Title: | broadSeq : for streamlined exploration of RNA-seq data |
---|---|
Description: | This package helps user to do easily RNA-seq data analysis with multiple methods (usually which needs many different input formats). Here the user will provid the expression data as a SummarizedExperiment object and will get results from different methods. It will help user to quickly evaluate different methods. |
Authors: | Rishi Das Roy [aut, cre] |
Maintainer: | Rishi Das Roy <[email protected]> |
License: | MIT + file LICENSE |
Version: | 1.1.0 |
Built: | 2024-11-21 06:10:41 UTC |
Source: | https://github.com/bioc/broadSeq |
This package helps user to do easily RNA-seq data analysis with multiple methods (usually which needs many different input formats). Here the user will provid the expression data as a SummarizedExperiment object and will get results from different methods. It will help user to quickly evaluate different methods.
Maintainer: Rishi Das Roy [email protected] (ORCID)
Useful links:
This wrapper function combines clusterProfiler::gseGO and clusterProfiler::enrichGO. The input type of thes two methods are different; order ranked geneList and a vector of entrez gene id. Here combinedEnrichment function internally generates these two data types from user defined DEG_table (differentially expresssed genes).
combinedEnrichment( DEG_table, geneCol = "ID", logCol = "logFoldChange", OrgDB = "org.Hs.eg.db", keyType, universe, ont = "BP", logfoldCut = 1, pvalueCutoff = 0.05, qvalueCutoff = 0.05 )
combinedEnrichment( DEG_table, geneCol = "ID", logCol = "logFoldChange", OrgDB = "org.Hs.eg.db", keyType, universe, ont = "BP", logfoldCut = 1, pvalueCutoff = 0.05, qvalueCutoff = 0.05 )
DEG_table |
A data.frame atleast with two columns. |
geneCol |
The column name of DEG_table which provides gene ids and should be compatible with keytype parameter. |
logCol |
The column name of DEG_table which provides logfold(numeric) values to create a order ranked geneList for gseGO funtion. |
OrgDB |
OrgDb; passed to clusterProfiler functions |
keyType |
keytype of input gene(geneCol). One of the keytypes(OrgDB); passed to clusterProfiler functions |
universe |
background genes; passed to clusterProfiler::enrichGO. |
ont |
one of "BP", "MF", and "CC" subontologies, or "ALL" for all three.; passed to clusterProfiler functions |
logfoldCut |
to filter genes based on parameter logCol |
pvalueCutoff |
; passed to clusterProfiler functions |
qvalueCutoff |
; passed to clusterProfiler functions |
a named list of three data.frames which are output of gseGO("gseResult") and enrichGO ("oraUP" and "oraDOWN").
Expression of multiple genes/features from a single assay as boxplot (or added dotplot)
Boxplot of a single gene/feature from multiple assays
genes_plot(se, features, assayName = "counts", facet.by = "feature", x, ...) assay_plot(se, feature, assayNames = c("counts"), x, ...)
genes_plot(se, features, assayName = "counts", facet.by = "feature", x, ...) assay_plot(se, feature, assayNames = c("counts"), x, ...)
se |
Object of |
features |
a character vector of rownames or named list of character vectors where name is one of the colnames of rowdata. |
assayName |
One of the values from SummarizedExperiment::assayNames(se); default is "counts" assay |
facet.by |
must be one of the column names of rowData(se). default "feature" which is equivalent to rownames of rowData |
x |
a column name of colData which will be used in x-axis |
... |
other arguments to be passed to ggpubr:: |
feature |
a character vector of rownames or named list of character vectors where name is one of the column of rowdata. |
assayNames |
names from SummarizedExperiment::assayNames(se); default value is "counts" |
ggplot object
return an object of class ggarrange, which is a ggplot or a list of ggplot.
se <- readRDS(system.file("extdata", "rat_vole_mouseSE_salmon.rds", package = "broadSeq")) # The normalized values are added with the assay name "logCPM" se <- broadSeq::normalizeEdgerCPM(se ,method = "none",cpm.log = TRUE ) broadSeq::genes_plot(se, features = list(mouse_gene_id = c("ENSMUSG00000022510" , "ENSMUSG00000027985")), facet.by = "symbol", # column of rowData x = "stage", fill="stage") broadSeq::genes_plot(se, features = list(symbol=c("Shh","Edar") ), facet.by = "symbol", # column of rowData x = "stage", fill="stage") broadSeq::assay_plot(se, feature = c("Shh"), assays = c("counts","logCPM"), x = "stage", fill="stage", add="dotplot", palette = "npg")
se <- readRDS(system.file("extdata", "rat_vole_mouseSE_salmon.rds", package = "broadSeq")) # The normalized values are added with the assay name "logCPM" se <- broadSeq::normalizeEdgerCPM(se ,method = "none",cpm.log = TRUE ) broadSeq::genes_plot(se, features = list(mouse_gene_id = c("ENSMUSG00000022510" , "ENSMUSG00000027985")), facet.by = "symbol", # column of rowData x = "stage", fill="stage") broadSeq::genes_plot(se, features = list(symbol=c("Shh","Edar") ), facet.by = "symbol", # column of rowData x = "stage", fill="stage") broadSeq::assay_plot(se, feature = c("Shh"), assays = c("counts","logCPM"), x = "stage", fill="stage", add="dotplot", palette = "npg")
Use of edgeR package to normalize count data
normalizeEdgerCPM(se, method = "TMM", cpm.log = TRUE, ...)
normalizeEdgerCPM(se, method = "TMM", cpm.log = TRUE, ...)
se |
Object of |
method |
value for edgeR:: |
cpm.log |
value for edgeR:: |
... |
passed to normLibSizes function |
Object of SummarizedExperiment
class where a new assay
is added to the input object.
se <- readRDS(system.file("extdata", "rat_vole_mouseSE_salmon.rds", package = "broadSeq")) se <- broadSeq::normalizeEdgerCPM(se , method = "TMM", cpm.log = FALSE ) # The normalized values are added with the assay name "TMM" SummarizedExperiment::assayNames(se)
se <- readRDS(system.file("extdata", "rat_vole_mouseSE_salmon.rds", package = "broadSeq")) se <- broadSeq::normalizeEdgerCPM(se , method = "TMM", cpm.log = FALSE ) # The normalized values are added with the assay name "TMM" SummarizedExperiment::assayNames(se)
Classical multidimensional scaling is based on measuring the distance between the samples.
plot_MDS(se, scaledAssay = "vst", ntop = 500L, features = NULL, ...)
plot_MDS(se, scaledAssay = "vst", ntop = 500L, features = NULL, ...)
se |
Object of |
scaledAssay |
an scaled assay name from SummarizedExperiment::assayNames(se) |
ntop |
number of most-variable genes to select. Igored if "features" is specified. |
features |
character vector features/genes to be used to measure distance between the samples |
... |
other arguments like color or shape whose values should be similar
to colData columns names passed to ggpubr:: |
ggplot object
se <- readRDS(system.file("extdata","rat_vole_mouseSE_salmon.rds", package = "broadSeq")) se <- broadSeq::transformDESeq2(se,method = "vst" ) broadSeq::plot_MDS(se, scaledAssay = "vst", ntop=500, color = "species", shape = "stage", ellipse=TRUE, legend = "bottom")
se <- readRDS(system.file("extdata","rat_vole_mouseSE_salmon.rds", package = "broadSeq")) se <- broadSeq::transformDESeq2(se,method = "vst" ) broadSeq::plot_MDS(se, scaledAssay = "vst", ntop=500, color = "species", shape = "stage", ellipse=TRUE, legend = "bottom")
Plot clustered heatmaps from SummarizedExperiment with pheatmap and return object as ggplot
plotHeatmapCluster( se, scaledAssay = "vst", ntop = 500L, features = NULL, show_geneAs = NULL, annotation_col = NA, annotation_row = NA, ... )
plotHeatmapCluster( se, scaledAssay = "vst", ntop = 500L, features = NULL, show_geneAs = NULL, annotation_col = NA, annotation_row = NA, ... )
se |
Object of |
scaledAssay |
an scaled assay name from SummarizedExperiment::assayNames(se) |
ntop |
number of most-variable genes to select. Igored if "features" is specified. |
features |
character vector features/genes to be used to measure distance between the samples |
show_geneAs |
a character vector of colnames of rowData(se) |
annotation_col |
a character vector of colnames of colData(se) |
annotation_row |
a list of character vector of colnames of rowData(se) |
... |
other arguments like color or shape whose values should be similar
to colData columns names passed to |
ggplot object
se <- readRDS(system.file("extdata","rat_vole_mouseSE_salmon.rds", package = "broadSeq")) se <- broadSeq::normalizeEdgerCPM(se ,method = "none",cpm.log = TRUE ) broadSeq::plotHeatmapCluster( se, scaledAssay = "logCPM", annotation_col = c("species", "stage"), annotation_row = c("Class","gene_biotype"), ntop = 30, show_geneAs = "symbol", cluster_cols = TRUE, cluster_rows = FALSE, show_rownames = TRUE, show_colnames = FALSE, main = "Top 30 variable gene vst" )
se <- readRDS(system.file("extdata","rat_vole_mouseSE_salmon.rds", package = "broadSeq")) se <- broadSeq::normalizeEdgerCPM(se ,method = "none",cpm.log = TRUE ) broadSeq::plotHeatmapCluster( se, scaledAssay = "logCPM", annotation_col = c("species", "stage"), annotation_row = c("Class","gene_biotype"), ntop = 30, show_geneAs = "symbol", cluster_cols = TRUE, cluster_rows = FALSE, show_rownames = TRUE, show_colnames = FALSE, main = "Top 30 variable gene vst" )
This function returns the results of stats::prcomp
in a tidy list format.
This is more flexible for further custom PCA , biplot and exploring gene(factor) loading of the PCA.
prcompTidy(se, scaledAssay = "vst", ntop = 500L, features = NULL, ...) plotAnyPC(computedPCA, x = 1, y = 2, ...) biplotAnyPC(computedPCA, x = 1, y = 2, genes = NULL, genesLabel = NULL, ...) getFeatureLoadRanking(computedPCA, pcs = seq_len(5), topN = 10, keep)
prcompTidy(se, scaledAssay = "vst", ntop = 500L, features = NULL, ...) plotAnyPC(computedPCA, x = 1, y = 2, ...) biplotAnyPC(computedPCA, x = 1, y = 2, genes = NULL, genesLabel = NULL, ...) getFeatureLoadRanking(computedPCA, pcs = seq_len(5), topN = 10, keep)
se |
Object of |
scaledAssay |
an scaled assay name from SummarizedExperiment::assayNames(se) |
ntop |
number of most-variable genes to select. Igored if "features" is specified. |
features |
character vector features/genes to be used for PCA |
... |
other arguments like color or shape whose values should be similar
to colData columns names passed to ggpubr:: |
computedPCA |
a list of data.frame returned by |
x |
PC number for x-axis default 1 |
y |
PC number for y-axis default 2 |
genes |
if genes is NULL then top max and min loaded genes of each PCs are plotted |
genesLabel |
one of rowData column names |
pcs |
The numbers of PCs |
topN |
Number of features per PC |
keep |
the column names of rowData to keep the corresponding information |
a list with four data.frame
objects: pc_scores, eigen_values,
loadings (eigen vectors) and the original data.
ggplot object
ggplot object
a data.frame
se <- readRDS(system.file("extdata","rat_vole_mouseSE_salmon.rds", package = "broadSeq")) se <- broadSeq::normalizeEdgerCPM(se ,method = "none",cpm.log = TRUE ) computedPCA_logCPM <- broadSeq::prcompTidy(se, scaledAssay = "logCPM", ntop = 500) plotAnyPC(computedPCA = computedPCA_logCPM, x = 1, y = 2, color = "species", shape = "stage",legend = "bottom") plotAnyPC(computedPCA = computedPCA_logCPM, x = 2, y = 3, color = "species", shape = "stage",legend = "bottom") computedPCA_logCPM$eigen_values %>% dplyr::filter(var_exp >= 0.5) %>% # Selecting PC explaining more than 1% variance ggbarplot(x="PC",y="var_exp", label = TRUE, label.pos = "out")
se <- readRDS(system.file("extdata","rat_vole_mouseSE_salmon.rds", package = "broadSeq")) se <- broadSeq::normalizeEdgerCPM(se ,method = "none",cpm.log = TRUE ) computedPCA_logCPM <- broadSeq::prcompTidy(se, scaledAssay = "logCPM", ntop = 500) plotAnyPC(computedPCA = computedPCA_logCPM, x = 1, y = 2, color = "species", shape = "stage",legend = "bottom") plotAnyPC(computedPCA = computedPCA_logCPM, x = 2, y = 3, color = "species", shape = "stage",legend = "bottom") computedPCA_logCPM$eigen_values %>% dplyr::filter(var_exp >= 0.5) %>% # Selecting PC explaining more than 1% variance ggbarplot(x="PC",y="var_exp", label = TRUE, label.pos = "out")
Applies round function only on numeric columns of a data.frame.
round_df(df, digits)
round_df(df, digits)
df |
data.frame object |
digits |
passed to |
data.frame object
data("iris") iris %>% round_df(digits = 0) %>% head()
data("iris") iris %>% round_df(digits = 0) %>% head()
Useful to visualize distribution of assay values for each sample. Plots 'boxplot' of any assay for each sample. Aesthetic can be added from colData.
sampleAssay_plot(se, assayName = "counts", ...)
sampleAssay_plot(se, assayName = "counts", ...)
se |
Object of |
assayName |
One of the values from SummarizedExperiment::assayNames(se) |
... |
other arguments to be passed to ggpubr:: |
ggplot object
se <- readRDS(system.file("extdata","rat_vole_mouseSE_salmon.rds", package = "broadSeq")) sampleAssay_plot(se, assayName = "counts", fill="stage", # stage is a column name of colData(se) yscale="log2") se <- broadSeq::normalizeEdgerCPM(se ,method = "none",cpm.log = TRUE ) sampleAssay_plot(se, assayName = "logCPM", fill="stage")
se <- readRDS(system.file("extdata","rat_vole_mouseSE_salmon.rds", package = "broadSeq")) sampleAssay_plot(se, assayName = "counts", fill="stage", # stage is a column name of colData(se) yscale="log2") se <- broadSeq::normalizeEdgerCPM(se ,method = "none",cpm.log = TRUE ) sampleAssay_plot(se, assayName = "logCPM", fill="stage")
To use SummarizedExperiment with DESeq2, this function makes sure that 'counts' assay should be the first in assays list and the mode is integer.
transformDESeq2(se, method = "vst", ...)
transformDESeq2(se, method = "vst", ...)
se |
Object of |
method |
"vst", "normTransform" or "rlog" to choose either of DESeq2:: |
... |
arguments passed to |
Object of SummarizedExperiment
class where a new assay
is added to the input object.
se <- readRDS(system.file("extdata", "rat_vole_mouseSE_salmon.rds", package = "broadSeq")) se <- broadSeq::transformDESeq2(se,method = "vst" ) # The transformed values are added with the assay name "vst" SummarizedExperiment::assayNames(se)
se <- readRDS(system.file("extdata", "rat_vole_mouseSE_salmon.rds", package = "broadSeq")) se <- broadSeq::transformDESeq2(se,method = "vst" ) # The transformed values are added with the assay name "vst" SummarizedExperiment::assayNames(se)
A wrapper function of DELocal where input is an object of SummarizedExperiment
use_DELocal(se, colData_id, control, treatment, rank = FALSE, ...)
use_DELocal(se, colData_id, control, treatment, rank = FALSE, ...)
se |
Object of |
colData_id |
One of the columns of colData(se). It should be factors of more than one value. |
control |
Base level and one of the factor values of |
treatment |
one of the factor values of |
rank |
Logical value default FALSE. If true the result will have an additional column named "rank" and the results are ranked on "relative.logFC" |
... |
other arguments to be passed to main function DELocal:: |
a data.frame from DELocal
se <- readRDS(system.file("extdata", "rat_vole_mouseSE_salmon.rds", package = "broadSeq")) # To reduce runtime se <- se[rowData(se)$chromosome_name == 2,colData(se)$species == "Mouse"] result <- use_DELocal(se = se, colData_id = "stage", control = "Bud", treatment = "Cap", rank = TRUE)
se <- readRDS(system.file("extdata", "rat_vole_mouseSE_salmon.rds", package = "broadSeq")) # To reduce runtime se <- se[rowData(se)$chromosome_name == 2,colData(se)$species == "Mouse"] result <- use_DELocal(se = se, colData_id = "stage", control = "Bud", treatment = "Cap", rank = TRUE)
A wrapper function of DESeq2 where input is an object of SummarizedExperiment
use_deseq2(se, colData_id, control, treatment, rank = FALSE, ...)
use_deseq2(se, colData_id, control, treatment, rank = FALSE, ...)
se |
Object of |
colData_id |
One of the columns of colData(se). It should be factors of more than one value. |
control |
Base level and one of the factor values of |
treatment |
one of the factor values of |
rank |
Logical value default FALSE. If true the result will have an additional column named "rank" and the results are ranked on "padj" |
... |
other arguments to be passed to main function DESeq2:: |
a data.frame converted from DESeq2::DESeqResults
se <- readRDS(system.file("extdata", "rat_vole_mouseSE_salmon.rds", package = "broadSeq")) # To reduce runtime se <- se[rowData(se)$chromosome_name == 2,colData(se)$species == "Mouse"] result <- use_deseq2(se = se, colData_id = "stage", control = "Bud", treatment = "Cap", rank = TRUE)
se <- readRDS(system.file("extdata", "rat_vole_mouseSE_salmon.rds", package = "broadSeq")) # To reduce runtime se <- se[rowData(se)$chromosome_name == 2,colData(se)$species == "Mouse"] result <- use_deseq2(se = se, colData_id = "stage", control = "Bud", treatment = "Cap", rank = TRUE)
A wrapper function of EBSeq where input is an object of SummarizedExperiment
use_EBSeq(se, colData_id, control, treatment, rank = FALSE, ...)
use_EBSeq(se, colData_id, control, treatment, rank = FALSE, ...)
se |
Object of |
colData_id |
One of the columns of colData(se). It should be factors of more than one value. |
control |
Base level and one of the factor values of |
treatment |
one of the factor values of |
rank |
Logical value default FALSE. If true the result will have an additional column named "rank" and the results are ranked on "PPDE" |
... |
other arguments to be passed to main function EBSeq:: |
a data.frame object converted from the output of EBSeq::GetDEResults
.
se <- readRDS(system.file("extdata", "rat_vole_mouseSE_salmon.rds", package = "broadSeq")) # To reduce runtime se <- se[rowData(se)$chromosome_name == 2,colData(se)$species == "Mouse"] result <- use_EBSeq(se = se, colData_id = "stage", control = "Bud", treatment = "Cap", rank = TRUE)
se <- readRDS(system.file("extdata", "rat_vole_mouseSE_salmon.rds", package = "broadSeq")) # To reduce runtime se <- se[rowData(se)$chromosome_name == 2,colData(se)$species == "Mouse"] result <- use_EBSeq(se = se, colData_id = "stage", control = "Bud", treatment = "Cap", rank = TRUE)
A wrapper function of DESeq2 where input is an object of SummarizedExperiment
use_edgeR_GLM(se, colData_id, control, treatment, rank = FALSE, ...) use_edgeR_exact(se, colData_id, control, treatment, rank = FALSE, ...) use_edgeR( se, colData_id, control, treatment, rank = FALSE, edgeR.n = Inf, edgeR.adjust.method = "BH", edgeR.sort.by = "PValue", option = "GLM", ... )
use_edgeR_GLM(se, colData_id, control, treatment, rank = FALSE, ...) use_edgeR_exact(se, colData_id, control, treatment, rank = FALSE, ...) use_edgeR( se, colData_id, control, treatment, rank = FALSE, edgeR.n = Inf, edgeR.adjust.method = "BH", edgeR.sort.by = "PValue", option = "GLM", ... )
se |
Object of |
colData_id |
One of the columns of colData(se). It should be factors of more than one value. |
control |
Base level and one of the factor values of |
treatment |
one of the factor values of |
rank |
Logical value default FALSE. If true the result will have an additional column named "rank" |
... |
other arguments to be passed to edgeR:: |
edgeR.n |
argument for edgeR:: |
edgeR.adjust.method |
argument for edgeR:: |
edgeR.sort.by |
argument for edgeR:: |
option |
"GLM" or "exact" to indicate to use either edgeR:: |
a data.frame of output from edgeR::topTags
se <- readRDS(system.file("extdata", "rat_vole_mouseSE_salmon.rds", package = "broadSeq")) # To reduce runtime se <- se[rowData(se)$chromosome_name == 2,colData(se)$species == "Mouse"] result <- use_edgeR(se = se, colData_id = "stage", control = "Bud", treatment = "Cap", rank = TRUE)
se <- readRDS(system.file("extdata", "rat_vole_mouseSE_salmon.rds", package = "broadSeq")) # To reduce runtime se <- se[rowData(se)$chromosome_name == 2,colData(se)$species == "Mouse"] result <- use_edgeR(se = se, colData_id = "stage", control = "Bud", treatment = "Cap", rank = TRUE)
A wrapper function of limma where input is an object of SummarizedExperiment
use_limma_trend(se, colData_id, control, treatment, rank = FALSE, ...) use_limma_voom(se, colData_id, control, treatment, rank = FALSE, ...) use_limma( se, colData_id, control, treatment, rank = FALSE, useVoom = TRUE, showPlot = FALSE, limma.adjust = "BH", limma.sort.by = "p", limma.number = Inf, ... )
use_limma_trend(se, colData_id, control, treatment, rank = FALSE, ...) use_limma_voom(se, colData_id, control, treatment, rank = FALSE, ...) use_limma( se, colData_id, control, treatment, rank = FALSE, useVoom = TRUE, showPlot = FALSE, limma.adjust = "BH", limma.sort.by = "p", limma.number = Inf, ... )
se |
Object of |
colData_id |
One of the columns of colData(se). It should be factors of more than one value. |
control |
Base level and one of the factor values of |
treatment |
one of the factor values of |
rank |
Logical value default FALSE. If true the result will have an additional column named "rank" |
... |
other arguments to be passed to main function edgeR::calcNormFactors . |
useVoom |
whether to use limma::voom or edgeR::cpm |
showPlot |
whether to use limma::plotSA ; default FALSE |
limma.adjust |
argument for limma::topTable |
limma.sort.by |
argument for limma::topTable |
limma.number |
argument for limma::topTable |
a data.frame of output from limma::topTable
se <- readRDS(system.file("extdata", "rat_vole_mouseSE_salmon.rds", package = "broadSeq")) # To reduce runtime se <- se[rowData(se)$chromosome_name == 2,colData(se)$species == "Mouse"] result <- use_limma(se = se, colData_id = "stage", control = "Bud", treatment = "Cap", rank = TRUE)
se <- readRDS(system.file("extdata", "rat_vole_mouseSE_salmon.rds", package = "broadSeq")) # To reduce runtime se <- se[rowData(se)$chromosome_name == 2,colData(se)$species == "Mouse"] result <- use_limma(se = se, colData_id = "stage", control = "Bud", treatment = "Cap", rank = TRUE)
To identify differentially expressed genes by multiple methods
use_multDE( deFun_list, return.df = FALSE, se, colData_id, control, treatment, ... )
use_multDE( deFun_list, return.df = FALSE, se, colData_id, control, treatment, ... )
deFun_list |
a list of function which can perform differential expression analysis |
return.df |
whether to return all results aggregated form of data.frame or a list of results. Default is FALSE |
se |
Object of |
colData_id |
One of the columns of colData(se). It should be factors of more than one value. |
control |
Base level and one of the factor values of |
treatment |
one of the factor values of |
... |
other arguments to be passed to functions listed in deFun_list |
a list or data.frame
se <- readRDS(system.file("extdata", "rat_vole_mouseSE_salmon.rds", package = "broadSeq")) # To reduce runtime se <- se[rowData(se)$chromosome_name == 2,colData(se)$species == "Mouse"] # First define a named list of functions funs <- list(limma_trend = use_limma_trend, limma_voom = use_limma_voom, edgeR_exact = use_edgeR_exact, edgeR_glm = use_edgeR_GLM, deseq2 = use_deseq2, DELocal = use_DELocal, noiseq = use_NOIseq, EBSeq = use_EBSeq) multi_result <- broadSeq::use_multDE( se <- se[rowData(se)$chromosome_name == 2,colData(se)$species == "Mouse"], deFun_list = funs, return.df = TRUE, colData_id = "stage", control = "Bud", treatment = "Cap", rank = TRUE)
se <- readRDS(system.file("extdata", "rat_vole_mouseSE_salmon.rds", package = "broadSeq")) # To reduce runtime se <- se[rowData(se)$chromosome_name == 2,colData(se)$species == "Mouse"] # First define a named list of functions funs <- list(limma_trend = use_limma_trend, limma_voom = use_limma_voom, edgeR_exact = use_edgeR_exact, edgeR_glm = use_edgeR_GLM, deseq2 = use_deseq2, DELocal = use_DELocal, noiseq = use_NOIseq, EBSeq = use_EBSeq) multi_result <- broadSeq::use_multDE( se <- se[rowData(se)$chromosome_name == 2,colData(se)$species == "Mouse"], deFun_list = funs, return.df = TRUE, colData_id = "stage", control = "Bud", treatment = "Cap", rank = TRUE)
This is a wrapper function of NOISeq::noiseqbio
whose input class is ´eSet´
and output class is Output
which are not widely used. We can use as(se, "ExpressionSet")
to get an eSet easily but then it will be hard to refer the treatment and control.
The order of factors influence the log fold change sign. To keep it comparable
to other methods the NOISeq::readData()
is used internally.
use_NOIseq(se, colData_id, control, treatment, rank = FALSE, ...)
use_NOIseq(se, colData_id, control, treatment, rank = FALSE, ...)
se |
Object of |
colData_id |
One of the columns of colData(se). It should be factors of more than one value. |
control |
Base level and one of the factor values of |
treatment |
one of the factor values of |
rank |
Logical value default FALSE. If true the result will have an
additional column named "rank" which is ordered by ´prob´ values returned by
function NOISeq:: |
... |
other arguments to be passed to main function NOISeq:: |
A data.frame object from the results of NOISeq::noiseqbio(). For details check the documentation of ´NOISeq´
se <- readRDS(system.file("extdata", "rat_vole_mouseSE_salmon.rds", package = "broadSeq")) # To reduce runtime se <- se[rowData(se)$chromosome_name == 2,colData(se)$species == "Mouse"] result_Noiseq <- use_NOIseq(se = se, colData_id = "stage", control = "Bud", treatment = "Cap", rank = TRUE, r = 10) # r is an argument of NOISeq::noiseqbio
se <- readRDS(system.file("extdata", "rat_vole_mouseSE_salmon.rds", package = "broadSeq")) # To reduce runtime se <- se[rowData(se)$chromosome_name == 2,colData(se)$species == "Mouse"] result_Noiseq <- use_NOIseq(se = se, colData_id = "stage", control = "Bud", treatment = "Cap", rank = TRUE, r = 10) # r is an argument of NOISeq::noiseqbio
To use SummarizedExperiment with package samr
use_SAMseq(se, colData_id, control, treatment, rank = FALSE, ...)
use_SAMseq(se, colData_id, control, treatment, rank = FALSE, ...)
se |
Object of |
colData_id |
One of the columns of colData(se). It should be factors of more than one value. |
control |
Base level and one of the factor values of |
treatment |
one of the factor values of |
rank |
Logical value default FALSE. If true the result will have an |
... |
other arguments to be passed to samr::SAMseq |
a data.frame object as a result
Volcano plot with formatted x and y axis label.
volcanoPlot( df, pValName, lFCName, sigThreshold = 0.05, logFCThreshold = 1, labelName = NULL, selectedLabel = NULL, palette = "nejm" )
volcanoPlot( df, pValName, lFCName, sigThreshold = 0.05, logFCThreshold = 1, labelName = NULL, selectedLabel = NULL, palette = "nejm" )
df |
a data.frame object |
pValName |
column name of df which provides p-values |
lFCName |
column name of df which provides log fold change values |
sigThreshold |
Threshold for p-values |
logFCThreshold |
Threshold for log fold change values |
labelName |
column name of df to label the dots |
selectedLabel |
which dots to highlight |
palette |
one of "npg" ,"aaas", "lancet", "jco", "ucscgb", "uchicago", "simpsons" and "nejm" or similar to viridis::cividis(3) |
ggplot object