Value

For get_header a character vector of headers for field k.

Examples

get_header(k = NULL)
get_header("manifest")

Get, set, or reset identifiers for one or all identifier field(s)

Description

Get, set, or reset the expected identifier(s) for one or all identifier field(s). Identifiers are used by the gDR processing functions to identify which columns in a data.table correspond to certain expected fields. Functions of the family *et_identifier will look for identifiers from the environment while functions of the family *et_SE_identifiers will look for identifiers in the metadata slot of a SummarizedExperiment object. See details for expected identifiers and their definitions.

Usage

get_env_identifiers(k = NULL, simplify = TRUE)

get_prettified_identifiers(k = NULL, simplify = TRUE)

set_env_identifier(k, v)

reset_env_identifiers()

Arguments

k

String corresponding to identifier name.

simplify

Boolean indicating whether output should be simplified.

v

Character vector corresponding to the value for given identifier k.

Details

Identifiers supported by the gDR suite include:

  • "barcode": String of column name containing barcode metadata

  • "cellline": String of column name containing unique, machine-readable cell line identifiers

  • "cellline_name": String of column name containing human-friendly cell line names

  • "cellline_tissue": String of column name containing metadata on cell line tissue type

  • "cellline_ref_div_time": String of column name containing reference division time for cell lines

  • "cellline_parental_identifier": String of column name containing unique, machine-readable parental cell line identifiers. Used in the case of derived or engineered cell lines.

  • "drug": String of column name containing unique, machine-readable drug identifiers

  • "drug_name": String of column name containing human-friendly drug names

  • "drug_moa": String of column name containing metadata for drug mode of action

  • "duration": String of column name containing metadata on duration that cells were treated (in hours)

  • "template": String of column name containing template metadata

  • "untreated_tag": Character vector of entries that identify control, untreated wells

  • "well_position": Character vector of column names containing metadata on well positions on a plate

Value

For any setting or resetting functionality, a NULL invisibly. For get_env_identifiers a character vector of identifiers for field k. For functions called with no arguments, the entire available identifier list is returned.

list or charvec depends on unify param

list or charvec depends on unify param

NULL

NULL

Examples

get_env_identifiers("duration") # "Duration"

Identify unique metadata fields from a list of SummarizedExperiments

Description

Identify unique metadata fields from a list of SummarizedExperiments

Usage

identify_unique_se_metadata_fields(SElist)

Arguments

SElist

named list of SummarizedExperiments

Value

character vector of unique names of metadata

Examples

mae <- get_synthetic_data("finalMAE_small")
se <- mae[[1]]
SElist <- list(
  se, 
  se
)
identify_unique_se_metadata_fields(SElist)

is_any_exp_empty

Description

check if any experiment is empty

Usage

is_any_exp_empty(mae)

Arguments

mae

MultiAssayExperiment object

Value

logical

Author(s)

Arkadiusz Gladki [email protected]

Examples

mae <- get_synthetic_data("finalMAE_small.qs")
is_any_exp_empty(mae)

Checks if se is combo dataset.

Description

Checks if se is combo dataset.

Usage

is_combo_data(se)

Arguments

se

SummarizedExperiment

Value

logical

Examples

se <- get_synthetic_data("combo_matrix")[[1]]
is_combo_data(se)
se <- get_synthetic_data("combo_matrix")[[2]]
is_combo_data(se)
se <- get_synthetic_data("small")[[1]]
is_combo_data(se)

is_exp_empty

Description

check if experiment (SE) is empty

Usage

is_exp_empty(exp)

Arguments

exp

SummarizedExperiment object.

Value

logical

Author(s)

Arkadiusz Gladki [email protected]

Examples

mae <- get_synthetic_data("finalMAE_small.qs")
se <- mae[[1]]
is_exp_empty(se)

is_mae_empty

Description

check if all mae experiments are empty

Usage

is_mae_empty(mae)

Arguments

mae

MultiAssayExperiment object

Value

logical

Author(s)

Arkadiusz Gladki [email protected]

Examples

mae <- get_synthetic_data("finalMAE_small.qs")
is_mae_empty(mae)

Logistic fit

Description

Fit a logistic curve to drug response data.

Usage

logisticFit(
  concs,
  norm_values,
  std_norm_values = NA,
  x_0 = 1,
  priors = NULL,
  lower = NULL,
  range_conc = c(0.005, 5),
  force_fit = FALSE,
  pcutoff = 0.05,
  cap = 0.1,
  n_point_cutoff = 4,
  capping_fold = 5
)

Arguments

concs

concentrations that have not been transformed into log space.

norm_values

normalized response values (Untreated = 1).

std_norm_values

std of values.

x_0

upper limit. Defaults to 1. For co-treatments, this value should be set to NA.

priors

numeric vector containing starting values for all. mean parameters in the model. Overrules any self starter function.

lower

numeric vector of lower limits for all parameters in a 4-param model.

range_conc

range of concentration for calculating AOC_range.

force_fit

boolean indicating whether or not to force a parameter-based fit.

pcutoff

numeric of pvalue significance threshold above or equal to which to use a constant fit.

cap

numeric value capping norm_values to stay below (x_0 + cap).

n_point_cutoff

integer indicating number of unique concentrations required to fit curve.

capping_fold

Integer value of the fold number to use for capping IC50/GR50. Default is 5.

Details

Implementation of the genedata approach for curve fit: https://screener.genedata.com/documentation/display/DOC21/Business-Rules-for-Dose-Response-Curve-Fitting,-Model-Selection,-and-Fit-Validity.html #nolint

The output parameter names correspond to the following definitions:

x_mean

The mean of a given dose-response metric

x_AOC_range

The range of the area over the curve

x_AOC

The area over the GR curve or, respectively, under the relative cell count curve, averaged over the range of concentration values

xc50

The concentration at which the effect reaches a value of 0.5 based on interpolation of the fitted curve

x_max

The maximum effect of the drug

ec50

The drug concentration at half-maximal effect

x_inf

The asymptotic value of the sigmoidal fit to the dose-response data as concentration goes to infinity

x_0

The asymptotic metric value corresponding to a concentration of 0 for the primary drug

h

The hill coefficient of the fitted curve, which reflects how steep the dose-response curve is

r2

The goodness of the fit

x_sd_avg

The standard deviation of GR/IC

fit_type

This will be given by one of the following:

  • "DRC4pHillFitModel" Successfully fit with a 4-parameter model

  • "DRC3pHillFitModelFixS0" Successfully fit with a 3-parameter model

  • "DRCConstantFitResult" Successfully fit with a constant fit

  • "DRCTooFewPointsToFit" Not enough points to run a fit

  • "DRCInvalidFitResult" Fit was attempted but failed

maxlog10Concentration

The highest log10 concentration

N_conc

Number of unique concentrations

Value

data.table with metrics and fit parameters.

Examples

logisticFit(
c(0.001, 0.00316227766016838, 0.01, 0.0316227766016838),
c(0.9999964000144, 0.999964001439942, 0.999640143942423, 0.996414342629482),
rep(0.1, 4),
priors = c(2, 0.4, 1, 0.00658113883008419)
)

Lapply or bplapply.

Description

Lapply or bplapply.

Usage

loop(x, FUN, parallelize = TRUE, ...)

Arguments

x

Vector (atomic or list) or an ‘expression’ object. Other objects (including classed objects) will be coerced by ‘base::as.list’.

FUN

A user-defined function.

parallelize

Logical indicating whether or not to parallelize the computation. Defaults to TRUE.

...

optional argument passed to bplapply if parallelize == TRUE, else to lapply.

Value

List containing output of FUN applied to every element in x.

Examples

loop(list(c(1,2), c(2,3)), sum, parallelize = FALSE)

Lapply through all the experiments in MultiAssayExperiment object

Description

Lapply through all the experiments in MultiAssayExperiment object

Usage

MAEpply(mae, FUN, unify = FALSE, ...)

Arguments

mae

MultiAssayExperiment object

FUN

function that should be applied on each experiment of MultiAssayExperiment object

unify

logical indicating if the output should be a unlisted object of unique values across all the experiments

...

Additional args to be passed to teh FUN.

Value

list or vector depends on unify param

Author(s)

Bartosz Czech [email protected]

Examples

mae <- get_synthetic_data("finalMAE_small.qs")
MAEpply(mae, SummarizedExperiment::assayNames)

mcolData

Description

get colData of all experiments

Usage

mcolData(mae)

Arguments

mae

MultiAssayExperiment object

Value

data.table with all-experiments colData

Author(s)

Arkadiusz Gladki [email protected]

Examples

mae <- get_synthetic_data("finalMAE_small.qs")
mcolData(mae)

Merge assay data

Description

Merge assay data

Usage

merge_assay(
  SElist,
  assay_name,
  additional_col_name = "data_source",
  discard_keys = NULL
)

Arguments

SElist

named list of Summarized Experiments

assay_name

name of the assay that should be extracted and merged

additional_col_name

string of column name that will be added to assay data for the distinction of possible duplicated metrics that can arise from multiple projects

discard_keys

character vector of string that will be discarded during creating BumpyMatrix object

Value

BumpyMatrix or list with data.table + BumpyMatrix

Examples

mae <- get_synthetic_data("finalMAE_combo_2dose_nonoise")

listSE <- list(
  combo1 = mae[[1]], 
  sa = mae[[2]]
)
merge_assay(listSE, "Normalized")

Merge metadata

Description

Merge metadata

Usage

merge_metadata(SElist, metadata_fields)

Arguments

SElist

named list of SummarizedExperiments

metadata_fields

vector of metadata names that will be merged

Value

list of merged metadata

Examples

mae <- get_synthetic_data("finalMAE_small")
se <- mae[[1]]
listSE <- list(
  se, 
  se
)
metadata_fields <- identify_unique_se_metadata_fields(listSE)
merge_metadata(listSE, metadata_fields)

Merge multiple Summarized Experiments

Description

Merge multiple Summarized Experiments

Usage

merge_SE(
  SElist,
  additional_col_name = "data_source",
  discard_keys = c("normalization_type", "fit_source", "record_id", "swap_sa",
    "control_type")
)

Arguments

SElist

named list of Summarized Experiments

additional_col_name

string with the name of the column that will be added to assay data for the distinction of possible duplicated metrics that can arise from multiple projects

discard_keys

character vector of string that will be discarded during creating BumpyMatrix object

Value

merged SummarizedExperiment object

Examples

se1 <- get_synthetic_data("finalMAE_small")[[1]]
merge_SE(list(se1 = se1, se2 = se1))

modify assay with additional data

Description

Reduce dimensionality of an assay by dropping extra data or combining variables.

Usage

modifyData(x, ...)

## S3 method for class 'drug_name2'
modifyData(x, option, keep, ...)

## S3 method for class 'data_source'
modifyData(x, option, keep, ...)

## Default S3 method:
modifyData(x, option, keep, ...)

Arguments

x

a data.table containing an assay

...

additional arguments passed to methods

option

character string specifying the action to be taken, see Details

keep

character string specifying the value of the active variable that will be kept

Details

If an essay extracted from a SummarizedExperiment contains additional information, i.e. factors beyond DrugName and CellLineName, that information will be treated in one of three ways, depending on the value of option:

  • drop: Some information will be discarded and only one value of the additional variable (chosen by the user) will be kept.

  • toDrug: The information is pasted together with the primary drug name. All observations are kept.

  • toCellLine: As above, but pasting is done with cell line name.

Depending on the type of additional information, the exact details will differ. This is handled in the app by adding special classes to the data tables and dispatching to S3 methods.

Following modification, the additional columns are discarded.

Value

modified object

Methods (by class)

  • modifyData(drug_name2): includes the name and concentration of the second drug

  • modifyData(data_source): includes the data source

  • modifyData(default): includes the name of other additional variables

Examples

dt <- data.table::data.table(a = as.character(1:10), b = "data")
dt <- addClass(dt, "a")
modifyData(dt, "average", keep = "b")

mrowData

Description

get rowData of all experiments

Usage

mrowData(mae)

Arguments

mae

MultiAssayExperiment object

Value

data.table with all-experiments rowData

Author(s)

Arkadiusz Gladki [email protected]

Examples

mae <- get_synthetic_data("finalMAE_small.qs") 
mrowData(mae)

Predict a concentration for a given efficacy with fit parameters.

Description

Predict a concentration for a given efficacy with fit parameters.

Usage

predict_conc_from_efficacy(efficacy, x_inf, x_0, ec50, h)

Arguments

efficacy

Numeric vector representing efficacies to predict concentrations for.

x_inf

Numeric vector representing the asymptotic value of the sigmoidal fit to the dose-response data as concentration goes to infinity.

x_0

Numeric vector representing the asymptotic metric value corresponding to a concentration of 0 for the primary drug.

ec50

Numeric vector representing the drug concentration at half-maximal effect.

h

Numeric vector representing the hill coefficient of the fitted curve, which reflects how steep

Details

The inverse of this function is predict_efficacy_from_conc.

Value

Numeric vector representing predicted concentrations from given efficacies and fit parameters.

See Also

predict_efficacy_from_conc .calculate_x50

Examples

predict_conc_from_efficacy(efficacy = c(1, 1.5), x_inf = 0.1, x_0 = 1, ec50 = 0.5, h = 2)

Predict efficacy values given fit parameters and a concentration.

Description

Predict efficacy values given fit parameters and a concentration.

Usage

predict_efficacy_from_conc(c, x_inf, x_0, ec50, h)

Arguments

c

Numeric vector representing concentrations to predict efficacies for.

x_inf

Numeric vector representing the asymptotic value of the sigmoidal fit to the dose-response data as concentration goes to infinity.

x_0

Numeric vector representing the asymptotic metric value corresponding to a concentration of 0 for the primary drug.

ec50

Numeric vector representing the drug concentration at half-maximal effect.

h

Numeric vector representing the hill coefficient of the fitted curve, which reflects how steep the dose-response curve is.

Details

The inverse of this function is predict_conc_from_efficacy.

Value

Numeric vector representing predicted efficacies from given concentrations and fit parameters.

See Also

predict_conc_from_efficacy

Examples

predict_efficacy_from_conc(c = 1, x_inf = 0.1, x_0 = 1, ec50 = 0.5, h = 2)

Prettify metric names in flat 'Metrics' assay

Description

Map existing column names of a flattened 'Metrics' assay to prettified names.

Usage

prettify_flat_metrics(
  x,
  human_readable = FALSE,
  normalization_type = c("GR", "RV")
)

Arguments

x

character vector of names to prettify.

human_readable

boolean indicating whether or not to return column names in human readable format. Defaults to FALSE.

normalization_type

character vector with a specified normalization type. Defaults to c("GR", "RV").

Details

A common use case for this function is to prettify column names from a flattened version of the "Metrics" assay. Mode "human_readable" = TRUE is often used for prettification in the context of front-end applications, whereas "human_readable" = FALSE is often used for prettification in the context of the command line.

Value

character vector of prettified names.

Examples

x <- c("CellLineName", "Tissue", "Primary Tissue", "GR_gDR_x_mean", "GR_gDR_xc50", "RV_GDS_x_mean")
prettify_flat_metrics(x, human_readable = FALSE)

Promote a nested field to be represented as a metadata field of the SummarizedExperiment as either the rowData or colData.

Description

Promote a nested field to be represented as a metadata field of the SummarizedExperiment as either the rowData or colData.

Usage

promote_fields(se, fields, MARGIN = c(1, 2))

Arguments

se

SummarizedExperiment object.

fields

Character vector of nested fields in a BumpyMatrix object to promote to metadata fields of a se.

MARGIN

Numeric of values 1 or 2 indicating whether to promote fields to rows or columns respectively.

Details

Revert this operation using demote_fields.

Value

A SummarizedExperiment object with new dimensions resulting from promoting given fields.

See Also

demote_fields

Examples

mae <- get_synthetic_data("finalMAE_small")
se <- mae[[1]]
se <- promote_fields(se, "ReadoutValue", 2)

refine colData

Description

current improvements done on the colData as a standardization step:

  • set default value for optional colData fields

Usage

refine_coldata(cd, se, default_v = "Undefined")

Arguments

cd

DataFrame with colData

se

a SummarizedExperiment object with drug-response data generate by gDR pipeline

default_v

string with default value for optional columns in colData

Value

refined colData

Examples

mae <- get_synthetic_data("finalMAE_small.qs")
refine_coldata(SummarizedExperiment::colData(mae[[1]]), mae[[1]])

refine rowData

Description

current improvements done on the rowData as a standardization step:

  • set default value for optional rowData fields

Usage

refine_rowdata(rd, se, default_v = "Undefined")

Arguments

rd

DataFrame with rowData

se

a SummarizedExperiment object with drug-response data generate by gDR pipeline

default_v

string with default value for optional columns in rowData

Value

refined rowData

Examples

mae <- get_synthetic_data("finalMAE_small.qs")
refine_rowdata(SummarizedExperiment::colData(mae[[1]]), mae[[1]])

Remove Codrug Data

Description

Remove Codrug Data

Usage

remove_codrug_data(
  data,
  prettify_identifiers = TRUE,
  codrug_identifiers = c("drug_name2", "concentration2")
)

Arguments

data

data.table with input data

prettify_identifiers

logical flag specifying if identifiers are expected to be prettified

codrug_identifiers

character vector with identifiers for the codrug columns

Value

data.table without combination columns

Examples

dt <-
  data.table::data.table(
    "Drug Name" = letters[seq_len(3)],
    "Concentration" = seq_len(3),
    "Drug Name 2" = letters[4:6],
    "Concentration 2" = 4:6
  )
dt
remove_codrug_data(dt)

Rename BumpyMatrix

Description

Rename BumpyMatrix

Usage

rename_bumpy(bumpy, mapping_vector)

Arguments

bumpy

a BumpyMatrix object

mapping_vector

a named vector for mapping old and new values. The names of the character vector indicate the source names, and the corresponding values the destination names.

Value

a renamed BumpyMatrix object

Examples

mae <- get_synthetic_data("finalMAE_small.qs")
se <- mae[[1]]
assay <- SummarizedExperiment::assay(se)
rename_bumpy(assay, c("Concentration" = "conc"))

Rename DFrame

Description

Rename DFrame

Usage

rename_DFrame(df, mapping_vector)

Arguments

df

a DFrame object

mapping_vector

a named vector for mapping old and new values. The names of the character vector indicate the source names, and the corresponding values the destination names.

Value

a renamed DFrame object

Examples

mae <- get_synthetic_data("finalMAE_small.qs")
rename_DFrame(SummarizedExperiment::rowData(mae[[1]]), c("Gnumber" = "Gnumber1"))

Round concentration to ndigit significant digits

Description

Round concentration to ndigit significant digits

Usage

round_concentration(x, ndigit = 3)

Arguments

x

value to be rounded.

ndigit

number of significant digits (default = 4).

Value

rounded x

Examples

round_concentration(x = c(0.00175,0.00324,0.0091), ndigit = 1)

Get and set metadata for parameters on a SummarizedExperiment object.

Description

Set metadata for the fitting parameters that define the Metrics assay in SummarizedExperiment object metadata.

Usage

set_SE_fit_parameters(se, value)

set_SE_processing_metadata(se, value)

set_SE_keys(se, value)

set_SE_experiment_metadata(se, value)

set_SE_experiment_raw_data(se, value)

get_SE_fit_parameters(se)

get_SE_processing_metadata(se)

get_SE_experiment_raw_data(se)

get_SE_experiment_metadata(se)

get_SE_keys(se, key_type = NULL)

get_SE_identifiers(se, id_type = NULL, simplify = TRUE)

set_SE_identifiers(se, value)

Arguments

se

a SummarizedExperiment object for which to add fit parameter metadata.

value

named list of metadata for fit parameters.

key_type

string of a specific key type (i.e. 'nested_keys', etc.).

id_type

string of a specific id type (i.e. 'duration', 'cellline_name', etc.).

simplify

Boolean indicating whether output should be simplified.

Details

For *et_SE_processing_metadata, get/set metadata for the processing info that defines the date_processed and packages versions in SummarizedExperiment object metadata. For *et_SE_fit_parameters, get/set metadata for fit parameters used to construct the Metrics assay in a SummarizedExperiment object.

Value

se with added metadata.

Examples

mae <- get_synthetic_data("finalMAE_small.qs") 
se <- mae[[1]]
get_SE_fit_parameters(se)

mae <- get_synthetic_data("finalMAE_small.qs") 
se <- mae[[1]]
meta <- get_SE_processing_metadata(se)

mae <- get_synthetic_data("finalMAE_small.qs") 
se <- mae[[1]]
get_SE_experiment_raw_data(se)

mae <- get_synthetic_data("finalMAE_small.qs") 
se <- mae[[1]]
get_SE_experiment_metadata(se)

mae <- get_synthetic_data("finalMAE_small.qs") 
se <- mae[[1]]
get_SE_identifiers(se)

Set fit parameters for a constant fit.

Description

Replace values for flat fits: ec50 = 0, h = 0.0001 and xc50 = +/- Inf

Usage

set_constant_fit_params(out, mean_norm_value)

Arguments

out

Named list of fit parameters.

mean_norm_value

Numeric value that be used to set all parameters that can be calculated from the mean.

Value

Modified named list of fit parameters.

Examples

na <- list(x_0 = NA)
set_constant_fit_params(na, mean_norm_value = 0.6)

Set Unique Parental Identifiers

Description

This function sets the CellLineName field in colData to be unique by appending the clid in parentheses for duplicates.

Usage

set_unique_cl_names(se)

Arguments

se

A SummarizedExperiment object.

Value

A SummarizedExperiment object with unique CellLineName in colData.

Examples

se <- SummarizedExperiment::SummarizedExperiment(
  assays = list(counts = matrix(1:4, ncol = 2)),
  colData = S4Vectors::DataFrame(CellLineName = c("ID1", "ID1"), clid = c("C1", "C2"))
)
se <- set_unique_cl_names(se)

Set Unique Parental Identifiers in table

Description

This function sets the CellLineName field in colData to be unique by appending the clid in parentheses for duplicates.

Usage

set_unique_cl_names_dt(col_data, sep = " ")

Arguments

col_data

data.table or DFrame with col data

sep

string with separator added before suffix

Value

fixed input table with unique CellLineName in colData.

Examples

col_data <- S4Vectors::DataFrame(CellLineName = c("ID1", "ID1"), clid = c("C1", "C2"))
col_data <- set_unique_cl_names_dt(col_data)

Set Unique Drug Names

Description

This function sets the DrugName, DrugName_2, and DrugName_3 fields in rowData to be unique by appending the corresponding Gnumber, Gnumber_2, and Gnumber_3 in parentheses for duplicates.

Usage

set_unique_drug_names(se)

Arguments

se

A SummarizedExperiment object.

Value

A SummarizedExperiment object with unique DrugName fields in rowData.

Examples

se <- SummarizedExperiment::SummarizedExperiment(
  assays = list(counts = matrix(1:9, ncol = 3)),
  rowData = S4Vectors::DataFrame(DrugName = c("DrugA", "DrugA", "DrugB"),
  Gnumber = c("G1", "G2", "G5"),
  DrugName_2 = c("DrugC", "DrugC", "DrugD"),
  Gnumber_2 = c("G3", "G4", "G5")
))
se <- set_unique_drug_names(se)

Set Unique Drug Names in table

Description

This function sets the DrugName, DrugName_2, and DrugName_3 fields in rowData to be unique by appending the corresponding Gnumber, Gnumber_2, and Gnumber_3 in parentheses for duplicates.

Usage

set_unique_drug_names_dt(row_data, sep = " ")

Arguments

row_data

data.table or DFrame with row data

sep

string with separator added before suffix

Value

fixed input table with unique DrugName fields in rowData.

Examples

row_data <- S4Vectors::DataFrame(
  DrugName = c("DrugA", "DrugA", "DrugB"),
  Gnumber = c("G1", "G2", "G5"),
  DrugName_2 = c("DrugC", "DrugC", "DrugD"),
  Gnumber_2 = c("G3", "G4", "G5")
)
row_data <- set_unique_drug_names_dt(row_data)

Set Unique Identifiers in MultiAssayExperiment

Description

This function sets the CellLineName in colData and DrugName fields in rowData to be unique for each SummarizedExperiment in a MultiAssayExperiment.

Usage

set_unique_identifiers(mae)

Arguments

mae

A MultiAssayExperiment object.

Value

A MultiAssayExperiment object with unique identifiers.

Examples

se1 <- SummarizedExperiment::SummarizedExperiment(
  assays = list(counts = matrix(1:4, ncol = 2)),
  colData = S4Vectors::DataFrame(parental_identifier = c("ID1", "ID1"), clid = c("C1", "C2")),
  rowData = S4Vectors::DataFrame(DrugName = c("DrugA", "DrugA"), Gnumber = c("G1", "G2"))
)
rownames(SummarizedExperiment::colData(se1)) <- c("cl1", "cl2")
rownames(SummarizedExperiment::rowData(se1)) <- c("g1", "g")
se2 <- SummarizedExperiment::SummarizedExperiment(
  assays = list(counts = matrix(5:8, ncol = 2)),
  colData = S4Vectors::DataFrame(parental_identifier = c("ID2", "ID2"), clid = c("C3", "C4")),
  rowData = S4Vectors::DataFrame(DrugName = c("DrugB", "DrugB"), Gnumber = c("G3", "G4"))
)
rownames(SummarizedExperiment::colData(se2)) <- c("cl3", "cl4")
rownames(SummarizedExperiment::rowData(se2)) <- c("g3", "g4")
mae <- MultiAssayExperiment::MultiAssayExperiment(experiments = list(se1 = se1, se2 = se2))
mae <- set_unique_identifiers(mae)

shorten normalization type

Description

shorten normalization type

Usage

shorten_normalization_type_name(x)

Arguments

x

string with normalization type

Value

shortened string representing the normalization type

Examples

shorten_normalization_type_name("GRvalue")

split_SE_components

Description

Divide the columns of an input data.table into treatment metadata, condition metadata, experiment metadata, and assay data for further analysis. This will most commonly be used to identify the different components of a SummarizedExperiment object.

Usage

split_SE_components(df_, nested_keys = NULL, combine_on = 1L)

Arguments

df_

data.table with drug-response data

nested_keys

character vector of keys to exclude from the row or column metadata, and to instead nest within an element of the matrix. See details.

combine_on

integer value of 1 or 2, indicating whether unrecognized columns should be combined on row or column respectively. Defaults to 1.

Details

Named list containing the following elements:

"treatment_md":

treatment metadata

"condition_md":

condition metadata

"data_fields":

all data.table column names corresponding to fields nested within a BumpyMatrix cell

"experiment_md":

metadata that is constant for all entries of the data.table

"identifiers_md":

key identifier mappings

The nested_keys provides the user the opportunity to specify that they would not like to use that metadata field as a differentiator of the treatments, and instead, incorporate it into a nested DataFrame in the BumpyMatrix matrix object.

In the event that if any of the nested_keys are constant throughout the whole data.table, they will still be included in the DataFrame of the BumpyMatrix and not in the experiment_metadata.

Columns within the df_ will be identified through the following logic: First, the known data fields and any specified nested_keys are extracted. Following that, known cell and drug metadata fields are detected, and any remaining columns that represent constant metadata fields across all rows are extracted. Next, any cell line metadata will be heuristically extracted. Finally, all remaining columns will be combined on either the rows or columns as specified by combine_on.

Value

named list containing different elements of a SummarizedExperiment; see details.

Examples

split_SE_components(data.table::data.table(clid = "CL1", Gnumber = "DrugA"))

Standardize MAE by switching from custom identifiers into gDR-default

Description

Standardize MAE by switching from custom identifiers into gDR-default

Usage

standardize_mae(mae, use_default = TRUE)

Arguments

mae

a MultiAssayExperiment object with drug-response data generate by gDR pipeline

use_default

boolean indicating whether or not to use default identifiers for standardization

Value

mae a MultiAssayExperiment with default gDR identifiers

Examples

mae <- get_synthetic_data("finalMAE_small.qs")
S4Vectors::metadata(mae[[1]])$identifiers$drug <- "druug"
standardize_mae(mae)

Standardize SE by switching from custom identifiers into gDR-default

Description

Standardize SE by switching from custom identifiers into gDR-default

Usage

standardize_se(se, use_default = TRUE)

Arguments

se

a SummarizedExperiment object with drug-response data generate by gDR pipeline

use_default

boolean indicating whether or not to use default identifiers for standardization

Value

se a SummarizedExperiment with default gDR identifiers

Examples

mae <- get_synthetic_data("finalMAE_small.qs")
se <- mae[[1]]
S4Vectors::metadata(se)$identifiers$drug <- "druug"
standardize_se(se)

String first and last characters of a string.

Description

String first and last characters of a string.

Usage

strip_first_and_last_char(jstring)

Arguments

jstring

String of any number of characters greater than 1.

Details

This is most often used to remove the JSON brackets '{' and '}'.

Value

String with first and last characters stripped.


throw message if assay data.table contains duplicated rows

Description

An auxiliary function that checks for duplicated rows in assay data.table, In case of duplicates it throws a message. The messsage function is by default stop() The message function can be customized with msg_f parameter

Usage

throw_msg_if_duplicates(
  dt,
  assay_name = "unknown",
  msg_f = stop,
  preview_max_numb = 4
)

Arguments

dt

data.table with assay data

assay_name

string with the name of the assay

msg_f

function to be used to throw the message

preview_max_numb

number of rows to preview if duplicates found

Examples

sdata <- get_synthetic_data("finalMAE_small")
smetrics_data <- convert_se_assay_to_dt(sdata[[1]], "Metrics")
throw_msg_if_duplicates(smetrics_data, assay_name = "Metrics", msg_f = futile.logger::flog.info)

Update environment identifiers from MAE object identifiers

Description

Update environment identifiers from MAE object identifiers

Usage

update_env_idfs_from_mae(mae_idfs)

Arguments

mae_idfs

A list containing MAE identifiers

Value

NULL

Examples

update_env_idfs_from_mae(list(get_env_identifiers()))

Update gDR synonyms for the identifier

Description

Update gDR synonyms for the identifier

Usage

update_idfs_synonyms(data, dict = get_idfs_synonyms())

Arguments

data

list of charvec with identifiers data

dict

list with dictionary

Value

list

Examples

mdict <- list(duration = "time")
iv <- c("Time", "Duration", "time")
update_idfs_synonyms(iv, dict = mdict)

Validate dimnames

Description

Assure that dimnames of two objects are the same

Usage

validate_dimnames(obj, obj2, skip_empty = TRUE)

Arguments

obj

first object with dimnames to compare

obj2

second object with dimnames to compare

skip_empty

a logical indicating whether to skip comparison if a given dimname is empty in the case of both objects

Value

NULL


Check that specified identifier values exist in the data.

Description

Check that specified identifier values exist in the data and error otherwise.

Usage

validate_identifiers(
  df,
  identifiers = NULL,
  req_ids = NULL,
  exp_one_ids = NULL
)

Arguments

df

data.table with colnames.

identifiers

Named list of identifiers where the names are standardized identifier names. If not passed, defaults to get_env_identifiers().

req_ids

Character vector of standardized identifier names required to pass identifier validation.

exp_one_ids

Character vector of standardized identifiers names where only one identifier value is expected. If not passed, defaults to get_expect_one_identifiers().

Details

Note that this does NOT set the identifiers anywhere (i.e. environment or SummarizedExperiment object). If identifiers do not validate, will throw error as side effect.

Value

Named list of identifiers modified to pass validation against the input data. Errors with explanatory message if validation cannot pass with the given identifiers and data.

Examples

validate_identifiers(
  S4Vectors::DataFrame("Barcode" = NA, "Duration" = NA, "Template" = NA, "clid" = NA), 
  req_ids = "barcode"
)

Validate JSON against a schema.

Description

Validate JSON describing an object against a schema.

Usage

validate_json(json, schema_path)

Arguments

json

String of JSON in memory.

schema_path

String of the schema to validate against.

Details

This is most often used to validate JSON before passing it in as a document to an ElasticSearch index.

Value

Boolean of whether or not JSON successfully validated.

Examples

json <- '{}'

Validate MultiAssayExperiment object

Description

Function validates correctness of SE included in MAE by checking multiple cases:

  • detection of duplicated rowData/colData,

  • incompatibility of rownames/colnames,

  • occurrence of necessary assays,

  • detection of mismatch of CLIDs inside colData and colnames (different order),

  • correctness of metadata names.

Usage

validate_MAE(mae)

Arguments

mae

MultiAssayExperiment object produced by the gDR pipeline

Value

NULL invisibly if the MultiAssayExperiment is valid. Throws an error if the MultiAssayExperiment is not valid.

Author(s)

Bartosz Czech [email protected]

Examples

mae <- get_synthetic_data("finalMAE_small") 
validate_MAE(mae)

Validate MAE against a schema.

Description

Validate MAE object against a schema. Currently only SEs are validated TODO: add mae.json schema and validate full MAE object

Usage

validate_mae_with_schema(
  mae,
  schema_package = Sys.getenv("SCHEMA_PACKAGE", "gDRutils"),
  schema_dir_path = Sys.getenv("SCHEMA_DIR_PATH", "schemas"),
  schema = c(se = "se.json", mae = "mae.json")
)

Arguments

mae

MultiAssayExperiment object

schema_package

string name of the package with JSON schema files

schema_dir_path

path to the dir with JSON schema files

schema

named charvec with filenames of schemas to validate against.

Value

Boolean of whether or not mae is valid

Examples

mae <- get_synthetic_data("finalMAE_small") 
validate_mae_with_schema(mae)

Validate SummarizedExperiment object

Description

Function validates correctness of SE by checking multiple cases:

  • detection of duplicated rowData/colData,

  • incompatibility of rownames/colnames,

  • occurrence of necessary assays,

  • detection of mismatch of CLIDs inside colData and colnames (different order),

  • correctness of metadata names.

Usage

validate_SE(se, expect_single_agent = FALSE)

Arguments

se

SummarizedExperiment object produced by the gDR pipeline

expect_single_agent

a logical indicating if the function should check whether the SummarizedExperiment is single-agent data

Value

NULL invisibly if the SummarizedExperiment is valid. Throws an error if the SummarizedExperiment is not valid.

Examples

mae <- get_synthetic_data("finalMAE_small")
se <- mae[[1]]
validate_SE(se)

Check whether or not an assay exists in a SummarizedExperiment object.

Description

Check for the presence of an assay in a SummarizedExperiment object.

Usage

validate_se_assay_name(se, name)

Arguments

se

A SummarizedExperiment object.

name

String of name of the assay to validate.

Value

NULL invisibly if the assay name is valid. Throws an error if the assay is not valid.

Examples

mae <- get_synthetic_data("finalMAE_small") 
se <- mae[[1]]
validate_se_assay_name(se, "RawTreated")