Package 'clusterProfiler'

Title: A universal enrichment tool for interpreting omics data
Description: This package supports functional characteristics of both coding and non-coding genomics data for thousands of species with up-to-date gene annotation. It provides a univeral interface for gene functional annotation from a variety of sources and thus can be applied in diverse scenarios. It provides a tidy interface to access, manipulate, and visualize enrichment results to help users achieve efficient data interpretation. Datasets obtained from multiple treatments and time points can be analyzed and compared in a single run, easily revealing functional consensus and differences among distinct conditions.
Authors: Guangchuang Yu [aut, cre, cph] , Li-Gen Wang [ctb], Xiao Luo [ctb], Meijun Chen [ctb], Giovanni Dall'Olio [ctb], Wanqian Wei [ctb], Chun-Hui Gao [ctb]
Maintainer: Guangchuang Yu <[email protected]>
License: Artistic-2.0
Version: 4.15.1
Built: 2024-12-30 03:21:52 UTC
Source: https://github.com/bioc/clusterProfiler

Help Index


append_kegg_category

Description

add KEGG pathway category information

Usage

append_kegg_category(x)

Arguments

x

KEGG enrichment result

Details

This function appends the KEGG pathway category information to KEGG enrichment result (either output of 'enrichKEGG' or 'gseKEGG'

Value

update KEGG enrichment result with category information

Author(s)

Guangchuang Yu


bitr

Description

Biological Id TRanslator

Usage

bitr(geneID, fromType, toType, OrgDb, drop = TRUE)

Arguments

geneID

input gene id

fromType

input id type

toType

output id type

OrgDb

annotation db

drop

drop NA or not

Value

data.frame

Author(s)

Guangchuang Yu


bitr_kegg

Description

convert biological ID using KEGG API

Usage

bitr_kegg(geneID, fromType, toType, organism, drop = TRUE)

Arguments

geneID

input gene id

fromType

input id type

toType

output id type

organism

supported organism, can be search using search_kegg_organism function

drop

drop NA or not

Value

data.frame

Author(s)

Guangchuang Yu


browseKEGG

Description

open KEGG pathway with web browser

Usage

browseKEGG(x, pathID)

Arguments

x

an instance of enrichResult or gseaResult

pathID

pathway ID

Value

url

Author(s)

Guangchuang Yu


Compare gene clusters functional profile

Description

Given a list of gene set, this function will compute profiles of each gene cluster.

Usage

compareCluster(
  geneClusters,
  fun = "enrichGO",
  data = "",
  source_from = NULL,
  ...
)

Arguments

geneClusters

a list of entrez gene id. Alternatively, a formula of type Entrez~group or a formula of type Entrez | logFC ~ group for "gseGO", "gseKEGG" and "GSEA".

fun

One of "groupGO", "enrichGO", "enrichKEGG", "enrichDO" or "enrichPathway" . Users can also supply their own function.

data

if geneClusters is a formula, the data from which the clusters must be extracted.

source_from

If using a custom function in "fun", provide the source package as a string here. Otherwise, the function will be obtained from the global environment.

...

Other arguments.

Value

A clusterProfResult instance.

Author(s)

Guangchuang Yu https://yulab-smu.top

See Also

compareClusterResult-class, groupGO enrichGO

Examples

## Not run: 
data(gcSample)
xx <- compareCluster(gcSample, fun="enrichKEGG",
                     organism="hsa", pvalueCutoff=0.05)
as.data.frame(xx)
# plot(xx, type="dot", caption="KEGG Enrichment Comparison")
dotplot(xx)

## formula interface
mydf <- data.frame(Entrez=c('1', '100', '1000', '100101467',
                            '100127206', '100128071'),
                   logFC = c(1.1, -0.5, 5, 2.5, -3, 3),
                   group = c('A', 'A', 'A', 'B', 'B', 'B'),
                   othergroup = c('good', 'good', 'bad', 'bad', 'good', 'bad'))
xx.formula <- compareCluster(Entrez~group, data=mydf,
                             fun='groupGO', OrgDb='org.Hs.eg.db')
as.data.frame(xx.formula)

## formula interface with more than one grouping variable
xx.formula.twogroups <- compareCluster(Entrez~group+othergroup, data=mydf,
                                       fun='groupGO', OrgDb='org.Hs.eg.db')
as.data.frame(xx.formula.twogroups)


## End(Not run)

Datasets gcSample contains a sample of gene clusters.

Description

Datasets gcSample contains a sample of gene clusters.

Datasets kegg_species contains kegg species information

Datasets kegg_category contains kegg pathway category information

Datasets DE_GSE8057 contains differential epxressed genes obtained from GSE8057 dataset


download_KEGG

Description

download the latest version of KEGG pathway/module

Usage

download_KEGG(species, keggType = "KEGG", keyType = "kegg")

Arguments

species

species

keggType

one of 'KEGG' or 'MKEGG'

keyType

supported keyType, see bitr_kegg

Value

list

Author(s)

Guangchuang Yu


dropGO

Description

drop GO term of specific level or specific terms (mostly too general).

Usage

dropGO(x, level = NULL, term = NULL)

Arguments

x

an instance of 'enrichResult' or 'compareClusterResult'

level

GO level

term

GO term

Value

modified version of x

Author(s)

Guangchuang Yu


enrichDAVID

Description

enrichment analysis by DAVID

Usage

enrichDAVID(
  gene,
  idType = "ENTREZ_GENE_ID",
  universe,
  minGSSize = 10,
  maxGSSize = 500,
  annotation = "GOTERM_BP_FAT",
  pvalueCutoff = 0.05,
  pAdjustMethod = "BH",
  qvalueCutoff = 0.2,
  species = NA,
  david.user
)

Arguments

gene

input gene

idType

id type

universe

background genes. If missing, the all genes listed in the database (eg TERM2GENE table) will be used as background.

minGSSize

minimal size of genes annotated for testing

maxGSSize

maximal size of genes annotated for testing

annotation

david annotation

pvalueCutoff

adjusted pvalue cutoff on enrichment tests to report

pAdjustMethod

one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"

qvalueCutoff

qvalue cutoff on enrichment tests to report as significant. Tests must pass i) pvalueCutoff on unadjusted pvalues, ii) pvalueCutoff on adjusted pvalues and iii) qvalueCutoff on qvalues to be reported.

species

species

david.user

david user

Value

A enrichResult instance

Author(s)

Guangchuang Yu


enricher

Description

A universal enrichment analyzer

Usage

enricher(
  gene,
  pvalueCutoff = 0.05,
  pAdjustMethod = "BH",
  universe = NULL,
  minGSSize = 10,
  maxGSSize = 500,
  qvalueCutoff = 0.2,
  gson = NULL,
  TERM2GENE,
  TERM2NAME = NA
)

Arguments

gene

a vector of gene id

pvalueCutoff

adjusted pvalue cutoff on enrichment tests to report

pAdjustMethod

one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"

universe

background genes. If missing, the all genes listed in the database (eg TERM2GENE table) will be used as background.

minGSSize

minimal size of genes annotated for testing

maxGSSize

maximal size of genes annotated for testing

qvalueCutoff

qvalue cutoff on enrichment tests to report as significant. Tests must pass i) pvalueCutoff on unadjusted pvalues, ii) pvalueCutoff on adjusted pvalues and iii) qvalueCutoff on qvalues to be reported.

gson

a GSON object, if not NULL, use it as annotation data.

TERM2GENE

user input annotation of TERM TO GENE mapping, a data.frame of 2 column with term and gene. Only used when gson is NULL.

TERM2NAME

user input of TERM TO NAME mapping, a data.frame of 2 column with term and name. Only used when gson is NULL.

Value

A enrichResult instance

Author(s)

Guangchuang Yu https://yulab-smu.top


GO Enrichment Analysis of a gene set. Given a vector of genes, this function will return the enrichment GO categories after FDR control.

Description

GO Enrichment Analysis of a gene set. Given a vector of genes, this function will return the enrichment GO categories after FDR control.

Usage

enrichGO(
  gene,
  OrgDb,
  keyType = "ENTREZID",
  ont = "MF",
  pvalueCutoff = 0.05,
  pAdjustMethod = "BH",
  universe,
  qvalueCutoff = 0.2,
  minGSSize = 10,
  maxGSSize = 500,
  readable = FALSE,
  pool = FALSE
)

Arguments

gene

a vector of entrez gene id.

OrgDb

OrgDb

keyType

keytype of input gene

ont

One of "BP", "MF", and "CC" subontologies, or "ALL" for all three.

pvalueCutoff

adjusted pvalue cutoff on enrichment tests to report

pAdjustMethod

one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"

universe

background genes. If missing, the all genes listed in the database (eg TERM2GENE table) will be used as background.

qvalueCutoff

qvalue cutoff on enrichment tests to report as significant. Tests must pass i) pvalueCutoff on unadjusted pvalues, ii) pvalueCutoff on adjusted pvalues and iii) qvalueCutoff on qvalues to be reported.

minGSSize

minimal size of genes annotated by Ontology term for testing.

maxGSSize

maximal size of genes annotated for testing

readable

whether mapping gene ID to gene Name

pool

If ont='ALL', whether pool 3 GO sub-ontologies

Value

An enrichResult instance.

Author(s)

Guangchuang Yu https://yulab-smu.top

See Also

enrichResult-class, compareCluster

Examples

## Not run: 
  data(geneList, package = "DOSE")
	de <- names(geneList)[1:100]
	yy <- enrichGO(de, 'org.Hs.eg.db', ont="BP", pvalueCutoff=0.01)
	head(yy)

## End(Not run)

KEGG Enrichment Analysis of a gene set. Given a vector of genes, this function will return the enrichment KEGG categories with FDR control.

Description

KEGG Enrichment Analysis of a gene set. Given a vector of genes, this function will return the enrichment KEGG categories with FDR control.

Usage

enrichKEGG(
  gene,
  organism = "hsa",
  keyType = "kegg",
  pvalueCutoff = 0.05,
  pAdjustMethod = "BH",
  universe,
  minGSSize = 10,
  maxGSSize = 500,
  qvalueCutoff = 0.2,
  use_internal_data = FALSE
)

Arguments

gene

a vector of entrez gene id.

organism

supported organism listed in 'https://www.genome.jp/kegg/catalog/org_list.html'

keyType

one of "kegg", 'ncbi-geneid', 'ncbi-proteinid' and 'uniprot'

pvalueCutoff

adjusted pvalue cutoff on enrichment tests to report

pAdjustMethod

one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"

universe

background genes. If missing, the all genes listed in the database (eg TERM2GENE table) will be used as background.

minGSSize

minimal size of genes annotated by Ontology term for testing.

maxGSSize

maximal size of genes annotated for testing

qvalueCutoff

qvalue cutoff on enrichment tests to report as significant. Tests must pass i) pvalueCutoff on unadjusted pvalues, ii) pvalueCutoff on adjusted pvalues and iii) qvalueCutoff on qvalues to be reported.

use_internal_data

logical, use KEGG.db or latest online KEGG data

Value

A enrichResult instance.

Author(s)

Guangchuang Yu https://yulab-smu.top

See Also

enrichResult-class, compareCluster

Examples

## Not run: 
  data(geneList, package='DOSE')
  de <- names(geneList)[1:100]
  yy <- enrichKEGG(de, pvalueCutoff=0.01)
  head(yy)

## End(Not run)

KEGG Module Enrichment Analysis of a gene set. Given a vector of genes, this function will return the enrichment KEGG Module categories with FDR control.

Description

KEGG Module Enrichment Analysis of a gene set. Given a vector of genes, this function will return the enrichment KEGG Module categories with FDR control.

Usage

enrichMKEGG(
  gene,
  organism = "hsa",
  keyType = "kegg",
  pvalueCutoff = 0.05,
  pAdjustMethod = "BH",
  universe,
  minGSSize = 10,
  maxGSSize = 500,
  qvalueCutoff = 0.2
)

Arguments

gene

a vector of entrez gene id.

organism

supported organism listed in 'https://www.genome.jp/kegg/catalog/org_list.html'

keyType

one of "kegg", 'ncbi-geneid', 'ncbi-proteinid' and 'uniprot'

pvalueCutoff

adjusted pvalue cutoff on enrichment tests to report

pAdjustMethod

one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"

universe

background genes. If missing, the all genes listed in the database (eg TERM2GENE table) will be used as background.

minGSSize

minimal size of genes annotated by Ontology term for testing.

maxGSSize

maximal size of genes annotated for testing

qvalueCutoff

qvalue cutoff on enrichment tests to report as significant. Tests must pass i) pvalueCutoff on unadjusted pvalues, ii) pvalueCutoff on adjusted pvalues and iii) qvalueCutoff on qvalues to be reported.

Value

A enrichResult instance.


enrichPC

Description

ORA analysis for Pathway Commons

Usage

enrichPC(gene, ...)

Arguments

gene

a vector of genes (either hgnc symbols or uniprot IDs)

...

additional parameters, see also the parameters supported by the enricher() function

Details

This function performs over-representation analysis using Pathway Commons

Value

A enrichResult instance


enrichWP

Description

ORA analysis for WikiPathways

Usage

enrichWP(gene, organism, ...)

Arguments

gene

a vector of entrez gene id

organism

supported organisms, which can be accessed via the get_wp_organisms() function

...

additional parameters, see also the parameters supported by the enricher() function

Details

This function performs over-representation analysis using WikiPathways

Value

A enrichResult instance

Author(s)

Guangchuang Yu


get_wp_organism

Description

list supported organism of WikiPathways

Usage

get_wp_organisms()

Details

This function extracts information from 'https://data.wikipathways.org/current/gmt/' and lists all supported organisms

Value

supported organism list

Author(s)

Guangchuang Yu


getPPI

Description

getPPI

Usage

getPPI(
  x,
  ID = 1,
  taxID = "auto",
  required_score = NULL,
  network_type = "functional",
  add_nodes = 0,
  show_query_node_labels = 0,
  output = "igraph"
)

Arguments

x

an 'enrichResult“ object or a vector of proteins, e.g. 'c("PTCH1", "TP53", "BRCA1", "BRCA2")'

ID

ID or index to extract genes in the enriched term(s) if 'x' is an 'enrichResult' object

taxID

NCBI taxon identifiers (e.g. Human is 9606, see: [STRING organisms](https://string-db.org/cgi/input.pl?input_page_active_form=organisms).

required_score

threshold of significance to include a interaction, a number between 0 and 1000 (default depends on the network)

network_type

network type: functional (default), physical

add_nodes

adds a number of proteins with to the network based on their confidence score (default:1)

show_query_node_labels

when available use submitted names in the preferredName column when (0 or 1) (default:0)

output

one of 'data.frame' or 'igraph'

Details

[Getting the STRING network interactions](https://string-db.org/cgi/help.pl?sessionId=btsvnCeNrBk7).

Value

a 'data.frame' or an 'igraph' object

Author(s)

Yonghe Xia and modified by Guangchuang Yu


getTaxID

Description

Convert species scientific name to taxonomic ID

Usage

getTaxID(species)

Arguments

species

scientific name of a species

Value

taxonomic ID

Author(s)

Guangchuang Yu


getTaxInfo

Description

Query taxonomy information from 'stringdb' or 'ensembl' web services

Usage

getTaxInfo(species, source = "stringdb")

Arguments

species

scientific name of a species

source

one of 'stringdb' or 'ensembl'

Value

a 'data.frame' of query information

Author(s)

Guangchuang Yu


Gff2GeneTable

Description

read GFF file and build gene information table

Usage

Gff2GeneTable(gffFile, compress = TRUE)

Arguments

gffFile

GFF file

compress

compress file or not

Details

given a GFF file, this function extracts information from it and save it in working directory

Value

file save.

Author(s)

Yu Guangchuang


go2ont

Description

convert goid to ontology (BP, CC, MF)

Usage

go2ont(goid)

Arguments

goid

a vector of GO IDs

Value

data.frame

Author(s)

Guangchuang Yu


go2term

Description

convert goid to descriptive term

Usage

go2term(goid)

Arguments

goid

a vector of GO IDs

Value

data.frame

Author(s)

Guangchuang Yu


gofilter

Description

filter GO enriched result at specific level

Usage

gofilter(x, level = 4)

Arguments

x

output from enrichGO or compareCluster

level

GO level

Value

updated object

Author(s)

Guangchuang Yu


Functional Profile of a gene set at specific GO level. Given a vector of genes, this function will return the GO profile at a specific level.

Description

Functional Profile of a gene set at specific GO level. Given a vector of genes, this function will return the GO profile at a specific level.

Usage

groupGO(
  gene,
  OrgDb,
  keyType = "ENTREZID",
  ont = "CC",
  level = 2,
  readable = FALSE
)

Arguments

gene

a vector of entrez gene id.

OrgDb

OrgDb

keyType

key type of input gene

ont

One of "MF", "BP", and "CC" subontologies.

level

Specific GO Level.

readable

if readable is TRUE, the gene IDs will mapping to gene symbols.

Value

A groupGOResult instance.

Author(s)

Guangchuang Yu https://yulab-smu.top

See Also

groupGOResult-class, compareCluster

Examples

data(gcSample)
	yy <- groupGO(gcSample[[1]], 'org.Hs.eg.db', ont="BP", level=2)
	head(summary(yy))
	#plot(yy)

Class "groupGOResult" This class represents the result of functional Profiles of a set of gene at specific GO level.

Description

Class "groupGOResult" This class represents the result of functional Profiles of a set of gene at specific GO level.

Slots

result

GO classification result

ontology

Ontology

level

GO level

organism

one of "human", "mouse" and "yeast"

gene

Gene IDs

readable

logical flag of gene ID in symbol or not.

Author(s)

Guangchuang Yu https://yulab-smu.top

See Also

compareClusterResult compareCluster groupGO


GSEA

Description

a universal gene set enrichment analysis tools

Usage

GSEA(
  geneList,
  exponent = 1,
  minGSSize = 10,
  maxGSSize = 500,
  eps = 1e-10,
  pvalueCutoff = 0.05,
  pAdjustMethod = "BH",
  gson = NULL,
  TERM2GENE,
  TERM2NAME = NA,
  verbose = TRUE,
  seed = FALSE,
  by = "fgsea",
  ...
)

Arguments

geneList

order ranked geneList

exponent

weight of each step

minGSSize

minimal size of each geneSet for analyzing

maxGSSize

maximal size of genes annotated for testing

eps

This parameter sets the boundary for calculating the p value.

pvalueCutoff

adjusted pvalue cutoff

pAdjustMethod

one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"

gson

a GSON object, if not NULL, use it as annotation data.

TERM2GENE

user input annotation of TERM TO GENE mapping, a data.frame of 2 column with term and gene. Only used when gson is NULL.

TERM2NAME

user input of TERM TO NAME mapping, a data.frame of 2 column with term and name. Only used when gson is NULL.

verbose

logical

seed

logical

by

one of 'fgsea' or 'DOSE'

...

other parameter

Value

gseaResult object

Author(s)

Guangchuang Yu https://yulab-smu.top


gseGO

Description

Gene Set Enrichment Analysis of Gene Ontology

Usage

gseGO(
  geneList,
  ont = "BP",
  OrgDb,
  keyType = "ENTREZID",
  exponent = 1,
  minGSSize = 10,
  maxGSSize = 500,
  eps = 1e-10,
  pvalueCutoff = 0.05,
  pAdjustMethod = "BH",
  verbose = TRUE,
  seed = FALSE,
  by = "fgsea",
  ...
)

Arguments

geneList

order ranked geneList

ont

one of "BP", "MF", and "CC" subontologies, or "ALL" for all three.

OrgDb

OrgDb

keyType

keytype of gene

exponent

weight of each step

minGSSize

minimal size of each geneSet for analyzing

maxGSSize

maximal size of genes annotated for testing

eps

This parameter sets the boundary for calculating the p value.

pvalueCutoff

pvalue Cutoff

pAdjustMethod

pvalue adjustment method

verbose

print message or not

seed

logical

by

one of 'fgsea' or 'DOSE'

...

other parameter

Value

gseaResult object

Author(s)

Yu Guangchuang


gseKEGG

Description

Gene Set Enrichment Analysis of KEGG

Usage

gseKEGG(
  geneList,
  organism = "hsa",
  keyType = "kegg",
  exponent = 1,
  minGSSize = 10,
  maxGSSize = 500,
  eps = 1e-10,
  pvalueCutoff = 0.05,
  pAdjustMethod = "BH",
  verbose = TRUE,
  use_internal_data = FALSE,
  seed = FALSE,
  by = "fgsea",
  ...
)

Arguments

geneList

order ranked geneList

organism

supported organism listed in 'https://www.genome.jp/kegg/catalog/org_list.html'

keyType

one of "kegg", 'ncbi-geneid', 'ncib-proteinid' and 'uniprot'

exponent

weight of each step

minGSSize

minimal size of each geneSet for analyzing

maxGSSize

maximal size of genes annotated for testing

eps

This parameter sets the boundary for calculating the p value.

pvalueCutoff

pvalue Cutoff

pAdjustMethod

pvalue adjustment method

verbose

print message or not

use_internal_data

logical, use KEGG.db or latest online KEGG data

seed

logical

by

one of 'fgsea' or 'DOSE'

...

other parameter

Value

gseaResult object

Author(s)

Yu Guangchuang


gseMKEGG

Description

Gene Set Enrichment Analysis of KEGG Module

Usage

gseMKEGG(
  geneList,
  organism = "hsa",
  keyType = "kegg",
  exponent = 1,
  minGSSize = 10,
  maxGSSize = 500,
  eps = 1e-10,
  pvalueCutoff = 0.05,
  pAdjustMethod = "BH",
  verbose = TRUE,
  seed = FALSE,
  by = "fgsea",
  ...
)

Arguments

geneList

order ranked geneList

organism

supported organism listed in 'https://www.genome.jp/kegg/catalog/org_list.html'

keyType

one of "kegg", 'ncbi-geneid', 'ncib-proteinid' and 'uniprot'

exponent

weight of each step

minGSSize

minimal size of each geneSet for analyzing

maxGSSize

maximal size of genes annotated for testing

eps

This parameter sets the boundary for calculating the p value.

pvalueCutoff

pvalue Cutoff

pAdjustMethod

pvalue adjustment method

verbose

print message or not

seed

logical

by

one of 'fgsea' or 'DOSE'

...

other parameter

Value

gseaResult object

Author(s)

Yu Guangchuang


gsePC

Description

GSEA analysis for Pathway Commons

Usage

gsePC(geneList, ...)

Arguments

geneList

a ranked gene list

...

additional parameters, see also the parameters supported by the GSEA() function

Details

This function performs GSEA using Pathway Commons

Value

A gseaResult instance


gseWP

Description

GSEA analysis for WikiPathways

Usage

gseWP(geneList, organism, ...)

Arguments

geneList

ranked gene list

organism

supported organisms, which can be accessed via the get_wp_organisms() function

...

additional parameters, see also the parameters supported by the GSEA() function

Details

This function performs GSEA using WikiPathways

Value

A gseaResult instance

Author(s)

Guangchuang Yu


gson_KEGG

Description

download the latest version of KEGG pathway and stored in a 'GSON' object

Usage

gson_GO(OrgDb, keytype = "ENTREZID", ont = "BP")

Arguments

OrgDb

OrgDb

keytype

keytype of genes.

ont

one of "BP", "MF", "CC", and "ALL"

Value

a 'GSON' object


gson_KEGG

Description

download the latest version of KEGG pathway and stored in a 'GSON' object

Usage

gson_KEGG(species, KEGG_Type = "KEGG", keyType = "kegg")

Arguments

species

species

KEGG_Type

one of "KEGG" and "MKEGG"

keyType

one of "kegg", 'ncbi-geneid', 'ncib-proteinid' and 'uniprot'.

Value

a 'GSON' object

Author(s)

Guangchuang Yu


Build KEGG annotation for novel species using KEGG Mapper

Description

KEGG Mapper service can annotate protein sequences for novel species with KO database, and KO annotation need to be converted into Pathway or Module annotation, which can then be used in 'clusterProfiler'

Usage

gson_KEGG_mapper(
  file,
  format = c("BLAST", "Ghost", "Kofam"),
  type = c("pathway", "module"),
  species = NULL,
  ...
)

Arguments

file

the name of the file which comes from the KEGG Mapper service, see Details for file format

format

string indicate format of KEGG Mapper result

type

string indicate annotation database

species

your species, NULL if ignored

...

pass to gson::gson()

Details

File is a two-column dataset with K numbers in the second column, optionally preceded by the user's identifiers in the first column. This is consistent with the output files of automatic annotation servers, BlastKOALA, GhostKOALA, and KofamKOALA. KOALA (KEGG Orthology And Links Annotation) is KEGG's internal annotation tool for K number assignment of KEGG GENES using SSEARCH computation. BlastKOALA and GhostKOALA assign K numbers to the user's sequence data by BLAST and GHOSTX searches, respectively, against a nonredundant set of KEGG GENES. KofamKOALA is a new member of the KOALA family available at GenomeNet using the HMM profile search, rather than the sequence similarity search, for K number assignment. see https://www.kegg.jp/blastkoala/, https://www.kegg.jp/ghostkoala/ and https://www.genome.jp/tools/kofamkoala/ for more information.

Value

a gson instance

Examples

## Not run: 
 file = system.file('extdata', "kegg_mapper_blast.txt", package='clusterProfiler')
 gson_KEGG_mapper(file, format = "BLAST", type = "pathway")

## End(Not run)

gson_WP

Description

Download the latest version of WikiPathways data and stored in a 'GSON' object

Usage

gson_WP(organism)

Arguments

organism

supported organism, which can be accessed via the get_wp_organisms() function.


idType

Description

list ID types supported by annoDb

Usage

idType(OrgDb = "org.Hs.eg.db")

Arguments

OrgDb

annotation db

Value

character vector

Author(s)

Guangchuang Yu


ko2name

Description

convert ko ID to descriptive name

Usage

ko2name(ko)

Arguments

ko

ko ID

Value

data.frame

Author(s)

guangchuang yu


merge_result

Description

merge a list of enrichResult objects to compareClusterResult

Usage

merge_result(enrichResultList)

Arguments

enrichResultList

a list of enrichResult objects

Value

a compareClusterResult instance

Author(s)

Guangchuang Yu


plotGOgraph

Description

plot GO graph

Usage

plotGOgraph(
  x,
  firstSigNodes = 10,
  useInfo = "all",
  sigForAll = TRUE,
  useFullNames = TRUE,
  ...
)

Arguments

x

output of enrichGO or gseGO

firstSigNodes

number of significant nodes (retangle nodes in the graph)

useInfo

additional info

sigForAll

if TRUE the score/p-value of all nodes in the DAG is shown, otherwise only score will be shown

useFullNames

logical

...

additional parameter of showSigOfNodes, please refer to topGO

Value

GO DAG graph

Author(s)

Guangchuang Yu


read.gmt.pc

Description

Parse gmt file from Pathway Common

Usage

read.gmt.pc(gmtfile, output = "data.frame")

Arguments

gmtfile

A gmt file

output

one of 'data.frame' or 'GSON'

Details

This function parse gmt file downloaded from Pathway common

Value

A data.frame or A GSON object depends on the value of 'output'


search_kegg_organism

Description

search kegg organism, listed in https://www.genome.jp/kegg/catalog/org_list.html

Usage

search_kegg_organism(
  str,
  by = "scientific_name",
  ignore.case = FALSE,
  use_internal_data = TRUE
)

Arguments

str

string

by

one of 'kegg.code', 'scientific_name' and 'common_name'

ignore.case

TRUE or FALSE

use_internal_data

logical, use kegg_species.rda or latest online KEGG data

Value

data.frame

Author(s)

Guangchuang Yu


simplify method

Description

simplify output from enrichGO and gseGO by removing redundancy of enriched GO terms

simplify output from compareCluster by removing redundancy of enriched GO terms

Usage

## S4 method for signature 'enrichResult'
simplify(
  x,
  cutoff = 0.7,
  by = "p.adjust",
  select_fun = min,
  measure = "Wang",
  semData = NULL
)

## S4 method for signature 'gseaResult'
simplify(
  x,
  cutoff = 0.7,
  by = "p.adjust",
  select_fun = min,
  measure = "Wang",
  semData = NULL
)

## S4 method for signature 'compareClusterResult'
simplify(
  x,
  cutoff = 0.7,
  by = "p.adjust",
  select_fun = min,
  measure = "Wang",
  semData = NULL
)

Arguments

x

output of enrichGO

cutoff

similarity cutoff

by

feature to select representative term, selected by 'select_fun' function

select_fun

function to select feature passed by 'by' parameter

measure

method to measure similarity

semData

GOSemSimDATA object

Value

updated enrichResult object

updated compareClusterResult object

Author(s)

Guangchuang Yu

Gwang-Jin Kim and Guangchuang Yu

References

issue #28 https://github.com/GuangchuangYu/clusterProfiler/issues/28

issue #162 https://github.com/GuangchuangYu/clusterProfiler/issues/162


uniprot_get

Description

retreve annotation data from uniprot

Usage

uniprot_get(taxID)

Arguments

taxID

taxonomy ID

Value

gene table data frame

Author(s)

guangchuang yu