Package 'esATAC'

Title: An Easy-to-use Systematic pipeline for ATACseq data analysis
Description: This package provides a framework and complete preset pipeline for quantification and analysis of ATAC-seq Reads. It covers raw sequencing reads preprocessing (FASTQ files), reads alignment (Rbowtie2), aligned reads file operations (SAM, BAM, and BED files), peak calling (F-seq), genome annotations (Motif, GO, SNP analysis) and quality control report. The package is managed by dataflow graph. It is easy for user to pass variables seamlessly between processes and understand the workflow. Users can process FASTQ files through end-to-end preset pipeline which produces a pretty HTML report for quality control and preliminary statistical results, or customize workflow starting from any intermediate stages with esATAC functions easily and flexibly.
Authors: Zheng Wei, Wei Zhang
Maintainer: Zheng Wei <[email protected]>
License: GPL-3 | file LICENSE
Version: 1.29.0
Built: 2024-12-29 07:59:02 UTC
Source: https://github.com/bioc/esATAC

Help Index


An Easy-to-use Systematic pipeline for ATACseq data analysis

Description

This package provides a framework and complete preset pipeline for the quantification and analysis of ATAC-seq Reads. It covers raw sequencing reads preprocessing (FASTQ files), reads alignment (Rbowtie2), aligned reads file operation (SAM, BAM, and BED files), peak calling (fseq), genome annotations (Motif, GO, SNP analysis) and quality control report. The package is managed by dataflow graph. It is easy for user to pass variables seamlessly between processes and understand the workflow. Users can process FASTQ files through end-to-end preset pipeline which produces a pretty HTML report for quality control and preliminary statistical results, or customize workflow starting from any intermediate stages with esATAC functions easily and flexibly.

Preset pipeline for single replicate case study is shown below.

For multi-replicates case study, see atacRepsPipe.

For single replicate case-control study, see atacPipe2.

For multi-replicates case-control study, see atacRepsPipe2.

NOTE: Build bowtie index in the function may take some time. If you already have bowtie2 index files or you want to download(ftp://ftp.ccb.jhu.edu/pub/data/bowtie2_indexes) instead of building, you can let esATAC skip the steps by renaming them following the format (genome+suffix) and put them in reference installation path (refdir). Example: hg19 bowtie2 index files

  • hg19.1.bt2

  • hg19.2.bt2

  • hg19.3.bt2

  • hg19.4.bt2

  • hg19.rev.1.bt2

  • hg19.rev.2.bt2

For single end reads FASTQ files, The required parameters are fastqInput1 and adapter1. For paired end reads non-interleaved FASTQ files (interleave=FALSE,defualt), The required parameters are fastqInput1 and fastqInput2. Otherwise, parameter fastqInput2 is not required (interleave=TRUE)

The paths of sequencing data replicates can be a Character vector. For example:

fastqInput1=c("file_1.rep1.fastq","file_1.rep2.fastq")

fastqInput2=c("file_2.rep1.fastq","file_2.rep2.fastq")

The result will be return by the function. An HTML report file will be created for paired end reads. Intermediate files will be save at tmpdir path (default is ./)

Usage

atacPipe(
  genome,
  fastqInput1,
  fastqInput2 = NULL,
  tmpdir = file.path(getwd(), "esATAC-pipeline"),
  refdir = file.path(tmpdir, "refdir"),
  threads = 2,
  adapter1 = NULL,
  adapter2 = NULL,
  interleave = FALSE,
  basicAnalysis = FALSE,
  createReport = TRUE,
  motifs = NULL,
  pipelineName = "pipe",
  chr = c(1:22, "X", "Y"),
  p.cutoff = 1e-06,
  ...
)

Arguments

genome

Character scalar. The genome(like hg19, mm10, etc.) reference data in "refdir" to be used in the pipeline.

fastqInput1

Character vector. For single-end sequencing, it contains sequence file paths. For paired-end sequencing, it can be file paths with #1 mates paired with file paths in fastqInput2 And it can also be interleaved file paths when argument interleaved=TRUE

fastqInput2

Character vector. It contains file paths with #2 mates paired with file paths in fastqInput1. For single-end sequencing files and interleaved paired-end sequencing files(argument interleaved=TRUE), it must be NULL.

tmpdir

Character scalar. The temporary file storage path.

refdir

Character scalar. The path for reference data being installed to and storage.

threads

Integer scalar. The max threads allowed to be created.

adapter1

Character scalar. It is an adapter sequence for file1. For single end data, it is requied.

adapter2

Character scalar. It is an adapter sequence for file2.

interleave

Logical scalar. Set TRUE when files are interleaved paired-end sequencing data.

basicAnalysis

Logical scalar. If it is TRUE, the pipeline will skip the time consuming steps like GO annoation and motif analysis

createReport

Logical scalar. If the HTML report file will be created.

motifs

eitherPFMatrix, PFMatrixList, PWMatrix, PWMatrixList, default: vertebrates motif from JASPAR.

pipelineName

Character scalar. Temporary file prefix for identifying files when multiple pipeline generating file in the same tempdir.

chr

Which chromatin the program will processing. It must be identical with the filename of cut site information files or subset of . Default:c(1:22, "X", "Y").

p.cutoff

p-value cutoff for returning motifs, default: 1e-6.

...

Additional arguments, currently unused.

Details

See packageDescription('esATAC') for package details.

Value

List scalar. It is a list that save the result of the pipeline. Slot "filelist": the input file paths. Slot "wholesummary": a dataframe that for quality control summary Slot "atacProcs": ATACProc-class objects generated by each process in the pipeline. Slot "filtstat": a dataframe that summary the reads filted in each process.

Author(s)

Zheng Wei and Wei Zhang

See Also

printMap, atacPipe2, atacRenamer, atacRemoveAdapter, atacBowtie2Mapping, atacPeakCalling, atacMotifScan, atacRepsPipe, atacRepsPipe2

Examples

## Not run: 
## These codes are time consuming so they will not be run and
## checked by bioconductor checker.


# call pipeline
# for a quick example(only CTCF and BATF3 will be processing)
conclusion <-
  atacPipe(
       # MODIFY: Change these paths to your own case files!
       # e.g. fastqInput1 = "your/own/data/path.fastq"
       fastqInput1 = system.file(package="esATAC", "extdata", "chr20_1.1.fq.gz"),
       fastqInput2 = system.file(package="esATAC", "extdata", "chr20_2.1.fq.gz"),
       # MODIFY: Set the genome for your data
       genome = "hg19",
       motifs = getMotifInfo(motif.file = system.file("extdata", "CustomizedMotif.txt", package="esATAC")))

# call pipeline
# for overall example(all vertebrates motif in JASPAR will be processed)
conclusion <-
  atacPipe(
       # MODIFY: Change these paths to your own case files!
       # e.g. fastqInput1 = "your/own/data/path.fastq"
       fastqInput1 = system.file(package="esATAC", "extdata", "chr20_1.1.fq.gz"),
       fastqInput2 = system.file(package="esATAC", "extdata", "chr20_2.1.fq.gz"),
       # MODIFY: Set the genome for your data
       genome = "hg19")

## End(Not run)

Pipeline for single replicate case-control paired-end sequencing data

Description

The preset pipeline to process case control study sequencing data. An HTML report file, result files(e.g. BED, BAM files) and conclusion list will generated. See detail for usage.

Usage

atacPipe2(
  genome,
  case = list(fastqInput1 = "paths/To/fastq1", fastqInput2 = "paths/To/fastq2",
    adapter1 = NULL, adapter2 = NULL),
  control = list(fastqInput1 = "paths/To/fastq1", fastqInput2 = "paths/To/fastq2",
    adapter1 = NULL, adapter2 = NULL),
  tmpdir = file.path(getwd(), "esATAC-pipeline"),
  refdir = file.path(tmpdir, "refdir"),
  threads = 2,
  interleave = FALSE,
  createReport = TRUE,
  motifs = NULL,
  chr = c(1:22, "X", "Y"),
  p.cutoff = 1e-06,
  ...
)

Arguments

genome

Character scalar. The genome(like hg19, mm10, etc.) reference data in "refdir" to be used in the pipeline.

case

List scalar. Input for case sample. fastqInput1, the path(s) of the mate 1 fastq file(s), is required. fastqInput2, the path(s) of the mate 2 fastq file(s), is required, when interleave=FALSE. adapter1 and adapter2 are optional.

control

List scalar. Input for control sample. fastqInput1, the path(s) of the mate 1 fastq file(s), is required. fastqInput2, the path(s) of the mate 2 fastq file(s), is required, when interleave=FALSE. adapter1 and adapter2 are optional.

tmpdir

Character scalar. The temporary file storage path.

refdir

Character scalar. The path for reference data being installed to and storage.

threads

Integer scalar. The max threads allowed to be created.

interleave

Logical scalar. Set TRUE when files are interleaved paired-end sequencing data.

createReport

Logical scalar. If the HTML report file will be created.

motifs

eitherPFMatrix, PFMatrixList, PWMatrix, PWMatrixList, default: vertebrates motif from JASPAR.

chr

Which chromatin the program will processing. It must be identical with the filename of cut site information files or subset of . Default:c(1:22, "X", "Y").

p.cutoff

p-value cutoff for returning motifs, default: 1e-6.

...

Additional arguments, currently unused.

Details

NOTE: Build bowtie index in this function may take some time. If you already have bowtie2 index files or you want to download(ftp://ftp.ccb.jhu.edu/pub/data/bowtie2_indexes) instead of building, you can let esATAC skip the steps by renaming them following the format (genome+suffix) and put them in reference installation path (refdir). Example: hg19 bowtie2 index files

  • hg19.1.bt2

  • hg19.2.bt2

  • hg19.3.bt2

  • hg19.4.bt2

  • hg19.rev.1.bt2

  • hg19.rev.2.bt2

For single end reads FASTQ files, The required parameters are fastqInput1 and adapter1. For paired end reads non-interleaved FASTQ files (interleave=FALSE,defualt), The required parameters are fastqInput1 and fastqInput2. Otherwise, parameter fastqInput2 is not required (interleave=TRUE)

The paths of sequencing data replicates can be a Character vector. For example:

fastqInput1=c("file_1.rep1.fastq","file_1.rep2.fastq")

fastqInput2=c("file_2.rep1.fastq","file_2.rep2.fastq")

The result will be return by the function. An HTML report file will be created for paired end reads. Intermediate files will be save at tmpdir path (default is ./)

Value

List scalar. It is a list that save the result of the pipeline. Slot "wholesummary": a dataframe for quality control summary of case and control data Slot "caselist" and "ctrlist": Each of them is a list that save the result for case or control data. Slots of "caselist" and "ctrllist": Slot "filelist": the input file paths. Slot "wholesummary": a dataframe for quality control summary of case or control data Slot "atacProcs": ATACProc-class objects generated by each process in the pipeline. Slot "filtstat": a dataframe that summary the reads filted in each process.

Author(s)

Zheng Wei and Wei Zhang

See Also

atacPipe

Examples

## Not run: 
## These codes are time consuming so they will not be run and
## checked by bioconductor checker.


# call pipeline
# for a quick example(only CTCF and BATF3 will be processed)
conclusion <-
   atacPipe2(
       # MODIFY: Change these paths to your own case files!
       # e.g. fastqInput1 = "your/own/data/path.fastq"
       case=list(fastqInput1 = system.file(package="esATAC", "extdata", "chr20_1.1.fq.gz"),
                fastqInput2 = system.file(package="esATAC", "extdata", "chr20_2.1.fq.gz")),
       # MODIFY: Change these paths to your own control files!
       # e.g. fastqInput1 = "your/own/data/path.fastq"
       control=list(fastqInput1 = system.file(package="esATAC", "extdata", "chr20_1.2.fq.bz2"),
                    fastqInput2 = system.file(package="esATAC", "extdata", "chr20_2.2.fq.bz2")),
       # MODIFY: Set the genome for your data
       genome = "hg19",
       motifs = getMotifInfo(motif.file = system.file("extdata", "CustomizedMotif.txt", package="esATAC")))

# call pipeline
# for overall example(all vertebrates motif in JASPAR will be processed)
conclusion <-
   atacPipe2(
       # MODIFY: Change these paths to your own case files!
       # e.g. fastqInput1 = "your/own/data/path.fastq"
       case=list(fastqInput1 = system.file(package="esATAC", "extdata", "chr20_1.1.fq.gz"),
                fastqInput2 = system.file(package="esATAC", "extdata", "chr20_2.1.fq.gz")),
       # MODIFY: Change these paths to your own control files!
       # e.g. fastqInput1 = "your/own/data/path.fastq"
       control=list(fastqInput1 = system.file(package="esATAC", "extdata", "chr20_1.2.fq.bz2"),
                    fastqInput2 = system.file(package="esATAC", "extdata", "chr20_2.2.fq.bz2")),
       # MODIFY: Set the genome for your data
       genome = "hg19")

## End(Not run)

Base class of this package

Description

This class is inherit from Step in pipeFrame package, no more method is extended or override. Please see Step class for detail.


Pipeline for multi-replicates case paired-end sequencing data

Description

The preset pipeline to process multi-replicates case study sequencing data. HTML report files, result files(e.g. BED, BAM files) and conclusion list will generated. See detail for usage.

Usage

atacRepsPipe(
  genome,
  fastqInput1,
  fastqInput2 = NULL,
  refdir = NULL,
  tmpdir = NULL,
  threads = 2,
  adapter1 = NULL,
  adapter2 = NULL,
  interleave = FALSE,
  createReport = TRUE,
  motifs = NULL,
  prefix = NULL,
  chr = c(1:22, "X", "Y"),
  p.cutoff = 1e-06,
  ...
)

Arguments

genome

Character scalar. The genome(like hg19, mm10, etc.) reference data in "refdir" to be used in the pipeline.

fastqInput1

List scalar. For single-end sequencing, it contains sequence file paths. For paired-end sequencing, it can be file paths with #1 mates paired with file paths in fastqInput2 And it can also be interleaved file paths when argument interleaved=TRUE. Each element in the fastqInput1 List is for a replicate It can be a Character vector of FASTQ files paths to be merged.

fastqInput2

List scalar. It contains file paths with #2 mates paired with file paths in fastqInput1. For single-end sequencing files and interleaved paired-end sequencing files(argument interleaved=TRUE), it must be NULL. Each element in the fastqInput1 List is for a replicate It can be a Character vector of FASTQ files paths to be merged.

refdir

Character scalar. The path for reference data being installed to and storage.

tmpdir

Character scalar. The temporary file storage path.

threads

Integer scalar. The max threads allowed to be created.

adapter1

Character scalar. It is an adapter sequence for file1. For single end data, it is requied.

adapter2

Character scalar. It is an adapter sequence for file2.

interleave

Logical scalar. Set TRUE when files are interleaved paired-end sequencing data.

createReport

Logical scalar. If the HTML report file will be created.

motifs

eitherPFMatrix, PFMatrixList, PWMatrix, PWMatrixList, default: vertebrates motif from JASPAR.

prefix

Character scalar. Temporary file prefix for identifying files when multiple pipeline generating file in the same tempdir.

chr

Which chromatin the program will processing. It must be identical with the filename of cut site information files or subset of . Default:c(1:22, "X", "Y").

p.cutoff

p-value cutoff for returning motifs, default: 1e-6.

...

Additional arguments, currently unused.

Value

List scalar. It is a list that save the result of the pipeline. Slot "filelist": the input file paths. Slot "wholesummary": a dataframe that for quality control summary Slot "atacProcs": ATACProc-class objects generated by each process in the pipeline. Slot "filtstat": a dataframe that summary the reads filted in each process.

Author(s)

Zheng Wei and Wei Zhang

See Also

printMap, atacPipe2, atacRenamer, atacRemoveAdapter, atacBowtie2Mapping, atacPeakCalling, atacMotifScan

Examples

## Not run: 
## These codes are time consuming so they will not be run and
## checked by bioconductor checker.


# call pipeline
# for a quick example(only CTCF and BATF3 will be processing)
conclusion <-
  atacRepsPipe(
       # MODIFY: Change these paths to your own case files!
       # e.g. fastqInput1 = "your/own/data/path.fastq"
       fastqInput1 = list(system.file(package="esATAC", "extdata", "chr20_1.1.fq.gz"),
                          system.file(package="esATAC", "extdata", "chr20_1.2.fq.bz2")),
       fastqInput2 = list(system.file(package="esATAC", "extdata", "chr20_2.1.fq.gz"),
                          system.file(package="esATAC", "extdata", "chr20_2.2.fq.bz2")),
       # MODIFY: Set the genome for your data
       genome = "hg19",
       motifs = getMotifInfo(motif.file = system.file("extdata", "CustomizedMotif.txt", package="esATAC")))

# call pipeline
# for overall example(all vertebrates motif in JASPAR will be processed)
conclusion <-
  atacRepsPipe(
       # MODIFY: Change these paths to your own case files!
       # e.g. fastqInput1 = "your/own/data/path.fastq"
       fastqInput1 = list(system.file(package="esATAC", "extdata", "chr20_1.1.fq.gz"),
                          system.file(package="esATAC", "extdata", "chr20_1.2.fq.bz2")),
       fastqInput2 = list(system.file(package="esATAC", "extdata", "chr20_2.1.fq.gz"),
                          system.file(package="esATAC", "extdata", "chr20_2.2.fq.bz2")),
       # MODIFY: Set the genome for your data
       genome = "hg19")

## End(Not run)

Pipeline for multi-replicates case-control paired-end sequencing data

Description

The preset pipeline to process multi-replicates case control study sequencing data. HTML report files, result files(e.g. BED, BAM files) and conclusion list will generated. See detail for usage.

Usage

atacRepsPipe2(
  genome,
  caseFastqInput1,
  caseFastqInput2,
  ctrlFastqInput1,
  ctrlFastqInput2,
  caseAdapter1 = NULL,
  caseAdapter2 = NULL,
  ctrlAdapter1 = NULL,
  ctrlAdapter2 = NULL,
  refdir = NULL,
  tmpdir = NULL,
  threads = 2,
  interleave = FALSE,
  createReport = TRUE,
  motifs = NULL,
  chr = c(1:22, "X", "Y"),
  p.cutoff = 1e-06,
  ...
)

Arguments

genome

Character scalar. The genome(like hg19, mm10, etc.) reference data in "refdir" to be used in the pipeline.

caseFastqInput1

List scalar. Input for case samples. For single-end sequencing, it contains sequence file paths. For paired-end sequencing, it can be file paths with #1 mates paired with file paths in fastqInput2 And it can also be interleaved file paths when argument interleaved=TRUE. Each element in the caseFastqInput1 List is for a replicate It can be a Character vector of FASTQ files paths to be merged.

caseFastqInput2

List scalar. Input for case samples. It contains file paths with #2 mates paired with file paths in caseFastqInput1 For single-end sequencing files and interleaved paired-end sequencing files(argument interleaved=TRUE), it must be NULL. Each element in the caseFastqInput2 List is for a replicate

ctrlFastqInput1

List scalar. Input for control samples. For single-end sequencing, it contains sequence file paths. For paired-end sequencing, it can be file paths with #1 mates paired with file paths in ctrlFastqInput2 And it can also be interleaved file paths when argument interleaved=TRUE. Each element in the ctrlFastqInput1 List is for a replicate It can be a Character vector of FASTQ files paths to be merged.

ctrlFastqInput2

List scalar. Input for control samples. It contains file paths with #2 mates paired with file paths in fastqInput1. For single-end sequencing files and interleaved paired-end sequencing files(argument interleaved=TRUE), it must be NULL. Each element in the ctrlFastqInput1 List is for a replicate

caseAdapter1

Character scalar. Adapter for caseFastqInput1.

caseAdapter2

Character scalar. Adapter for caseFastqInput2.

ctrlAdapter1

Character scalar. Adapter for ctrlFastqInput1.

ctrlAdapter2

Character scalar. Adapter for ctrlFastqInput2.

refdir

Character scalar. The path for reference data being installed to and storage.

tmpdir

Character scalar. The temporary file storage path.

threads

Integer scalar. The max threads allowed to be created.

interleave

Logical scalar. Set TRUE when files are interleaved paired-end sequencing data.

createReport

Logical scalar. If the HTML report file will be created.

motifs

eitherPFMatrix, PFMatrixList, PWMatrix, PWMatrixList, default: vertebrates motif from JASPAR.

chr

Which chromatin the program will processing. It must be identical with the filename of cut site information files or subset of . Default:c(1:22, "X", "Y").

p.cutoff

p-value cutoff for returning motifs, default: 1e-6.

...

Additional arguments, currently unused.

Details

NOTE: Build bowtie index in this function may take some time. If you already have bowtie2 index files or you want to download(ftp://ftp.ccb.jhu.edu/pub/data/bowtie2_indexes) instead of building, you can let esATAC skip the steps by renaming them following the format (genome+suffix) and put them in reference installation path (refdir). Example: hg19 bowtie2 index files

  • hg19.1.bt2

  • hg19.2.bt2

  • hg19.3.bt2

  • hg19.4.bt2

  • hg19.rev.1.bt2

  • hg19.rev.2.bt2

For single end reads FASTQ files, The required parameters are fastqInput1 and adapter1. For paired end reads non-interleaved FASTQ files (interleave=FALSE,defualt), The required parameters are fastqInput1 and fastqInput2. Otherwise, parameter fastqInput2 is not required (interleave=TRUE)

The paths of sequencing data replicates can be a Character vector. For example:

fastqInput1=c("file_1.rep1.fastq","file_1.rep2.fastq")

fastqInput2=c("file_2.rep1.fastq","file_2.rep2.fastq")

The result will be return by the function. An HTML report file will be created for paired end reads. Intermediate files will be save at tmpdir path (default is ./)

Value

List scalar. It is a list that save the result of the pipeline. Slot "caselist" and "ctrlist": Each of them is a list that save the result for case or control data. Slot "comp_result": compare analysis result for case and control data

Author(s)

Zheng Wei and Wei Zhang

See Also

atacPipe

Examples

## Not run: 
## These codes are time consuming so they will not be run and
## checked by bioconductor checker.


# call pipeline
# for a quick example(only CTCF will be processed)
conclusion <-
    atacRepsPipe2(
        # MODIFY: Change these paths to your own case files!
        # e.g. fastqInput1 = "your/own/data/path.fastq"
     caseFastqInput1=list(system.file(package="esATAC", "extdata", "chr20_1.1.fq.gz"),
                          system.file(package="esATAC", "extdata", "chr20_1.1.fq.gz")),
     # MODIFY: Change these paths to your own case files!
     # e.g. fastqInput1 = "your/own/data/path.fastq"
     caseFastqInput2=list(system.file(package="esATAC", "extdata", "chr20_2.1.fq.gz"),
                          system.file(package="esATAC", "extdata", "chr20_2.1.fq.gz")),
     # MODIFY: Change these paths to your own control files!
     # e.g. fastqInput1 = "your/own/data/path.fastq"
     ctrlFastqInput1=list(system.file(package="esATAC", "extdata", "chr20_1.2.fq.bz2"),
                          system.file(package="esATAC", "extdata", "chr20_1.2.fq.bz2")),
     # MODIFY: Change these paths to your own control files!
     # e.g. fastqInput1 = "your/own/data/path.fastq"
     ctrlFastqInput2=list(system.file(package="esATAC", "extdata", "chr20_2.2.fq.bz2"),
                          system.file(package="esATAC", "extdata", "chr20_2.2.fq.bz2")),
     # MODIFY: Set the genome for your data
     genome = "hg19",
     motifs = getMotifInfo(motif.file = system.file("extdata", "CustomizedMotif.txt", package="esATAC")))


# call pipeline
# for overall example(all human motif in JASPAR will be processed)
conclusion <-
    atacRepsPipe2(
        # MODIFY: Change these paths to your own case files!
        # e.g. fastqInput1 = "your/own/data/path.fastq"
     caseFastqInput1=list(system.file(package="esATAC", "extdata", "chr20_1.1.fq.gz"),
                          system.file(package="esATAC", "extdata", "chr20_1.1.fq.gz")),
     # MODIFY: Change these paths to your own case files!
     # e.g. fastqInput1 = "your/own/data/path.fastq"
     caseFastqInput2=list(system.file(package="esATAC", "extdata", "chr20_2.1.fq.gz"),
                          system.file(package="esATAC", "extdata", "chr20_2.1.fq.gz")),
     # MODIFY: Change these paths to your own control files!
     # e.g. fastqInput1 = "your/own/data/path.fastq"
     ctrlFastqInput1=list(system.file(package="esATAC", "extdata", "chr20_1.2.fq.bz2"),
                          system.file(package="esATAC", "extdata", "chr20_1.2.fq.bz2")),
     # MODIFY: Change these paths to your own control files!
     # e.g. fastqInput1 = "your/own/data/path.fastq"
     ctrlFastqInput2=list(system.file(package="esATAC", "extdata", "chr20_2.2.fq.bz2"),
                          system.file(package="esATAC", "extdata", "chr20_2.2.fq.bz2")),
     # MODIFY: Set the genome for your data
     genome = "hg19"
     )

## End(Not run)

Convert bam format to bed format.

Description

This function is used to convert SAM file to BED file and merge interleave paired end reads, shift reads, filter reads according to chromosome, filter reads according to fragment size, sort, remove duplicates reads before generating BED file.

Usage

atacBam2Bed(
  atacProc,
  bamInput = NULL,
  bedOutput = NULL,
  reportOutput = NULL,
  bsgenome = NULL,
  mergePairIntoFrag = c("auto", "yes", "no"),
  posOffset = +4,
  negOffset = -5,
  chrFilterList = "chrM|_",
  sortBed = TRUE,
  rmMultiMap = TRUE,
  minFragLen = 0,
  maxFragLen = 2000,
  saveExtLen = FALSE,
  uniqueBed = c("auto", "yes", "no"),
  ...
)

## S4 method for signature 'ATACProc'
atacBam2Bed(
  atacProc,
  bamInput = NULL,
  bedOutput = NULL,
  reportOutput = NULL,
  bsgenome = NULL,
  mergePairIntoFrag = c("auto", "yes", "no"),
  posOffset = +4,
  negOffset = -5,
  chrFilterList = "chrM|_",
  sortBed = TRUE,
  rmMultiMap = TRUE,
  minFragLen = 0,
  maxFragLen = 2000,
  saveExtLen = FALSE,
  uniqueBed = c("auto", "yes", "no"),
  ...
)

bam2bed(
  bamInput,
  bedOutput = NULL,
  reportOutput = NULL,
  bsgenome = NULL,
  mergePairIntoFrag = c("auto", "yes", "no"),
  posOffset = +4,
  negOffset = -5,
  chrFilterList = "chrM|_",
  sortBed = TRUE,
  rmMultiMap = TRUE,
  minFragLen = 0,
  maxFragLen = 2000,
  saveExtLen = FALSE,
  uniqueBed = c("auto", "yes", "no"),
  ...
)

Arguments

atacProc

ATACProc-class object scalar. It has to be the return value of upstream process: atacBamSort, atacSam2Bam.

bamInput

Character scalar. Bam file input path.

bedOutput

Character scalar. Bed file output path. If ignored, bed file will be put in the same path as the bam file.

reportOutput

Character scalar. Report file path.

bsgenome

BSgenome object. This object from bioconductor

mergePairIntoFrag

Logical scalar Merge paired end reads.

posOffset

Integer scalar The offset that positive strand reads will shift.

negOffset

Integer scalar The offset that negative strand reads will shift.

chrFilterList

Character vector The chromatin(or regex of chromatin) will be discard

sortBed

Logical scalar Sort bed file in the order of chromatin, start, end

rmMultiMap

Logical scalar. Remove multi-map reads.

minFragLen

Integer scalar The minimum fragment size will be retained.

maxFragLen

Integer scalar The maximum fragment size will be retained.

saveExtLen

Logical scaler. Save the fragment that are not in the range of minFragLen and maxFragLen

uniqueBed

Logical scalar Remove duplicates reads in bed if TRUE. default: FALSE

...

Additional arguments, currently unused.

Details

The bam file wiil be automatically obtained from object(atacProc) or input by hand. Output can be ignored.

Value

An invisible ATACProc-class object scalar for downstream analysis.

Author(s)

Zheng Wei, Wei Zhang

See Also

atacBamSort atacSam2Bam

Examples

library(Rsamtools)
# change dataset !!
# ex1_file <- system.file("extdata", "ex1.bam", package="Rsamtools")
# bam2bed(bamInput = ex1_file)

generate BigWig file from BED file

Description

This function is used to generate BigWig file from BED reads file. The BigWig file can be shown reads coverage on genome browser.

Usage

atacBedToBigWig(
  atacProc,
  bedInput = NULL,
  bsgenome = NULL,
  bwOutput = NULL,
  toWig = FALSE,
  ...
)

## S4 method for signature 'ATACProc'
atacBedToBigWig(
  atacProc,
  bedInput = NULL,
  bsgenome = NULL,
  bwOutput = NULL,
  toWig = FALSE,
  ...
)

bedToBigWig(bedInput, bsgenome = NULL, bwOutput = NULL, toWig = FALSE, ...)

Arguments

atacProc

ATACProc-class object scalar. It has to be the return value of upstream process: atacSamToBed, atacBedUtils.

bedInput

Character scalar. Bed file input path.

bsgenome

BSGenome object scalar. BSGenome object for specific species.

bwOutput

Character scalar. BigWig file output path.

toWig

Logical scalar.

...

Additional arguments, currently unused. Save as wig file instead of binary BigWig file

Details

The parameter related to input and output file path will be automatically obtained from ATACProc-class object(atacProc) or generated based on known parameters if their values are default(e.g. NULL). Otherwise, the generated values will be overwrited. If you want to use this function independently, you can use bedToBigWig instead.

Value

An invisible ATACProc-class object scalar for downstream analysis.

Author(s)

Zheng Wei

See Also

atacSamToBed samToBed atacBedUtils bedUtils

Examples

library(R.utils)
td <- tempdir()
setTmpDir(td)

bedbzfile <- system.file(package="esATAC", "extdata", "chr20.50000.bed.bz2")
bedfile <- file.path(td,"chr20.50000.bed")
## Not run: 
bunzip2(bedbzfile,destname=bedfile,overwrite=TRUE,remove=FALSE)

library(BSgenome.Hsapiens.UCSC.hg19)
bedToBigWig(bedfile, BSgenome.Hsapiens.UCSC.hg19)

dir(td)

## End(Not run)

process bed file with limit memory

Description

This function is used to merge interleave paired end reads in bed, downsample bed reads, shift bed reads, filter bed reads according to chromosome, filter bed reads according to fragment size, sort bed, remove duplicates reads in bed.

Usage

atacBedUtils(
  atacProc,
  bedInput = NULL,
  bedOutput = NULL,
  mergePair = FALSE,
  downSample = NULL,
  posOffset = 0L,
  negOffset = 0L,
  chrFilterList = c("chrM"),
  select = FALSE,
  sortBed = FALSE,
  uniqueBed = FALSE,
  minFragLen = 0,
  maxFragLen = 2e+09,
  newStepType = "BedUtils",
  ...
)

## S4 method for signature 'ATACProc'
atacBedUtils(
  atacProc,
  bedInput = NULL,
  bedOutput = NULL,
  mergePair = FALSE,
  downSample = NULL,
  posOffset = 0L,
  negOffset = 0L,
  chrFilterList = c("chrM"),
  select = FALSE,
  sortBed = FALSE,
  uniqueBed = FALSE,
  minFragLen = 0,
  maxFragLen = 2e+09,
  newStepType = "BedUtils",
  ...
)

bedUtils(
  bedInput,
  bedOutput = NULL,
  mergePair = FALSE,
  downSample = NULL,
  reportOutput = NULL,
  posOffset = 0L,
  negOffset = 0L,
  chrFilterList = c("chrM"),
  select = FALSE,
  sortBed = FALSE,
  uniqueBed = FALSE,
  minFragLen = 0,
  maxFragLen = 2e+09,
  newStepType = "BedUtils",
  ...
)

Arguments

atacProc

ATACProc-class object scalar. It has to be the return value of upstream process: atacBam2Bed bam2bed atacSamToBed samToBed

bedInput

Character scalar. Bed file input path.

bedOutput

Character scalar. Bed file output path.

mergePair

Logical scalar Merge paired end interleave reads.

downSample

Integer scalar Down sample reads if the number is less than total number

posOffset

Integer scalar The offset that positive strand reads will shift.

negOffset

Integer scalar The offset that negative strand reads will shift.

chrFilterList

Character vector The chromatin(or regex of chromatin) will be retain/discard if select is TRUE/FALSE

select

Logical scalar The chromatin in chrFilterList will be retain if TRUE. default: FALSE

sortBed

Logical scalar Sort bed file in the order of chromatin, start, end

uniqueBed

Logical scalar Remove duplicates reads in bed if TRUE. default: FALSE

minFragLen

Integer scalar The minimum fragment size will be retained.

maxFragLen

Integer scalar The maximum fragment size will be retained.

newStepType

Character scalar. New step type name for different default parameters.

...

Additional arguments, currently unused.

reportOutput

Character scalar. Report output file path.

Details

The parameter related to input and output file path will be automatically obtained from ATACProc-class object(atacProc) or generated based on known parameters if their values are default(e.g. NULL). Otherwise, the generated values will be overwrited. If you want to use this function independently, you can use bedUtils instead.

Value

An invisible ATACProc-class object scalar for downstream analysis.

Author(s)

Zheng Wei

See Also

atacBam2Bed bam2bed atacSamToBed samToBed atacFragLenDistr atacExtractCutSite atacPeakCalling atacTSSQC atacBedToBigWig

Examples

library(R.utils)
library(magrittr)
td <- tempdir()
setTmpDir(td)

sambzfile <- system.file(package="esATAC", "extdata", "Example.sam.bz2")
samfile <- file.path(td,"Example.sam")
bunzip2(sambzfile,destname=samfile,overwrite=TRUE,remove=FALSE)
atacproc<-samToBed(samInput = samfile) %>%
atacBedUtils(maxFragLen = 100, chrFilterList = NULL)

Use bowtie2 aligner to map reads to reference genome

Description

Use bowtie2 aligner to map reads to reference genome

Usage

atacBowtie2Mapping(
  atacProc,
  samOutput = NULL,
  reportOutput = NULL,
  bt2Idx = NULL,
  fastqInput1 = NULL,
  fastqInput2 = NULL,
  interleave = FALSE,
  threads = getThreads(),
  paramList = "--no-discordant --no-unal --no-mixed -X 2000",
  ...
)

## S4 method for signature 'ATACProc'
atacBowtie2Mapping(
  atacProc,
  samOutput = NULL,
  reportOutput = NULL,
  bt2Idx = NULL,
  fastqInput1 = NULL,
  fastqInput2 = NULL,
  interleave = FALSE,
  threads = getThreads(),
  paramList = "--no-discordant --no-unal --no-mixed -X 2000",
  ...
)

bowtie2Mapping(
  fastqInput1,
  fastqInput2 = NULL,
  samOutput = NULL,
  reportOutput = NULL,
  bt2Idx = NULL,
  interleave = FALSE,
  threads = getThreads(),
  paramList = "--no-discordant --no-unal --no-mixed -X 2000",
  ...
)

Arguments

atacProc

ATACProc-class object scalar. It has to be the return value of upstream process: atacRemoveAdapter removeAdapter

samOutput

Character scalar. A path to a SAM file used for the alignment output.

reportOutput

Character scalar. The prefix of report files path.

bt2Idx

Character scalar. bowtie2 index files prefix: 'dir/basename' (minus trailing '.*.bt2' of 'dir/basename.*.bt2').

fastqInput1

Character vector. For single-end sequencing, it contains sequence file paths. For paired-end sequencing, it can be file paths with #1 mates paired with file paths in fastqInput2. And it can also be interleaved file paths when argument interleaved=TRUE

fastqInput2

Character vector. It contains file paths with #2 mates paired with file paths in fastqInput1. For single-end sequencing files and interleaved paired-end sequencing files(argument interleaved=TRUE), it must be NULL.

interleave

Logical. Set TRUE when files are interleaved paired-end sequencing data.

threads

Integer scalar. The threads will be created in this process. default: getThreads()

paramList

Additional arguments to be passed on to the binaries. See below for details.

...

Additional arguments, currently unused.

Details

The parameter related to input and output file path will be automatically obtained from ATACProc-class object(atacProc) or generated based on known parameters if their values are default(e.g. NULL). Otherwise, the generated values will be overwrited. If you want to use this function independently, you can use bowtie2Mapping instead. additional parameters to be passed on to bowtie2. You can put all aditional arguments in one Character(e.g. "–threads 8 –no-mixed") with white space splited just like command line, or put them as Character vector (e.g. c("–threads","8","–no-mixed")). Note that some arguments("-x","–interleaved","-U","-1","-2","-S","threads") to the bowtie2 are invalid if they are already handled as explicit function arguments. See the output of bowtie2_usage() for details about available parameters.

Value

An invisible ATACProc-class object scalar for downstream analysis.

Author(s)

Zheng Wei

See Also

atacRemoveAdapter removeAdapter bowtie2 bowtie2_build bowtie2_usage atacSam2Bam atacSamToBed atacLibComplexQC

Examples

td <- tempdir()
setTmpDir(td)

## Building a bowtie2 index
library("Rbowtie2")
refs <- dir(system.file(package="esATAC", "extdata", "bt2","refs"),
full=TRUE)
bowtie2_build(references=refs, bt2Index=file.path(td, "lambda_virus"),
"--threads 4 --quiet",overwrite=TRUE)
## Alignments
reads_1 <- system.file(package="esATAC", "extdata", "bt2", "reads",
"reads_1.fastq")
reads_2 <- system.file(package="esATAC", "extdata", "bt2", "reads",
"reads_2.fastq")
if(file.exists(file.path(td, "lambda_virus.1.bt2"))){
    (bowtie2Mapping(bt2Idx = file.path(td, "lambda_virus"),
       samOutput = file.path(td, "result.sam"),
       fastqInput1=reads_1,fastqInput2=reads_2,threads=3))
    head(readLines(file.path(td, "result.sam")))
}

Count cut site number in given motif region and plot footprint.

Description

This function is used to count cut site number in given motif regions and plot footprint. Multi-motif is supported. NOTE: The input parameter is a a little bit complex, atacExtractCutSite and atacMotifScan is recommended to use which makes the entire procedure easier.

Usage

atacCutSiteCount(
  atacProcCutSite,
  atacProcMotifScan = NULL,
  csInput = NULL,
  motif_info = NULL,
  chr = c(1:22, "X", "Y"),
  matrixOutput = NULL,
  strandLength = 100,
  FootPrint = TRUE,
  prefix = NULL,
  ...
)

## S4 method for signature 'ATACProc'
atacCutSiteCount(
  atacProcCutSite,
  atacProcMotifScan = NULL,
  csInput = NULL,
  motif_info = NULL,
  chr = c(1:22, "X", "Y"),
  matrixOutput = NULL,
  strandLength = 100,
  FootPrint = TRUE,
  prefix = NULL,
  ...
)

cutsitecount(
  csInput = NULL,
  motif_info = NULL,
  chr = c(1:22, "X", "Y"),
  matrixOutput = NULL,
  strandLength = 100,
  FootPrint = TRUE,
  prefix = NULL,
  ...
)

Arguments

atacProcCutSite

ATACProc-class object scalar. It has to be the return value of upstream process: atacExtractCutSite.

atacProcMotifScan

ATACProc-class object scalar. It has to be the return value of upstream process: atacMotifScan.

csInput

Your cut site information file(from atacExtractCutSite function, separated by chromatin name and all cut site are sorted) path with prefix. e.g. "/your_cut_site_information_path/prefix".

motif_info

A rds file from function atacMotifScan. In the rds file, it saves 3 column information(motif, motif exact position information file path and motif length).

chr

Which chromatin the program will processing. It must be identical with the filename of cut site information files or subset of . Default:c(1:22, "X", "Y").

matrixOutput

The output directory, where to save your cut site count of every motif position. an empty folder would be great. Default:tmpdir/Footprint

strandLength

How many bp(base pair) do you want to count up/downstream of the motif. default:100.

FootPrint

TRUE or FALSE, plot footprint or not.

prefix

prefix for the pdf file.

...

Additional arguments, currently unused.

Details

The parameter is simplified because of too many input file. parameter atacProcCutSite and atacProcMotifScan contains all input information so function atacExtractCutSite and atacMotifScan is recommended to use together. For instance, if you want footprint of 3 TFs (transcription factor) of human in chr1-22, X, Y, then you need 24 chromatin cut site files, 3 motif position files as well as 3 integers of the motif. Function atacExtractCutSite and atacMotifScan will do all this, you just specify which motif you want. Therefore, atacExtractCutSite and atacMotifScan is recommended to use together.

Value

An invisible ATACProc-class object scalar.

Author(s)

Wei Zhang

See Also

atacExtractCutSite atacMotifScan

Examples

library(R.utils)
library(BSgenome.Hsapiens.UCSC.hg19)
## processing bed file
fra_path <- system.file("extdata", "chr20.50000.bed.bz2", package="esATAC")
frag <- as.vector(bunzip2(filename = fra_path,
destname = file.path(getwd(), "chr20.50000.bed"),
ext="bz2", FUN=bzfile, overwrite=TRUE, remove = FALSE))
cs.data <- extractcutsite(bedInput = frag, prefix = "ATAC")

## find motif position
p1bz <- system.file("extdata", "Example_peak1.bed.bz2", package="esATAC")
peak1_path <- as.vector(bunzip2(filename = p1bz,
destname = file.path(getwd(), "Example_peak1.bed"),
ext="bz2", FUN = bzfile, overwrite=TRUE, remove = FALSE))
# motif <- readRDS(system.file("extdata", "MotifPFM.rds", package="esATAC"))
# motif.data <- motifscan(peak = peak1_path, genome = BSgenome.Hsapiens.UCSC.hg19, motifs = motif)

## plot footprint
# atacCutSiteCount(atacProcCutSite = cs.data, atacProcMotifScan = motif.data)

Extract ATAC-seq cutting site from bed file.

Description

Extract cutting site from ATAC-seq fangment bed file (from atacSamToBed).

Usage

atacExtractCutSite(
  atacProc,
  bedInput = NULL,
  csOutput.dir = NULL,
  prefix = NULL,
  ...
)

## S4 method for signature 'ATACProc'
atacExtractCutSite(
  atacProc,
  bedInput = NULL,
  csOutput.dir = NULL,
  prefix = NULL,
  ...
)

extractcutsite(bedInput, csOutput.dir = NULL, prefix = NULL, ...)

Arguments

atacProc

ATACProc-class object scalar. It has to be the return value of upstream process: atacSamToBed.

bedInput

Character scalar. Input bed file path, must be merged bed file(a line is a fragment). The input file should be UCSC bed format(0-based).

csOutput.dir

Character scalar. The output path, an empty folder would be great. Default: a folder in the same path as input bed file.

prefix

Character scalar. Output file name prefix, e.g. prefix_chr*.bed, default "Cutsite".

...

Additional arguments, currently unused.

Details

In ATAC-seq data, every line in merged bed file (from atacSamToBed, the first 3 column is chr, start, end) means a DNA fragment, the cutting site is start+1 and end, this function extract and sort this information for the next step (atacCutSiteCount).

Value

An invisible ATACProc-class object scalar for downstream analysis.

Author(s)

Wei Zhang

See Also

atacCutSiteCount

Examples

library(R.utils)
fra_path <- system.file("extdata", "chr20.50000.bed.bz2", package="esATAC")
frag <- as.vector(bunzip2(filename = fra_path,
destname = file.path(getwd(), "chr20.50000.bed"),
ext="bz2", FUN=bzfile, overwrite=TRUE, remove = FALSE))
extractcutsite(bedInput = frag, prefix = "ATAC")

Quality control for ATAC-seq data.

Description

Generate quality control plots from fastq of ATAC-seq data.

Usage

atacQCReport(atacProc, input_file = NULL, output_file = NULL, ...)

## S4 method for signature 'ATACProc'
atacQCReport(atacProc, input_file = NULL, output_file = NULL, ...)

qcreport(input_file, output_file = NULL, ...)

Arguments

atacProc

ATACProc-class object scalar. It has to be the return value of upstream process: atacUnzipAndMerge, atacRenamer

input_file

Character scalar. Input file path. One or more(vector) fastq file path.

output_file

Character scalar. output file path. Defult:"input_file_QC.pdf" in the same folder as your input file.

...

Additional arguments, currently unused.

Details

Every highthroughput sequencing need quality control analysis, this function provide QC for ATAC-seq, such as GC content.

Value

An invisible ATACProc-class object scalar for downstream analysis.

Author(s)

Wei Zhang

See Also

atacUnzipAndMerge, atacRenamer

Examples

library(R.utils)
fra_path <- system.file("extdata", "chr20_1.2.fq.bz2", package="esATAC")
fq1 <- as.vector(bunzip2(filename = fra_path,
destname = file.path(getwd(), "chr20_1.fq"),
ext="bz2", FUN=bzfile, overwrite=TRUE, remove = FALSE))
fra_path <- system.file("extdata", "chr20_2.2.fq.bz2", package="esATAC")
fq2 <- as.vector(bunzip2(filename = fra_path,
destname = file.path(getwd(), "chr20_2.fq"),
ext="bz2", FUN=bzfile, overwrite=TRUE, remove = FALSE))
## Not run: 
qcreport(input_file = c(fq1, fq2))

## End(Not run)

Use AdapterRemoval to identify adapters

Description

Use AdapterRemoval to identify adapters for paired end data

Usage

atacFindAdapter(
  atacProc,
  fastqInput1 = NULL,
  fastqInput2 = NULL,
  reportPrefix = NULL,
  interleave = FALSE,
  findParamList = NULL,
  threads = getThreads(),
  ...
)

## S4 method for signature 'ATACProc'
atacFindAdapter(
  atacProc,
  fastqInput1 = NULL,
  fastqInput2 = NULL,
  reportPrefix = NULL,
  interleave = FALSE,
  findParamList = NULL,
  threads = getThreads(),
  ...
)

findAdapter(
  fastqInput1,
  fastqInput2 = NULL,
  reportPrefix = NULL,
  interleave = FALSE,
  findParamList = NULL,
  threads = getThreads(),
  ...
)

Arguments

atacProc

ATACProc-class object scalar. It has to be the return value of upstream process: atacRenamer renamer atacUnzipAndMerge unzipAndMerge

fastqInput1

Character vector. For single-end sequencing, it contains sequence file paths. For paired-end sequencing, it can be file paths with #1 mates paired with file paths in fastqInput2 And it can also be interleaved file paths when argument interleaved=TRUE

fastqInput2

Character vector. It contains file paths with #2 mates paired with file paths in fastqInput1 For single-end sequencing files and interleaved paired-end sequencing files(argument interleaved=TRUE), it must be NULL.

reportPrefix

Character. The prefix of report files path. Default: generate from known parameters

interleave

Logical. Set TRUE when files are interleaved paired-end sequencing data.

findParamList

Additional arguments to be passed on to the binaries for identifying adapter. See below for details.

threads

The number of threads used in this step.

...

Additional arguments, currently unused.

Details

The parameter related to input and output file path will be automatically obtained from ATACProc-class object or generated based on known parameters if their values are default(e.g. NULL). Otherwise, the generated values will be overwrited. If you want to use this function independently, you can use findAdapter instead. You can put all aditional arguments in one Character(e.g. "–threads 8") with white space splited just like command line, or put them in Character vector(e.g. c("–threads","8")). Note that some arguments( "–file1","–file2","–adapter1","–adapter2","–output1","–output2", "–basename","–interleaved","thread") to the findParamList are invalid if they are already handled as explicit function arguments. See the output of adapterremoval_usage() for details about available parameters.

Value

An invisible ATACProc-class object scalar for downstream analysis.

Author(s)

Zheng Wei

See Also

atacRenamer renamer atacUnzipAndMerge unzipAndMerge atacBowtie2Mapping

Examples

library(magrittr)
td <- tempdir()
setTmpDir(td)

# Identify adapters
prefix<-system.file(package="esATAC", "extdata", "uzmg")
(reads_1 <-file.path(prefix,"m1",dir(file.path(prefix,"m1"))))
(reads_2 <-file.path(prefix,"m2",dir(file.path(prefix,"m2"))))

reads_merged_1 <- file.path(td,"reads1.fastq")
reads_merged_2 <- file.path(td,"reads2.fastq")
atacproc <-
atacUnzipAndMerge(fastqInput1 = reads_1,fastqInput2 = reads_2) %>%
atacRenamer %>% atacFindAdapter

dir(td)

Quality control for fragment length distribution

Description

These functions are used to generate fragment distribution plot. The fourier transform of fragment distribution will be calculated. Strength distribution around period at 10.4bp and 180bp will be shown in another two plots.

Usage

atacFragLenDistr(atacProc, reportPrefix = NULL, bedInput = NULL, ...)

## S4 method for signature 'ATACProc'
atacFragLenDistr(atacProc, reportPrefix = NULL, bedInput = NULL, ...)

fragLenDistr(bedInput, reportPrefix = NULL, ...)

Arguments

atacProc

ATACProc-class object scalar. It has to be the return value of upstream process: atacSamToBed samToBed atacBedUtils bedUtils

reportPrefix

Character scalar. The prefix of report files path.

bedInput

Character scalar. BED file input path.

...

Additional arguments, currently unused.

Details

The parameter related to input and output file path will be automatically obtained from ATACProc-class object(atacProc) or generated based on known parameters if their values are default(e.g. NULL). Otherwise, the generated values will be overwrited. If you want to use this function independently, you can use fragLenDistr instead.

Value

An invisible ATACProc-class object scalar for downstream analysis.

Author(s)

Zheng Wei

See Also

atacSamToBed samToBed atacBedUtils bedUtils

Examples

library(R.utils)
td <- tempdir()
setTmpDir(td)

bedbzfile <- system.file(package="esATAC", "extdata", "chr20.50000.bed.bz2")
bedfile <- file.path(td,"chr20.50000.bed")
## Not run: 
bunzip2(bedbzfile,destname=bedfile,overwrite=TRUE,remove=FALSE)
fragLenDistr(bedfile)

## End(Not run)

dir(td)

Quality control for fraction of reads in peaks (FRiP)

Description

Calculate the fraction of reads falling within peak regions

Usage

atacFripQC(
  atacProc,
  atacProcPeak = NULL,
  bsgenome = NULL,
  reportOutput = NULL,
  readsBedInput = NULL,
  peakBedInput = NULL,
  ...
)

## S4 method for signature 'ATACProc'
atacFripQC(
  atacProc,
  atacProcPeak = NULL,
  bsgenome = NULL,
  reportOutput = NULL,
  readsBedInput = NULL,
  peakBedInput = NULL,
  ...
)

fripQC(readsBedInput, peakBedInput, bsgenome = NULL, reportOutput = NULL, ...)

Arguments

atacProc

ATACProc-class object scalar. It has to be the return value of upstream process: atacSamToBed samToBed atacBedUtils bedUtils

atacProcPeak

ATACProc-class object scalar. It has to be the return value of upstream process: atacPeakCalling, peakCalling.

bsgenome

BSGenome object scalar. BSGenome object for specific species.

reportOutput

Character scalar. The report file path

readsBedInput

Character scalar. Reads BED file for peak calling.

peakBedInput

Character scalar. Peaks BED file

...

Additional arguments, currently unused.

Details

The parameter related to input and output file path will be automatically obtained from ATACProc-class object(atacProc) or generated based on known parameters if their values are default(e.g. NULL). Otherwise, the generated values will be overwrited. If you want to use this function independently, or you can use fripQC instead.

Value

An invisible fripQC object scalar for downstream analysis.

Author(s)

Zheng Wei

See Also

atacSamToBed atacBedUtils

Examples

library(R.utils)
library(BSgenome.Hsapiens.UCSC.hg19)
library(magrittr)
td <- tempdir()
setTmpDir(td)

bedbzfile <- system.file(package="esATAC", "extdata", "chr20.50000.bed.bz2")
bedfile <- file.path(td,"chr20.50000.bed")
bunzip2(bedbzfile,destname=bedfile,overwrite=TRUE,remove=FALSE)

bedUtils(bedInput = bedfile,maxFragLen = 100, chrFilterList = NULL)  %>%
atacPeakCalling %>% atacFripQC(bsgenome=BSgenome.Hsapiens.UCSC.hg19)


dir(td)

Generate PFMatrix or PFMatrixList from file.

Description

atacMotifScan and atacMotifScanPair accept PFM in a list, this function convert JASPAR PFM file to PFMatrix or PFMatrixList.

Usage

getMotifInfo(motif.file = NULL)

Arguments

motif.file

Motif PFM file downloaded from JASPAR.

Details

Generate PFMatrix or PFMatrixList.

Value

PFMatrix or PFMatrixList.

Author(s)

Wei Zhang

Examples

motif_file <- system.file("extdata", "CustomizedMotif.txt", package="esATAC")
pfm <- getMotifInfo(motif.file = motif_file)

Quality control for library complexity

Description

The function calculate the nonredundant fraction of reads (NRF). Its definition is number of distinct uniquely mapping reads (i.e. after removing duplicates) / Total number of reads. The function also Calculate PCR Bottlenecking Coefficient 1 (PBC1) and PCR Bottlenecking Coefficient 2 (PBC2). PBC1=M1/M_DISTINCT and PBC2=M1/M2, where M1: number of genomic locations where exactly one read maps uniquely, M2: number of genomic locations where two reads map uniquely M_DISTINCT: number of distinct genomic locations to which some read maps uniquely.

Usage

atacLibComplexQC(
  atacProc,
  reportOutput = NULL,
  samInput = NULL,
  singleEnd = FALSE,
  subsampleSize = Inf,
  ...
)

## S4 method for signature 'ATACProc'
atacLibComplexQC(
  atacProc,
  reportOutput = NULL,
  samInput = NULL,
  singleEnd = FALSE,
  subsampleSize = Inf,
  ...
)

libComplexQC(
  samInput,
  reportOutput = NULL,
  singleEnd = FALSE,
  subsampleSize = Inf,
  ...
)

Arguments

atacProc

ATACProc-class object scalar. It has to be the return value of upstream process: atacBowtie2Mapping bowtie2Mapping

reportOutput

Character scalar. The report file path

samInput

Character scalar. The SAM file input path.

singleEnd

Character scalar. Single end data if TRUE. Paired end data if FALSE.

subsampleSize

Integer scalar. Down sample reads if the number is less than total number when subsample is TRUE

...

Additional arguments, currently unused.

Details

The parameter related to input and output file path will be automatically obtained from ATACProc-class object(atacProc) or generated based on known parameters if their values are default(e.g. NULL). Otherwise, the generated values will be overwrited. If you want to use this function independently, you can use libComplexQC instead.

Value

An invisible libComplexQC object scalar for downstream analysis.

Author(s)

Zheng Wei

See Also

atacBowtie2Mapping bowtie2Mapping

Examples

library(R.utils)
td <- tempdir()
setTmpDir(td)

sambzfile <- system.file(package="esATAC", "extdata", "Example.sam.bz2")
samfile <- file.path(td,"Example.sam")
bunzip2(sambzfile,destname=samfile,overwrite=TRUE,remove=FALSE)
atacproc<-libComplexQC(samInput = samfile)

Use F-seq to call peak

Description

Use F-seq to call peak

Usage

atacPeakCalling(
  atacProc,
  bedInput = NULL,
  background = NULL,
  genomicReadsCount = NULL,
  fragmentSize = 0,
  featureLength = NULL,
  bedOutput = NULL,
  ploidyDir = NULL,
  fileformat = c("bed", "wig", "npf"),
  wiggleTrackStep = NULL,
  threshold = NULL,
  verbose = TRUE,
  wgThresholdSet = NULL,
  ...
)

## S4 method for signature 'ATACProc'
atacPeakCalling(
  atacProc,
  bedInput = NULL,
  background = NULL,
  genomicReadsCount = NULL,
  fragmentSize = 0,
  featureLength = NULL,
  bedOutput = NULL,
  ploidyDir = NULL,
  fileformat = c("bed", "wig", "npf"),
  wiggleTrackStep = NULL,
  threshold = NULL,
  verbose = TRUE,
  wgThresholdSet = NULL,
  ...
)

peakCalling(
  bedInput,
  background = NULL,
  genomicReadsCount = NULL,
  fragmentSize = 0,
  featureLength = NULL,
  bedOutput = NULL,
  ploidyDir = NULL,
  fileformat = c("bed", "wig", "npf"),
  wiggleTrackStep = NULL,
  threshold = NULL,
  verbose = TRUE,
  wgThresholdSet = NULL,
  ...
)

Arguments

atacProc

ATACProc-class object scalar. It has to be the return value of upstream process: atacSamToBed, atacBedUtils.

bedInput

Character scalar. BED file input path.

background

Character scalar. background directory default: NULL (none)

genomicReadsCount

Integer scalar. genomic count of sequence reads. default: NULL (calculated)

fragmentSize

Integer scalar. fragment size. set NULL to estimat from data. default:0

featureLength

Character scalar. feature length default: NULL (600)

bedOutput

Character scalar. the output bed file path

ploidyDir

Character scalar. ploidy/input directory. default: NULL

fileformat

Character scalar. File format of result. default: bed

wiggleTrackStep

Integer scalar. wiggle track step default: NULL (1)

threshold

Numeric scalar. threshold (standard deviations) default: NULL (4.0)

verbose

Logical scalar. verbose output if TRUE.

wgThresholdSet

Character scalar. wg threshold set default: NULL (calculated)

...

Additional arguments, currently unused.

Details

The parameter related to input and output file path will be automatically obtained from ATACProc-class object(atacProc) or generated based on known parameters if their values are default(e.g. NULL). Otherwise, the generated values will be overwrited. If you want to use this function independently, you can use peakCalling instead.

Value

An invisible ATACProc-class object scalar for downstream analysis.

Author(s)

Zheng Wei

See Also

atacSamToBed samToBed atacBedUtils bedUtils

Examples

library(R.utils)
library(magrittr)
td <- tempdir()
setTmpDir(td)

bedbzfile <- system.file(package="esATAC", "extdata", "chr20.50000.bed.bz2")
bedfile <- file.path(td,"chr20.50000.bed")
bunzip2(bedbzfile,destname=bedfile,overwrite=TRUE,remove=FALSE)

bedUtils(bedInput = bedfile,maxFragLen = 100, chrFilterList = NULL) %>%
atacPeakCalling

dir(td)

Use MACS2 to call peak

Description

Use MACS2 installed by to call peak

Usage

atacPeakCallingMACS2(
  atacProc,
  bedInput = NULL,
  background = NULL,
  outputPrefix = NULL,
  genomeSize = NULL,
  pvalueThreshold = 0.01,
  extsize = 150,
  shift = -round(extsize/2),
  ...
)

## S4 method for signature 'ATACProc'
atacPeakCallingMACS2(
  atacProc,
  bedInput = NULL,
  background = NULL,
  outputPrefix = NULL,
  genomeSize = NULL,
  pvalueThreshold = 0.01,
  extsize = 150,
  shift = -round(extsize/2),
  ...
)

peakCallingMACS2(
  bedInput,
  background = NULL,
  outputPrefix = NULL,
  genomeSize = NULL,
  pvalueThreshold = 0.01,
  extsize = 150,
  shift = -round(extsize/2),
  ...
)

testPeakCallingMACS2()

Arguments

atacProc

ATACProc-class object scalar. It has to be the return value of upstream process: atacSamToBed, atacBedUtils.

bedInput

Character scalar. BED file input path.

background

Character scalar. background directory default: NULL (none)

outputPrefix

Character scalar. the output bed file path

extsize

Logical scalar. verbose output if TRUE.

shift

Character scalar. wg threshold set default: NULL (calculated)

...

Additional arguments, currently unused.

genomeSize

Numeric scalar. the size of genome

pvalueThreshold

Numeric scalar. threshold (standard deviations) default: NULL (4.0)

Details

The parameter related to input and output file path will be automatically obtained from ATACProc-class object(atacProc) or generated based on known parameters if their values are default(e.g. NULL). Otherwise, the generated values will be overwrited. If you want to use this function independently, you can use peakCalling instead.

Value

An invisible ATACProc-class object scalar for downstream analysis.

Author(s)

Zheng Wei

See Also

atacSamToBed samToBed atacBedUtils bedUtils

Examples

library(R.utils)
library(magrittr)
td <- tempdir()
setTmpDir(td)

bedbzfile <- system.file(package="esATAC", "extdata", "chr20.50000.bed.bz2")
bedfile <- file.path(td,"chr20.50000.bed")
bunzip2(bedbzfile,destname=bedfile,overwrite=TRUE,remove=FALSE)

bedUtils(bedInput = bedfile,maxFragLen = 100, chrFilterList = NULL) %>%
atacPeakCalling

dir(td)

Quality control for peak overlap

Description

These functions are used to calculate the overlap ratio in specific quality control rigion. Blacklist and DHS region are provided. You can also set your own BED file as quality control rigion.

Usage

atacPeakQC(
  atacProc,
  bsgenome = NULL,
  reportOutput = NULL,
  qcbedInput = c("DHS", "blacklist", "path/to/bed"),
  bedInput = NULL,
  newStepType = "PeakQC",
  ...
)

## S4 method for signature 'ATACProc'
atacPeakQC(
  atacProc,
  bsgenome = NULL,
  reportOutput = NULL,
  qcbedInput = c("DHS", "blacklist", "path/to/bed"),
  bedInput = NULL,
  newStepType = "PeakQC",
  ...
)

peakQC(
  bedInput,
  bsgenome = NULL,
  reportOutput = NULL,
  qcbedInput = c("DHS", "blacklist", "path/to/bed"),
  newStepType = "PeakQC",
  ...
)

Arguments

atacProc

ATACProc-class object scalar. It has to be the return value of upstream process: atacSamToBed, atacBedUtils.

bsgenome

BSGenome object scalar. BSGenome object for specific species.

reportOutput

Character scalar. The report file path.

qcbedInput

Character scalar. It can be "DHS","blacklist" or Other quality control BED file input path.

bedInput

Character scalar. BED file input path for quality control.

newStepType

Character scalar. New step type name for different default parameters.

...

Additional arguments, currently unused.

Details

The parameter related to input and output file path will be automatically obtained from ATACProc-class object or generated based on known parameters if their values are default(e.g. NULL). Otherwise, the generated values will be overwrited. If you want to use this function independently, you can use peakQC instead.

Value

An invisible ATACProc-class object scalar for downstream analysis.

Author(s)

Zheng Wei

See Also

atacSamToBed atacBedUtils

Examples

library(R.utils)
library(magrittr)
td <- tempdir()
setTmpDir(td)

bedbzfile <- system.file(package="esATAC", "extdata", "chr20.50000.bed.bz2")
bedfile <- file.path(td,"chr20.50000.bed")
bunzip2(bedbzfile,destname=bedfile,overwrite=TRUE,remove=FALSE)
blacklistfile <- system.file(package="esATAC", "extdata", "hg19.blacklist.bed")
library(BSgenome.Hsapiens.UCSC.hg19)
bedUtils(bedInput = bedfile,maxFragLen = 100, chrFilterList = NULL) %>%
atacPeakCalling %>% atacPeakQC(qcbedInput = blacklistfile, bsgenome = BSgenome.Hsapiens.UCSC.hg19)
dir(td)

Use AdapterRemoval to remove adapters

Description

Use AdapterRemoval to remove adapters

Usage

atacRemoveAdapter(
  atacProc,
  adapter1 = NULL,
  adapter2 = NULL,
  fastqOutput1 = NULL,
  reportPrefix = NULL,
  fastqOutput2 = NULL,
  fastqInput1 = NULL,
  fastqInput2 = NULL,
  interleave = FALSE,
  threads = getThreads(),
  paramList = NULL,
  findParamList = NULL,
  ...
)

## S4 method for signature 'ATACProc'
atacRemoveAdapter(
  atacProc,
  adapter1 = NULL,
  adapter2 = NULL,
  fastqOutput1 = NULL,
  reportPrefix = NULL,
  fastqOutput2 = NULL,
  fastqInput1 = NULL,
  fastqInput2 = NULL,
  interleave = FALSE,
  threads = getThreads(),
  paramList = NULL,
  findParamList = NULL,
  ...
)

removeAdapter(
  fastqInput1,
  fastqInput2,
  adapter1,
  adapter2,
  fastqOutput1 = NULL,
  reportPrefix = NULL,
  fastqOutput2 = NULL,
  interleave = FALSE,
  threads = getThreads(),
  paramList = NULL,
  findParamList = NULL,
  ...
)

Arguments

atacProc

ATACProc-class object scalar. It has to be the return value of upstream process: atacRenamer renamer atacUnzipAndMerge unzipAndMerge

adapter1

Character. It is an adapter sequence for file1. For single end data, it is requied.

adapter2

Character. It is an adapter sequence for file2.

fastqOutput1

Character. The trimmed mate1 reads output file path for fastqInput2. Defualt: basename.pair1.truncated (paired-end), basename.truncated (single-end), or basename.paired.truncated (interleaved)

reportPrefix

Character. The prefix of report files path. Default: generate from known parameters

fastqOutput2

Character. The trimmed mate2 reads output file path for fastqInput2. Default: BASENAME.pair2.truncated (only used in PE mode, but not if –interleaved-output is enabled)

fastqInput1

Character vector. For single-end sequencing, it contains sequence file paths. For paired-end sequencing, it can be file paths with #1 mates paired with file paths in fastqInput2 And it can also be interleaved file paths when argument interleaved=TRUE

fastqInput2

Character vector. It contains file paths with #2 mates paired with file paths in fastqInput1 For single-end sequencing files and interleaved paired-end sequencing files(argument interleaved=TRUE), it must be NULL.

interleave

Logical. Set TRUE when files are interleaved paired-end sequencing data.

threads

Numeric. The max threads allowed to be used by this step. Default: getThreads()

paramList

Additional arguments to be passed on to the binaries for removing adapter. See below for details.

findParamList

Additional arguments to be passed on to the binaries for identifying adapter. See below for details.

...

Additional arguments, currently unused.

Details

The parameter related to input and output file path will be automatically obtained from ATACProc-class object or generated based on known parameters if their values are default(e.g. NULL). Otherwise, the generated values will be overwrited. If you want to use this function independently, you can use removeAdapter instead. You can put all aditional arguments in one Character(e.g. "–threads 8") with white space splited just like command line, or put them in Character vector(e.g. c("–threads","8")). Note that some arguments( "–file1","–file2","–adapter1","–adapter2","–output1","–output2", "–basename","–interleaved","thread") to the paramList and findParamList are invalid if they are already handled as explicit function arguments. See the output of adapterremoval_usage() for details about available parameters.

Value

An invisible ATACProc-class object scalar for downstream analysis.

Author(s)

Zheng Wei

See Also

atacRenamer renamer atacUnzipAndMerge unzipAndMerge atacBowtie2Mapping

Examples

library(magrittr)
td <- tempdir()
setTmpDir(td)

# Identify adapters
prefix<-system.file(package="esATAC", "extdata", "uzmg")
(reads_1 <-file.path(prefix,"m1",dir(file.path(prefix,"m1"))))
(reads_2 <-file.path(prefix,"m2",dir(file.path(prefix,"m2"))))

reads_merged_1 <- file.path(td,"reads1.fastq")
reads_merged_2 <- file.path(td,"reads2.fastq")
atacproc <-
atacUnzipAndMerge(fastqInput1 = reads_1,fastqInput2 = reads_2) %>%
atacRenamer %>% atacFindAdapter %>% atacRemoveAdapter

dir(td)

Rename reads name in fastq

Description

Rename reads name in fastq with increasing integer

Usage

atacRenamer(
  atacProc,
  fastqOutput1 = NULL,
  fastqOutput2 = NULL,
  fastqInput1 = NULL,
  fastqInput2 = NULL,
  interleave = FALSE,
  threads = getThreads(),
  ...
)

## S4 method for signature 'ATACProc'
atacRenamer(
  atacProc,
  fastqOutput1 = NULL,
  fastqOutput2 = NULL,
  fastqInput1 = NULL,
  fastqInput2 = NULL,
  interleave = FALSE,
  threads = getThreads(),
  ...
)

renamer(
  fastqInput1 = NULL,
  fastqInput2 = NULL,
  fastqOutput1 = NULL,
  fastqOutput2 = NULL,
  interleave = FALSE,
  threads = getThreads(),
  ...
)

Arguments

atacProc

ATACProc-class object scalar. It has to be the return value of upstream process: atacUnzipAndMerge unzipAndMerge

fastqOutput1

Character scalar. The output file path of renamed fastqInput1.

fastqOutput2

Character scalar. The output file path of renamed fastqInput2.

fastqInput1

Character scalar. For single-end sequencing, it contains sequence file paths. For paired-end sequencing, it can be file path with #1 mates paired with file path in file2 And it can also be interleaved file paths when argument interleave=TRUE

fastqInput2

Character scalar. It contains file path with #2 mates paired with file paths in fastqInput1 For single-end sequencing files and interleaved paired-end sequencing files(argument interleaved=TRUE), it must be NULL.

interleave

Character scalar. Set TRUE when files are interleaved paired-end sequencing data.

threads

Integer scalar. The threads will be created in this process. default: 1

...

Additional arguments, currently unused.

Details

The parameter related to input and output file path will be automatically obtained from ATACProc-class object(atacProc) or generated based on known parameters if their values are default(e.g. NULL). Otherwise, the generated values will be overwrited. If you want to use this function independently, you can use renamer instead.

Value

An invisible ATACProc-class object scalar for downstream analysis.

Author(s)

Zheng Wei

See Also

atacUnzipAndMerge unzipAndMerge atacQCReport atacRemoveAdapter

Examples

ignoreCheck() # warnning: run this for fast test only
library(magrittr)
td <- tempdir()
setTmpDir(td)

# Identify adapters
prefix<-system.file(package="esATAC", "extdata", "uzmg")
(reads_1 <-file.path(prefix,"m1",dir(file.path(prefix,"m1"))))
(reads_2 <-file.path(prefix,"m2",dir(file.path(prefix,"m2"))))

reads_merged_1 <- file.path(td,"reads1.fastq")
reads_merged_2 <- file.path(td,"reads2.fastq")
atacproc <-
atacUnzipAndMerge(fastqInput1 = reads_1,fastqInput2 = reads_2) %>%
atacRenamer

dir(td)

Gene Ontology Analysis

Description

Ranking functional groups based on a set of genes. For more information, please see enrichGO.

Usage

atacGOAnalysis(
  atacProc,
  gene = NULL,
  OrgDb = NULL,
  keytype = "ENTREZID",
  ont = "MF",
  pvalueCutoff = 0.05,
  pAdjustMethod = "BH",
  universe = NULL,
  qvalueCutoff = 0.2,
  readable = FALSE,
  pool = FALSE,
  goOutput = NULL,
  ...
)

## S4 method for signature 'ATACProc'
atacGOAnalysis(
  atacProc,
  gene = NULL,
  OrgDb = NULL,
  keytype = "ENTREZID",
  ont = "MF",
  pvalueCutoff = 0.05,
  pAdjustMethod = "BH",
  universe = NULL,
  qvalueCutoff = 0.2,
  readable = FALSE,
  pool = FALSE,
  goOutput = NULL,
  ...
)

goanalysis(
  gene,
  OrgDb = NULL,
  keytype = "ENTREZID",
  ont = "MF",
  pvalueCutoff = 0.05,
  pAdjustMethod = "BH",
  universe = NULL,
  qvalueCutoff = 0.2,
  readable = FALSE,
  pool = FALSE,
  goOutput = NULL,
  ...
)

Arguments

atacProc

ATACProc-class object scalar. It has to be the return value of upstream process: atacPeakAnno.

gene

A vector of entrez gene id.

OrgDb

Genome wide annotation databese.

keytype

Keytype of input gene.

ont

One of "MF", "BP", and "CC" subontologies. "MF" for molecular function, "BP" for biological process, "CC" for cellular component.

pvalueCutoff

pvalueCutoff.

pAdjustMethod

One of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none".

universe

Background genes.

qvalueCutoff

qvalue cutoff.

readable

whether mapping gene ID to gene Name.

pool

If ont=’ALL’, whether pool 3 GO sub-ontologies.

goOutput

Character scalar. Output file path. Defult:in the same folder as your input file with the suffix "df".

...

Additional arguments, currently unused.

Details

This function using enrichGO to do GO analysis but fixed some parameters. If atacProc is not NULL, it will read the gene ID from the output of atacPeakAnno.

Value

An invisible ATACProc-class object scalar.

Author(s)

Wei Zhang

References

Guangchuang Yu., Li-Gen Wang, Yanyan Han, Qing-Yu He. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS: A Journal of Integrative Biology. 2012, 16(5):284-287

See Also

atacPeakAnno enrichGO function enrichGO in package "clusterProfiler"

Examples

## Not run: 
library(org.Hs.eg.db)
# generate simulated geneID
geneId <- as.character(sample(seq(10000), 100))
goanalysis(gene = geneId, OrgDb = 'org.Hs.eg.db')

## End(Not run)

Search Motif Position in Given Regions

Description

Search motif position in genome according thr given motif and peak information.

Usage

atacMotifScan(
  atacProc,
  peak = NULL,
  genome = NULL,
  motifs = NULL,
  p.cutoff = 1e-06,
  scanO.dir = NULL,
  prefix = NULL,
  ...
)

## S4 method for signature 'ATACProc'
atacMotifScan(
  atacProc,
  peak = NULL,
  genome = NULL,
  motifs = NULL,
  p.cutoff = 1e-06,
  scanO.dir = NULL,
  prefix = NULL,
  ...
)

motifscan(
  peak = NULL,
  genome = NULL,
  motifs = NULL,
  p.cutoff = 1e-06,
  scanO.dir = NULL,
  prefix = NULL,
  ...
)

Arguments

atacProc

ATACProc-class object scalar. It has to be the return value of upstream process: atacPeakCalling.

peak

Character scalar. Input region path. UCSC bed file is recommented. Other file should be able to import as GRanges objects through import in package rtracklayer.

genome

BSgenome object, Default: from getRefRc.

motifs

eitherPFMatrix, PFMatrixList, PWMatrix, PWMatrixList.

p.cutoff

p-value cutoff for returning motifs.

scanO.dir

Character scalar. the output file directory. This function will use the name in motifs as the file name to save the motif position information in separate files.

prefix

prefix for Output file.

...

Additional arguments, currently unused.

Details

This function scan motif position in a given genome regions.

Value

An invisible ATACProc-class object scalar for downstream analysis.

Author(s)

Wei Zhang

See Also

atacPeakCalling atacCutSiteCount

Examples

## Not run: 
library(R.utils)
library(BSgenome.Hsapiens.UCSC.hg19)
peak.path <- system.file("extdata", "Example_peak1.bed.bz2", package="esATAC")
peak.path <- as.vector(bunzip2(filename = peak.path, destname = file.path(getwd(), "Example_peak1.bed"), ext="bz2", FUN=bzfile, overwrite=TRUE , remove = FALSE))

motif <- readRDS(system.file("extdata", "MotifPFM.rds", package="esATAC"))

motifscan(peak = peak.path, genome = BSgenome.Hsapiens.UCSC.hg19, motifs = motif)

## End(Not run)

Search Motif Position in Given Regions

Description

Search motif position in genome according thr given motif and peak information.

Usage

atacMotifScanPair(
  atacProc,
  peak1 = NULL,
  peak2 = NULL,
  background = NULL,
  genome = NULL,
  motifs = NULL,
  p.cutoff = 1e-04,
  scanO.dir = NULL,
  prefix = NULL,
  ...
)

## S4 method for signature 'ATACProc'
atacMotifScanPair(
  atacProc,
  peak1 = NULL,
  peak2 = NULL,
  background = NULL,
  genome = NULL,
  motifs = NULL,
  p.cutoff = 1e-04,
  scanO.dir = NULL,
  prefix = NULL,
  ...
)

motifscanpair(
  peak1 = NULL,
  peak2 = NULL,
  background = NULL,
  genome = NULL,
  motifs = NULL,
  p.cutoff = 1e-04,
  scanO.dir = NULL,
  prefix = NULL,
  ...
)

Arguments

atacProc

ATACProc-class object scalar. It has to be the return value of upstream process: atacPeakComp.

peak1

peak file path.

peak2

peak file path.

background

background peak file path.

genome

BSgenome object, Default: from getRefRc.

motifs

eitherPFMatrix, PFMatrixList, PWMatrix, PWMatrixList.

p.cutoff

p-value cutoff for returning motifs.

scanO.dir

Character scalar. the output file directory. This function will use the name in motifs as the file name to save the motif position information in separate files.

prefix

prefix for Output file. Order: peak1, peak2, backgroud.

...

Additional arguments, currently unused.

Details

This function scan motif position in a given genome regions.

Value

An invisible ATACProc-class object scalar for downstream analysis.

Author(s)

Wei Zhang

See Also

atacPeakComp

Examples

## Not run: 
library(R.utils)
library(BSgenome.Hsapiens.UCSC.hg19)
p1bz <- system.file("extdata", "Example_peak1.bed.bz2", package="esATAC")
p2bz <- system.file("extdata", "Example_peak2.bed.bz2", package="esATAC")
peak1_path <- as.vector(bunzip2(filename = p1bz,
destname = file.path(getwd(), "Example_peak1.bed"),
ext="bz2", FUN=bzfile, overwrite=TRUE , remove = FALSE))
peak2_path <- as.vector(bunzip2(filename = p2bz,
destname = file.path(getwd(), "Example_peak2.bed"),
ext="bz2", FUN=bzfile, overwrite=TRUE, remove = FALSE))
peakcom.output <- peakcomp(bedInput1 = peak1_path, bedInput2 = peak2_path,
olap.rate = 0.1)

motif <- readRDS(system.file("extdata", "MotifPFM.rds", package="esATAC"))
output <- atacMotifScanPair(atacProc = peakcom.output,
genome = BSgenome.Hsapiens.UCSC.hg19, motifs = motif)

## End(Not run)

Annotate ATAC-seq Peak

Description

This function annotates ATAC-seq peak by a given annotation database. For more information, please see annotatePeak.

Usage

atacPeakAnno(
  atacProc,
  peakInput = NULL,
  tssRegion = c(-1000, 1000),
  TxDb = NULL,
  level = "transcript",
  genomicAnnotationPriority = c("Promoter", "5UTR", "3UTR", "Exon", "Intron",
    "Downstream", "Intergenic"),
  annoDb = NULL,
  addFlankGeneInfo = FALSE,
  flankDistance = 5000,
  sameStrand = FALSE,
  ignoreOverlap = FALSE,
  ignoreUpstream = FALSE,
  ignoreDownstream = FALSE,
  overlap = "TSS",
  annoOutput = NULL,
  ...
)

## S4 method for signature 'ATACProc'
atacPeakAnno(
  atacProc,
  peakInput = NULL,
  tssRegion = c(-1000, 1000),
  TxDb = NULL,
  level = "transcript",
  genomicAnnotationPriority = c("Promoter", "5UTR", "3UTR", "Exon", "Intron",
    "Downstream", "Intergenic"),
  annoDb = NULL,
  addFlankGeneInfo = FALSE,
  flankDistance = 5000,
  sameStrand = FALSE,
  ignoreOverlap = FALSE,
  ignoreUpstream = FALSE,
  ignoreDownstream = FALSE,
  overlap = "TSS",
  annoOutput = NULL,
  ...
)

peakanno(
  peakInput,
  tssRegion = c(-1000, 1000),
  TxDb = NULL,
  level = "transcript",
  genomicAnnotationPriority = c("Promoter", "5UTR", "3UTR", "Exon", "Intron",
    "Downstream", "Intergenic"),
  annoDb = NULL,
  addFlankGeneInfo = FALSE,
  flankDistance = 5000,
  sameStrand = FALSE,
  ignoreOverlap = FALSE,
  ignoreUpstream = FALSE,
  ignoreDownstream = FALSE,
  overlap = "TSS",
  annoOutput = NULL,
  ...
)

Arguments

atacProc

ATACProc-class object scalar. It has to be the return value of upstream process: atacPeakCalling.

peakInput

Character scalar. Input peak file path. UCSC bed file is recommented. Other file should be able to import as GRanges objects through import in package rtracklayer.

tssRegion

Region range of TSS, default:c(-1000, 1000).

TxDb

TxDb object, annotation database.

level

"transcript" or "gene".

genomicAnnotationPriority

genomic annotation priority.

annoDb

Gene annotation database.

addFlankGeneInfo

logical, add flanking gene information from the peaks.

flankDistance

distance of flanking sequence.

sameStrand

logical, whether find nearest/overlap gene in the same strand.

ignoreOverlap

logical, whether ignore overlap of TSS with peak.

ignoreUpstream

logical, if True only annotate gene at the 3' of the peak.

ignoreDownstream

logical, if True only annotate gene at the 5' of the peak.

overlap

one of 'TSS' or 'all', if overlap="all", then gene overlap with peak will be reported as nearest gene, no matter the overlap is at TSS region or not.

annoOutput

Character scalar. the output file path.

...

Additional arguments, currently unused.

Value

An invisible ATACProc-class object scalar for downstream analysis.

Author(s)

Wei Zhang

References

Guangchuang Yu, Li-Gen Wang, Qing-Yu He. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 2015, 31(14):2382-2383

See Also

atacPeakCalling atacGOAnalysis

Examples

library(R.utils)
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
p1bz <- system.file("extdata", "Example_peak1.bed.bz2", package="esATAC")
peak1_path <- as.vector(bunzip2(filename = p1bz,
destname = file.path(getwd(), "Example_peak1.bed"),
ext="bz2", FUN=bzfile, overwrite=TRUE, remove = FALSE))
#peakanno(peakInput = peak1_path, TxDb = TxDb.Hsapiens.UCSC.hg19.knownGene,
#annoDb = 'org.Hs.eg.db')

Find the overlap or differential peaks between two samples.

Description

This function compares two peak file and report overlap or differential peaks according to the parameter "operation".

Usage

atacPeakComp(
  atacProcPeak1,
  atacProcPeak2,
  bedInput1 = NULL,
  bedInput2 = NULL,
  bedOutput = NULL,
  olap.rate = 0.2,
  ...
)

## S4 method for signature 'ATACProc'
atacPeakComp(
  atacProcPeak1,
  atacProcPeak2,
  bedInput1 = NULL,
  bedInput2 = NULL,
  bedOutput = NULL,
  olap.rate = 0.2,
  ...
)

peakcomp(
  bedInput1 = NULL,
  bedInput2 = NULL,
  bedOutput = NULL,
  olap.rate = 0.2,
  ...
)

Arguments

atacProcPeak1

ATACProc-class object scalar. It has to be the return value of upstream process: atacPeakCalling.

atacProcPeak2

ATACProc-class object scalar. It has to be the return value of upstream process: atacPeakCalling.

bedInput1

Character scalar. Input peak file path. UCSC bed file is recommented. Other file should be able to import as GRanges objects through import in package rtracklayer.

bedInput2

Character scalar. Input peak file path. UCSC bed file is recommented. Other file should be able to import as GRanges objects through import in package rtracklayer.

bedOutput

The output file path for overlap peaks.

olap.rate

Overlap rate, if the overlap region between 2 peak is more than this rate of the short peak, these two peak are considered to be overlap and will be merged to a bigger peak. Default: 0.2. NOTICE: multi-peak will be merged together!

...

Additional arguments, currently unused.

Value

An invisible ATACProc-class object scalar for downstream analysis.

Author(s)

Wei Zhang

See Also

atacPeakCalling

Examples

library(R.utils)
p1bz <- system.file("extdata", "Example_peak1.bed.bz2", package="esATAC")
p2bz <- system.file("extdata", "Example_peak2.bed.bz2", package="esATAC")
## Not run: 
peak1_path <- as.vector(bunzip2(filename = p1bz,
destname = file.path(getwd(), "Example_peak1.bed"),
ext="bz2", FUN=bzfile, overwrite=TRUE , remove = FALSE))
peak2_path <- as.vector(bunzip2(filename = p2bz,
destname = file.path(getwd(), "Example_peak2.bed"),
ext="bz2", FUN=bzfile, overwrite=TRUE, remove = FALSE))
output <- peakcomp(bedInput1 = peak1_path, bedInput2 = peak2_path,
olap.rate = 0.1)

## End(Not run)

Find whether snps are in the given regions.

Description

Find snps(user providing) in given regions. This function do not consider strand.

Usage

atacSNPAnno(
  atacProc,
  snp.info = NULL,
  region.info = NULL,
  annoOutput = NULL,
  ...
)

## S4 method for signature 'ATACProc'
atacSNPAnno(
  atacProc,
  snp.info = NULL,
  region.info = NULL,
  annoOutput = NULL,
  ...
)

snpanno(snp.info = NULL, region.info = NULL, annoOutput = NULL, ...)

Arguments

atacProc

ATACProc-class object scalar. It has to be the return value of upstream process: atacPeakCalling atacMotifScan. If from atacPeakCalling, the output file would contain the snps in given region. If from atacMotifScan, the output file would contain file path to the output of every motif.

snp.info

Character scalar. Input snp info path. There are two type of input files(you can specify by parameter withend). 1.The first 2 column must be chr, position. e.g. chr13 39776775 rs7993214. Other columns could be other information about snps. 2.The first 3 column must be chr, start, end. e.g. chr13 39776775 39776775 rs7993214. Other columns could be other information about snps. When genome is hg19, using human disease as default.

region.info

Character scalar. Input region info path. The first 3 column must be chr, position, end. The standard BED format is recommended.

annoOutput

Character scalar. Output path.

...

withend Your snp data has only one position column or 2.

Value

An invisible ATACProc-class object scalar.

Author(s)

Wei Zhang

See Also

atacPeakCalling atacMotifScan

Examples

library(R.utils)
p1bz <- system.file("extdata", "Example_peak1.bed.bz2", package="esATAC")
peak1_path <- as.vector(bunzip2(filename = p1bz,
destname = file.path(getwd(), "Example_peak1.bed"),
ext="bz2", FUN=bzfile, overwrite=TRUE, remove = FALSE))
snps <- system.file("extdata", "snp_info", package="esATAC")
#snpanno(snp.info = snps, region.info = peak1_path)

Sort bam file and rebuild bai index.

Description

Sort bamfile and build index.

Usage

atacBamSort(atacProc, bamInput = NULL, bamOutput = NULL, ...)

## S4 method for signature 'ATACProc'
atacBamSort(atacProc, bamInput = NULL, bamOutput = NULL, ...)

bamsort(bamInput = NULL, bamOutput = NULL, ...)

Arguments

atacProc

ATACProc-class object scalar. It has to be the return value of upstream process: atacSam2Bam.

bamInput

Character scalar. Input bam file path.

bamOutput

Character scalar. Output bam file path.

...

Additional arguments, currently unused.

Value

An invisible ATACProc-class object scalar for downstream analysis.

Author(s)

Wei Zhang

See Also

atacSam2Bam atacBam2Bed

Examples

library(Rsamtools)
ex1_file <- system.file("extdata", "ex1.bam", package="Rsamtools")
bamsort(bamInput = ex1_file)

Convert sam format to bam format.

Description

This function convert a sam file into a bam file.

Usage

atacSam2Bam(atacProc, samInput = NULL, bamOutput = NULL, isSort = TRUE, ...)

## S4 method for signature 'ATACProc'
atacSam2Bam(atacProc, samInput = NULL, bamOutput = NULL, isSort = TRUE, ...)

sam2bam(samInput, bamOutput = NULL, isSort = TRUE, ...)

Arguments

atacProc

ATACProc-class object scalar. It has to be the return value of upstream process: atacBowtie2Mapping.

samInput

Character scalar. Sam file input path.

bamOutput

Character scalar. Bam file output path. If ignored, bed file will be put in the same path as the sam file.

isSort

Logical scalar. Sort bam.

...

Additional arguments, currently unused.

Details

The parameter related to input and output file path will be automatically obtained from ATACProc-class object(atacProc) or generated based on known parameters if their values are default(e.g. NULL). Otherwise, the generated values will be overwrited. If you want to use this function independently, you can use bamToBed instead.

Value

An invisible ATACProc-class object scalar for downstream analysis.

Author(s)

Wei Zhang

See Also

atacBowtie2Mapping atacBam2Bed atacBamSort

Examples

library(R.utils)
sam_bz <- system.file("extdata", "Example.sam.bz2", package="esATAC")
sam_path <- as.vector(bunzip2(filename = sam_bz,
destname = file.path(getwd(), "Example.sam"),
ext="bz2", FUN=bzfile, remove = FALSE))
sam2bam(samInput = sam_path)

Convert SAM file to BED file

Description

This function is used to convert SAM file to BED file and merge interleave paired end reads, shift reads, filter reads according to chromosome, filter reads according to fragment size, sort, remove duplicates reads before generating BED file.

Usage

atacSamToBed(
  atacProc,
  reportOutput = NULL,
  merge = c("auto", "yes", "no"),
  posOffset = +4,
  negOffset = -5,
  chrFilterList = "chrM",
  samInput = NULL,
  bedOutput = NULL,
  sortBed = TRUE,
  minFragLen = 0,
  maxFragLen = 100,
  saveExtLen = FALSE,
  uniqueBed = TRUE,
  ...
)

## S4 method for signature 'ATACProc'
atacSamToBed(
  atacProc,
  reportOutput = NULL,
  merge = c("auto", "yes", "no"),
  posOffset = +4,
  negOffset = -5,
  chrFilterList = "chrM",
  samInput = NULL,
  bedOutput = NULL,
  sortBed = TRUE,
  minFragLen = 0,
  maxFragLen = 100,
  saveExtLen = FALSE,
  uniqueBed = TRUE,
  ...
)

samToBed(
  samInput,
  reportOutput = NULL,
  merge = c("auto", "yes", "no"),
  posOffset = +4,
  negOffset = -5,
  chrFilterList = "chrM",
  bedOutput = NULL,
  sortBed = TRUE,
  minFragLen = 0,
  maxFragLen = 100,
  saveExtLen = FALSE,
  uniqueBed = TRUE,
  ...
)

Arguments

atacProc

ATACProc-class object scalar. It has to be the return value of upstream process: atacBowtie2Mapping bowtie2Mapping

reportOutput

Character scalar report file path

merge

Logical scalar Merge paired end reads.

posOffset

Integer scalar The offset that positive strand reads will shift.

negOffset

Integer scalar The offset that negative strand reads will shift.

chrFilterList

Character vector The chromatin(or regex of chromatin) will be discard

samInput

Character scalar. SAM file input path.

bedOutput

Character scalar. Bed file output path.

sortBed

Logical scalar Sort bed file in the order of chromatin, start, end

minFragLen

Integer scalar The minimum fragment size will be retained.

maxFragLen

Integer scalar The maximum fragment size will be retained.

saveExtLen

Logical scaler Save the fragment that are not in the range of minFragLen and maxFragLen

uniqueBed

Logical scalar Remove duplicates reads in bed if TRUE. default: FALSE

...

Additional arguments, currently unused.

Details

The parameter related to input and output file path will be automatically obtained from ATACProc-class object(atacProc) or generated based on known parameters if their values are default(e.g. NULL). Otherwise, the generated values will be overwrited. If you want to use this function independently, you can use samToBed instead.

Value

An invisible ATACProc-class object scalar for downstream analysis.

Author(s)

Zheng Wei

See Also

atacBowtie2Mapping bowtie2Mapping atacFragLenDistr atacExtractCutSite atacPeakCalling atacBedUtils atacTSSQC atacBedToBigWig

Examples

library(R.utils)
library(magrittr)
td <- tempdir()
setTmpDir(td)

sambzfile <- system.file(package="esATAC", "extdata", "Example.sam.bz2")
samfile <- file.path(td,"Example.sam")
bunzip2(sambzfile,destname=samfile,overwrite=TRUE,remove=FALSE)
samToBed(samInput = samfile)

Final report for single group of regions

Description

When user call all steps in the pipeline, the final report can be generated.

Usage

atacSingleRepReport(prevStep, htmlOutput = NULL, createHTML = TRUE, ...)

## S4 method for signature 'Step'
atacSingleRepReport(prevStep, htmlOutput = NULL, createHTML = TRUE, ...)

Arguments

prevStep

Step-class object scalar. Any steps object in this package is acceptable when the pipeline is ready.

htmlOutput

Character scalar. HTML report file directory Default: NULL ("Report.html")

createHTML

Logical scalar. If create HTML file. Default: TRUE. This parameter needs to be set FALSE when pandoc or other dependence softwares are not available for rmarkdown package.

...

Additional arguments, currently unused.

Details

The report is HTML format. All link in HTML file is the relative directory in report step folder and other step folder If user want to move HTML file and keep all link access available, they should move the whole pipeline folder at the same time.

Value

An invisible ATACProc-class object (Step-class based) scalar for downstream analysis.

Author(s)

Zheng Wei

See Also

atacPipe


Quality control for transcription start site(TSS) reads enrichment

Description

These functions are used to generate the reads coverage plot around TSS.

Usage

atacTSSQC(
  atacProc,
  txdbKnownGene = NULL,
  bsgenome = NULL,
  reportPrefix = NULL,
  bedInput = NULL,
  fragLenRange = c(0, 2000),
  tssUpdownstream = 1000,
  newStepType = "TSSQC",
  ...
)

## S4 method for signature 'ATACProc'
atacTSSQC(
  atacProc,
  txdbKnownGene = NULL,
  bsgenome = NULL,
  reportPrefix = NULL,
  bedInput = NULL,
  fragLenRange = c(0, 2000),
  tssUpdownstream = 1000,
  newStepType = "TSSQC",
  ...
)

tssQC(
  bedInput,
  txdbKnownGene = NULL,
  bsgenome = NULL,
  reportPrefix = NULL,
  fragLenRange = c(0, 2000),
  tssUpdownstream = 1000,
  newStepType = "TSSQC",
  ...
)

Arguments

atacProc

ATACProc-class object scalar. It has to be the return value of upstream process: atacSamToBed, atacBedUtils.

txdbKnownGene

TxDb object scalar. TxDb object for specific species.

bsgenome

BSGenome object scalar. BSGenome object for specific species.

reportPrefix

Character scalar. The prefix of report files path.

bedInput

Character scalar. BED file input path.

fragLenRange

Interger vector of 2 element. The fragment length ranges.

tssUpdownstream

Interger scalar. The upstream and downstrem from TSS locations.

newStepType

Character scalar. New class name

...

Additional arguments, currently unused.

Details

The parameter related to input and output file path will be automatically obtained from ATACProc-class object(atacProc) or generated based on known parameters if their values are default(e.g. NULL). Otherwise, the generated values will be overwrited. If you want to use this function independently, atacProc should be set NULL or you can use tssQC instead.

Value

An invisible ATACProc-class object scalar for downstream analysis.

Author(s)

Zheng Wei

See Also

atacSamToBed samToBed atacBedUtils bedUtils

Examples

library(R.utils)
td <- tempdir()
setTmpDir(td)

bedbzfile <- system.file(package="esATAC", "extdata", "chr20.50000.bed.bz2")
bedfile <- file.path(td,"chr20.50000.bed")
bunzip2(bedbzfile,destname=bedfile,overwrite=TRUE,remove=FALSE)
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
library(BSgenome.Hsapiens.UCSC.hg19)
tssQC(bedfile,TxDb.Hsapiens.UCSC.hg19.knownGene,BSgenome.Hsapiens.UCSC.hg19,fragLenRange=c(180,247))

dir(td)

Unzip and merge fastq files

Description

Unzip and merge fastq files that are in format of bzip, gzip or fastq

Usage

atacUnzipAndMerge(
  fastqInput1,
  fastqInput2 = NULL,
  fastqOutput1 = NULL,
  fastqOutput2 = NULL,
  interleave = FALSE,
  ...
)

unzipAndMerge(
  fastqInput1,
  fastqInput2 = NULL,
  fastqOutput1 = NULL,
  fastqOutput2 = NULL,
  interleave = FALSE,
  ...
)

Arguments

fastqInput1

Character vector. For single-end sequencing, it contains sequence file paths. For paired-end sequencing, it can be file paths with #1 mates paired with file paths in fastqInput2 And it can also be interleaved file paths when argument interleaved=TRUE

fastqInput2

Character vector. It contains file paths with #2 mates paired with file paths in fastqInput1 For single-end sequencing files and interleaved paired-end sequencing files(argument interleaved=TRUE), it must be NULL.

fastqOutput1

Character. The trimmed mate1 reads output file path for fastqInput2.

fastqOutput2

Character. The trimmed mate2 reads output file path for fastqInput2.

interleave

Logical. Set TRUE when files are interleaved paired-end sequencing data.

...

Additional arguments, currently unused.

Value

An invisible ATACProc-class object scalar for downstream analysis.

Author(s)

Zheng Wei

See Also

atacRenamer atacQCReport

Examples

ignoreCheck() # warnning: run this for fast test only

td<-tempdir()
setTmpDir(td)

# Identify adapters
prefix<-system.file(package="esATAC", "extdata", "uzmg")
(reads_1 <-file.path(prefix,"m1",dir(file.path(prefix,"m1"))))
(reads_2 <-file.path(prefix,"m2",dir(file.path(prefix,"m2"))))

reads_merged_1 <- file.path(td,"reads_1.fq")
reads_merged_2 <- file.path(td,"reads_2.fq")
atacproc <- atacUnzipAndMerge(fastqInput1 = reads_1,fastqInput2 = reads_2)
dir(td)