Package 'EBSeq'

Title: An R package for gene and isoform differential expression analysis of RNA-seq data
Description: Differential Expression analysis at both gene and isoform level using RNA-seq data
Authors: Xiuyu Ma [cre, aut], Ning Leng [aut], Christina Kendziorski [ctb], Michael A. Newton [ctb]
Maintainer: Xiuyu Ma <[email protected]>
License: Artistic-2.0
Version: 2.5.1
Built: 2025-01-16 02:49:45 UTC
Source: https://github.com/bioc/EBSeq

Help Index


EBSeq: RNA-Seq Differential Expression Analysis on both gene and isoform level

Description

In 'EBSeq_NingLeng-package,' a Negative Binomial-beta model was built to analyze the RNASeq data. We used the empirical bayes method and EM algrithom.

Details

Package: EBSeq_NingLeng
Type: Package
Version: 1.0
Date: 2011-06-13
License: What license is it under?
LazyLoad: yes

Author(s)

Ning Leng,Xiuyu Ma, Christina Kendziorski, Michael A. Newton

Maintainer: Ning Leng <[email protected]>> Xiuyu Ma <[email protected]>

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

See Also

EBTest, EBMultiTest

Examples

data(GeneMat)
GeneMat.small = GeneMat[c(1:10,511:550),]
Sizes = MedianNorm(GeneMat.small)
EBOut = EBTest(Data=GeneMat.small, 
	Conditions=as.factor(rep(c("C1","C2"), each=5)), 
	sizeFactors=Sizes, maxround=5)

Fit the beta distribution by method of moments

Description

'beta.mom' fits the beta distribution by method of moments.

Usage

beta.mom(qs.in)

Arguments

qs.in

A vector contains the numbers that are assumed to follow a beta distribution.

Value

alpha.hat

Returns the estimation of alpha.

beta.hat

Returns the estimation of beta.

Author(s)

Ning Leng

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

See Also

DenNHist, DenNHistTable

Examples

#tmp = rbeta(5, 5, 100)
#param = beta.mom(tmp)

Calculate the soft threshold for a target FDR

Description

'crit_fun' calculates the soft threshold for a target FDR.

Usage

crit_fun(PPEE, thre)

Arguments

PPEE

The posterior probabilities of being EE.

thre

The target FDR.

Details

Regarding a target FDR alpha, both hard threshold and soft threshold could be used. If the hard threshold is preferred, user could simply take the transcripts with PP(DE) greater than (1-alpha). Using the hard threshold, any DE transcript in the list is with FDR <= alpha.

If the soft threshold is preferred, user could take the transcripts with PP(DE) greater than crit_fun(PPEE, alpha). Using the soft threshold, the list of DE transcripts is with average FDR alpha.

Value

The adjusted FDR threshold of target FDR.

Author(s)

Ning Leng

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

Examples

data(GeneMat)
GeneMat.small = GeneMat[c(1:10, 500:600),]
Sizes = MedianNorm(GeneMat.small)
EBOut = EBTest(Data = GeneMat.small,
	Conditions = as.factor(rep(c("C1","C2"), each=5)),
	sizeFactors = Sizes, maxround = 5)
PP = GetPPMat(EBOut)
DEfound = rownames(PP)[which(PP[,"PPDE"] >= 0.95)]
str(DEfound)

SoftThre = crit_fun(PP[,"PPEE"], 0.05)
DEfound_soft = rownames(PP)[which(PP[,"PPDE"] >= SoftThre)]

Density plot to compare the empirical q's and the simulated q's from the fitted beta distribution.

Description

'DenNHist' gives the density plot that compares the empirical q's and the simulated q's from the fitted beta distribution.

Usage

DenNHist(EBOut, GeneLevel = F)

Arguments

EBOut

The output of EBTest or EBMultiTest.

GeneLevel

Indicate whether the results are from data at gene level.

Value

For data with n1 conditions and n2 uncertainty groups, n1*n2 plots will be generated. Each plot represents a subset of the data. The empirical estimation of q's will be represented as blue histograms and the density of the fitted beta distribution will be represented as the green line.

Author(s)

Ning Leng

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

See Also

beta.mom, QQP, EBTest, EBMultiTest

Examples

data(GeneMat)
GeneMat.small = GeneMat[c(500:1000),]
Sizes = MedianNorm(GeneMat.small)
EBOut = EBTest(Data = GeneMat.small,
	Conditions = as.factor(rep(c("C1","C2"), each=5)),
	sizeFactors = Sizes, maxround = 5)
par(mfrow = c(2,2))
DenNHist(EBOut)

Using EM algorithm to calculate the posterior probabilities of interested patterns in a multiple condition study

Description

'EBMultiTest' is built based on the assumption of NB-Beta Empirical Bayes model. It utilizes the EM algorithm to give the posterior probability of the interested patterns.

Usage

EBMultiTest(Data, NgVector = NULL, Conditions, sizeFactors, uc = 0, AllParti = NULL, fast = T,
    Alpha = NULL, Beta = NULL, Qtrm = 1, QtrmCut = 0, maxround = 50, 
    step1 = 1e-06, step2 = 0.01, thre = log(2), sthre = 0, 
    filter = 10, stopthre = 1e-04, nequal = 2)

Arguments

Data

A data matrix contains expression values for each transcript (gene or isoform level). In which rows should be transcripts and columns should be samples.

NgVector

A vector indicates the uncertainty group assignment of each isoform. e.g. if we use number of isoforms in the host gene to define the uncertainty groups, suppose the isoform is in a gene with 2 isoforms, Ng of this isoform should be 2. The length of this vector should be the same as the number of rows in Data. If it's gene level data, Ngvector could be left as NULL.

Conditions

A vector indicates the condition in which each sample belongs to.

sizeFactors

The normalization factors. It should be a vector with lane specific numbers (the length of the vector should be the same as the number of samples, with the same order as the columns of Data).

uc

number of unceratin positions, unit levels

AllParti

user specified set of partitions, a matrix, with each row represent a partition

fast

boolean indicator whether to use fast EBSeq or full EBSeq

Alpha

start value of hyper parameter alpha

Beta

start value of hyper parameter beta

Qtrm, QtrmCut

Transcripts with Qtrm th quantile < = QtrmCut will be removed before testing. The default value is Qtrm = 1 and QtrmCut=0. By default setting, transcripts with all 0's won't be tested.

maxround

Number of iterations. The default value is 50. Users should always check the convergency by looking at the Alpha and Beta in output. If the hyper-parameter estimations are not converged in 50 iterations, larger number is suggested.

step1

stepsize for gradient ascent of alpha

step2

stepsize for gradietn ascent of beta

thre

threshold for determining the state of a position

sthre

shrinkage threshold for iterative pruning during the EM updates

filter

filterthreshold for low expression units

stopthre

stopping threshold for EM

nequal

when there is a chain of equal states with the number of equal states bigger than nequal, equalhandle algorithm will be used to further checking the homogeneity between the group means

Value

Alpha

Fitted parameter alpha of the prior beta distribution.

Beta

Fitted parameter beta of the prior beta distribution.

P

Global proportion of DE patterns.

RList

The fitted values of r for each transcript.

MeanList

The mean of each transcript (across conditions).

VarList

The variance of each transcript (across conditions).

QList

The fitted q values of each transcript within the two conditions

Mean

The mean of each transcript within the two conditions (adjusted by normalization factors).

Var

The estimated variance of each transcript within the two conditions (adjusted by normalization factors).

PoolVar

The variance of each transcript (The pooled value of within condition EstVar).

DataNorm

Normalized expression matrix.

Iso

same as NgVector

AllZeroIndex

The transcript with expression 0 for all samples (which are not tested).

PPMat

The Posterior Probability of following each pattern (columns) for each transcript (rows). Transcripts with expression 0 for all samples are not shown in this matrix.

AllParti

selected patterns

PPMatWith0

The Posterior Probability of following each pattern (columns) for each transcript (rows). Transcripts with expression 0 for all samples are shown in this matrix with PP(any_pattrn)=NA. The transcript order is exactly the same as the order of the input data.

Conditions

The input conditions.

NumUC

The number of uncertain positions at each unit

Author(s)

Ning Leng, Xiuyu Ma

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

See Also

EBTest, GetMultiPP, GetMultiFC

Examples

data(MultiGeneMat)
Conditions = c("C1","C1","C2","C2","C3","C3")
MultiSize = MedianNorm(MultiGeneMat)
MultiOut = EBMultiTest(MultiGeneMat,Conditions=Conditions,uc = 2,
                     sizeFactors=MultiSize)
MultiPP = GetMultiPP(MultiOut)

EBSeq core

Description

core function of EBSeq computation. Users are expected to use the wrappers, 2 conditions scenario, using EBTest, more than 2 condtiions, using EBMultiTest

Usage

EBSeqTest(data, conditions, uc, AllParti = NULL, iLabel = 1, sizefactor = 1,
  iter = 50, alpha = 0.4, beta = 0, step1 = 1e-06, step2 = 0.01,
  thre = log(2), sthre = 0.001, filter = 10, stopthre = 0.001, nequal = 2)

Arguments

data

A data matrix contains expression values for each transcript (gene or isoform level). In which rows should be transcripts and columns should be samples. For single cell data, normalized counts are required

conditions

condition label for samples

uc

number of unceratin positions, unit level

AllParti

user specified set of partitions

iLabel

label for isoform, indicating how beta are shared among units

sizefactor

The normalization factors. It should be a vector with lane specific numbers (the length of the vector should be the same as the number of samples, with the same order as the columns of Data).

iter

maximum iteration step of EM

alpha

start value of hyper parameter alpha

beta

start value of hyper parameter beta

step1

stepsize for gradient ascent of alpha

step2

stepsize for gradietn ascent of beta

thre

threshold for determining the state of a position

sthre

shrinkage threshold for iterative pruning during the EM updates

filter

filterthreshold for low expression units

stopthre

stopping threshold for EM

nequal

when there is a chain of equal states with the number of equal states bigger than nequal, equalhandle algorithm will be used to further checking the homogeneity between the group means

Value

a list containing selected DE patterns and their posterior probabilities, values for alpha and beta, some moments of the data


Using EM algorithm to calculate the posterior probabilities of being DE

Description

Base on the assumption of NB-Beta Empirical Bayes model, the EM algorithm is used to get the posterior probability of being DE.

Usage

EBTest(Data, NgVector = NULL, Conditions, sizeFactors, fast = T,
    Alpha = NULL, Beta = NULL, Qtrm = 1, QtrmCut = 0, maxround = 50, 
    step1 = 1e-06, step2 = 0.01, thre = log(2), sthre = 0, 
    filter = 10, stopthre = 1e-4)

Arguments

Data

A data matrix contains expression values for each transcript (gene or isoform level). In which rows should be transcripts and columns should be samples.

NgVector

A vector indicates the uncertainty group assignment of each isoform. e.g. if we use number of isoforms in the host gene to define the uncertainty groups, suppose the isoform is in a gene with 2 isoforms, Ng of this isoform should be 2. The length of this vector should be the same as the number of rows in Data. If it's gene level data, Ngvector could be left as NULL.

Conditions

A factor indicates the condition which each sample belongs to.

sizeFactors

The normalization factors. It should be a vector with lane specific numbers (the length of the vector should be the same as the number of samples, with the same order as the columns of Data).

fast

boolean indicator whether to use fast EBSeq or full EBSeq

Alpha

start value of hyper parameter alpha

Beta

start value of hyper parameter beta

Qtrm, QtrmCut

Transcripts with Qtrm th quantile < = QtrmCut will be removed before testing. The default value is Qtrm = 1 and QtrmCut=0. By default setting, transcripts with all 0's won't be tested.

maxround

Number of iterations. The default value is 50. Users should always check the convergency by looking at the Alpha and Beta in output. If the hyper-parameter estimations are not converged in 50 iterations, larger number is suggested.

step1

stepsize for gradient ascent of alpha

step2

stepsize for gradietn ascent of beta

thre

threshold for determining the state of a position

sthre

shrinkage threshold for iterative pruning during the EM updates

filter

filterthreshold for low expression units

stopthre

stopping threshold for EM

Details

For each transcript gi within condition, the model assumes: X_gis|mu_gi ~ NB (r_gi0 * l_s, q_gi) q_gi|alpha, beta^N_g ~ Beta (alpha, beta^N_g) In which the l_s is the sizeFactors of samples.

The function will test "H0: q_gi^C1 = q_gi^C2" and "H1: q_gi^C1 != q_gi^C2."

Value

Alpha

Fitted parameter alpha of the prior beta distribution.

Beta

Fitted parameter beta of the prior beta distribution.

P

Global proportion of DE patterns.

RList

The fitted values of r for each transcript.

MeanList

The mean of each transcript (across conditions).

VarList

The variance of each transcript (across conditions).

QList

The fitted q values of each transcript within the two conditions

Mean

The mean of each transcript within the two conditions (adjusted by normalization factors).

Var

The estimated variance of each transcript within the two conditions (adjusted by normalization factors).

PoolVar

The variance of each transcript (The pooled value of within condition EstVar).

DataNorm

Normalized expression matrix.

AllZeroIndex

The transcript with expression 0 for all samples (which are not tested).

Iso

same as NgVector

PPMat

A matrix contains posterior probabilities of being EE (the first column) or DE (the second column). Rows are transcripts. Transcripts with expression 0 for all samples are not shown in this matrix.

AllParti

selected patterns

PPMatWith0

A matrix contains posterior probabilities of being EE (the first column) or DE (the second column). Rows are transcripts. Transcripts with expression 0 for all samples are shown as PP(EE) = PP(DE) = NA in this matrix. The transcript order is exactly the same as the order of the input data.

Conditions

The input conditions.

Author(s)

Ning Leng, Xiuyu Ma

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

See Also

EBMultiTest, PostFC, GetPPMat

Examples

data(GeneMat)
str(GeneMat)
Sizes = MedianNorm(GeneMat)
EBOut = EBTest(Data=GeneMat, Conditions=as.factor(rep(c("C1","C2"),each=5)),
       sizeFactors = Sizes)
PP = GetPPMat(EBOut)

The Prior Predictive Distribution of being EE

Description

'f0' gives the Prior Predictive Distribution of being EE.

Usage

f0(Input, AlphaIn, BetaIn, EmpiricalR, NumOfGroups, log)

Arguments

Input

Expression Values.

AlphaIn, BetaIn, EmpiricalR

The parameters estimated from last iteration of EM.

NumOfGroups

How many transcripts within each Ng group.

log

If true, will give the log of the output.

Value

The function will return the prior predictive distribution values of being EE.

Author(s)

Ning Leng

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

See Also

f1

Examples

#
#f0(matrix(rnorm(100,100,1),ncol=10), .5, .6,
#	matrix(rnorm(100,200,1),ncol=10), 100, TRUE)

The Prior Predictive Distribution of being DE

Description

'f1' gives the Prior Predictive Distribution of DE.

Usage

f1(Input1, Input2, AlphaIn, BetaIn, EmpiricalRSP1, 
	EmpiricalRSP2, NumOfGroup, log)

Arguments

Input1

Expressions from Condition1.

Input2

Expressions from Condition2.

AlphaIn, BetaIn, EmpiricalRSP1, EmpiricalRSP2

The parameters estimated from last iteration of EM.

NumOfGroup

How many transcripts within each Ng group.

log

If true, will give the log of the output.

Value

The function will return the prior predictive distribution values of being DE.

Author(s)

Ning Leng

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

See Also

f0

Examples

#f1(matrix(rnorm(100,100,1),ncol=10), 
#	matrix(rnorm(100,100,1),ncol=10), .5, .6, 
#	matrix(rnorm(100,200,1),ncol=10), 
#	matrix(rnorm(100,200,1),ncol=10), 100, TRUE)

The simulated data for two condition gene DE analysis

Description

'GeneMat' gives the simulated data for two condition gene DE analysis.

Usage

data(GeneMat)

Source

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

See Also

IsoList

Examples

data(GeneMat)

Obtain Differential Expression Analysis Results in a Two-condition Test

Description

Obtain DE analysis results in a two-condition test using the output of EBTest()

Usage

GetDEResults(EBPrelim, FDR=0.05, Method="robust",
				     FDRMethod="hard", Threshold_FC=0.7,
					   Threshold_FCRatio=0.3, SmallNum=0.01)

Arguments

EBPrelim

Output from the function EBTest().

FDR

Target FDR, defaut is 0.05.

FDRMethod

"hard" or "soft". Giving a target FDR alpha, either hard threshold and soft threshold may be used. If the hard threshold is preferred, DE transcripts are defined as the the transcripts with PP(DE) greater than (1-alpha). Using the hard threshold, any DE transcript in the list has FDR <= alpha.

If the soft threshold is preferred, the DE transcripts are defined as the transcripts with PP(DE) greater than crit_fun(PPEE, alpha). Using the soft threshold, the list of DE transcripts has average FDR alpha.

Based on results from our simulation studies, hard thresholds provide a better-controlled empirical FDR when sample size is relatively small(Less than 10 samples in each condition). User may consider the soft threshold when sample size is large to improve power.

Method

"robust" or "classic". Using the "robust" option, EBSeq is more robust to genes with outliers and genes with extremely small variances. Using the "classic" option, the results will be more comparable to those obtained by using the GetPPMat() function from earlier version (<= 1.7.0) of EBSeq. Default is "robust".

Threshold_FC

Threshold for the fold change (FC) statistics. The default is 0.7. The FC statistics are calculated as follows. First the posterior FC estimates are calculated using PostFC() function. The FC statistics is defined as exp(-|log posterior FC|) and therefore is always less than or equal to 1. The default threshold was selected as the optimal threshold learned from our simulation studies. By setting the threshold as 0.7, the expected FC for a DE transcript is less than 0.7 (or greater than 1/0.7=1.4). User may specify their own threshold here. A higher (less conservative) threshold may be used here when sample size is large. Our simulation results indicated that when there are more than or equal to 5 samples in each condition, a less conservative threshold will improve the power when the FDR is still well-controlled. The parameter will be ignored if Method is set as "classic".

Threshold_FCRatio

Threshold for the fold change ratio (FCRatio) statistics. The default is 0.3. The FCRatio statistics are calculated as follows. First we get another revised fold change statistic called Median-FC statistic for each transcript. For each transcript, we calculate the median of normalized expression values within each condition. The MedianFC is defined as exp(-|log((C1Median+SmallNum)/(C2Median+SmallNum))|). Note a small number is added to avoid Inf and NA. See SmallNum for more details. The FCRatio is calculated as exp(-|log(FCstatistics/MedianFC)|). Therefore it is always less than or equal to 1. The default threshold was selected as the optimal threshold learned from our simulation studies. By setting the threshold as 0.3, the FCRatio for a DE transcript is expected to be larger than 0.3.

SmallNum

When calculating the FCRatio (or Median-FC), a small number is added for each transcript in each condition to avoid Inf and NA. Default is 0.01.

Details

GetDEResults() function takes output from EBTest() function and output a list of DE transcripts under a target FDR. It also provides posterior probability estimates for each transcript.

Value

DEfound

A list of DE transcripts.

PPMat

Posterior probability matrix. Transcripts are following the same order as in the input matrix. Transcripts that were filtered by magnitude (in EBTest function), FC, or FCR are assigned with NA for both PPDE and PPEE.

Status

Each transcript will be assigned with one of the following values: "DE", "EE", "Filtered: Low Expression", "Filtered: Fold Change" and "Filtered: Fold Change Ratio". Transcripts are following the same order as in the input matrix.

Author(s)

Ning Leng, Yuan Li

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

See Also

EBTest

Examples

data(GeneMat)
str(GeneMat)
GeneMat.small = GeneMat[c(1:10,511:550),]
Sizes = MedianNorm(GeneMat.small)
EBOut = EBTest(Data = GeneMat.small,
	Conditions = as.factor(rep(c("C1","C2"), each = 5)),
	sizeFactors = Sizes, maxround = 5)
Out = GetDEResults(EBOut)

Calculate the Fold Changes for Multiple Conditions

Description

'GetMultiFC' calculates the Fold Changes for each pair of conditions in a multiple condition study.

Usage

GetMultiFC(EBMultiOut, SmallNum = 0.01)

Arguments

EBMultiOut

The output of EBMultiTest function.

SmallNum

A small number will be added for each transcript in each condition to avoid Inf and NA. Default is 0.01.

Details

Provide the FC (adjusted by the normalization factors) for each pair of comparisons. A small number will be added for each transcript in each condition to avoid Inf and NA. Default is set to be 0.01.

Value

FCMat

The FC of each pair of comparison (adjusted by the normalization factors).

Log2FCMat

The log 2 FC of each pair of comparison (adjusted by the normalization factors).

PostFCMat

The posterior FC of each pair of comparison.

Log2PostFCMat

The log 2 posterior FC of each pair of comparison.

CondMean

The mean of each transcript within each condition (adjusted by the normalization factors).

ConditionOrder

The condition assignment for C1Mean, C2Mean, etc.

Author(s)

Ning Leng

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

See Also

EBMultiTest, PostFC

Examples

data(MultiGeneMat)
MultiGeneMat.small = MultiGeneMat[201:210,]

Conditions = c("C1","C1","C2","C2","C3","C3")

PosParti = GetPatterns(Conditions)
Parti = PosParti[-3,]

MultiSize = MedianNorm(MultiGeneMat.small)

MultiOut = EBMultiTest(MultiGeneMat.small, 
	NgVector=NULL, Conditions=Conditions, 
	AllParti=Parti, sizeFactors=MultiSize, 
	maxround=5)

MultiFC = GetMultiFC(MultiOut)

Posterior Probability of Each Transcript

Description

'GetMultiPP' generates the Posterior Probability of being each pattern of each transcript based on the EBMultiTest output.

Usage

GetMultiPP(EBout)

Arguments

EBout

The output of EBMultiTest function.

Value

PP

The poster probabilities of being each pattern.

MAP

Gives the most likely pattern.

Patterns

The Patterns.

Author(s)

Ning Leng

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

See Also

GetPPMat

Examples

data(MultiGeneMat)
MultiGeneMat.small = MultiGeneMat[201:210,]

Conditions = c("C1","C1","C2","C2","C3","C3")
PosParti = GetPatterns(Conditions)
Parti = PosParti[-3,]
MultiSize = MedianNorm(MultiGeneMat.small)

MultiOut = EBMultiTest(MultiGeneMat.small, 
	NgVector=NULL, Conditions=Conditions, 
	AllParti=Parti, sizeFactors=MultiSize, 
	maxround=5)
MultiPP = GetMultiPP(MultiOut)

Ng Vector

Description

'GetNg' generates the Ng vector for the isoform level data. (While using the number of isoform in the host gene to define the uncertainty groups.)

Usage

GetNg(IsoformName, GeneName, TrunThre = 3)

Arguments

IsoformName

A vector contains the isoform names.

GeneName

The gene names of the isoforms in IsoformNames (Should be in the same order).

TrunThre

The number of uncertainty groups the user wish to define. The default is 3.

Value

GeneNg

The number of isoforms that are contained in each gene.

GeneNgTrun

The truncated Ng of each gene. (The genes contain more than 3 isoforms are with Ng 3.)

IsoformNg

The Ng of each isoform.

IsoformNgTrun

The truncated Ng of each isoform (could be used to define the uncertainty group assignment).

Author(s)

Ning Leng

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

Examples

data(IsoList)

IsoMat = IsoList$IsoMat
IsoNames = IsoList$IsoNames
IsosGeneNames = IsoList$IsosGeneNames
IsoSizes = MedianNorm(IsoMat)
NgList = GetNg(IsoNames, IsosGeneNames)

#IsoNgTrun = NgList$IsoformNgTrun
#IsoEBOut = EBTest(Data = IsoMat, NgVector = IsoNgTrun,
#	Conditions = as.factor(rep(c("C1","C2"), each=5)),
#	sizeFactors = IsoSizes, maxround = 5)

Calculate normalized expression matrix

Description

'GetNormalizedMat' calculates the normalized expression matrix. (Note: this matrix is only used for visualization etc. EBTes and EBMultiTest request *un-adjusted* expressions and normalization factors.)

Usage

GetNormalizedMat(Data, Sizes)

Arguments

Data

The data matrix with transcripts in rows and lanes in columns.

Sizes

A vector contains the normalization factor for each lane.

Value

The function will return a normalized matrix.

Author(s)

Ning Leng

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

Examples

data(GeneMat)
str(GeneMat)
Sizes = MedianNorm(GeneMat)
NormData = GetNormalizedMat(GeneMat, Sizes)

Generate all possible patterns in a multiple condition study

Description

'GetPatterns' generates all possible patterns in a multiple condition study.

Usage

GetPatterns(Conditions)

Arguments

Conditions

The names of the Conditions in the study.

Value

A matrix describe all possible patterns.

Author(s)

Ning Leng

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

Examples

Conditions = c("C1","C1","C2","C2","C3","C3")
PosParti = GetPatterns(Conditions)

Posterior Probability of Transcripts

Description

'GetPPMat' generates the Posterior Probability of being each pattern of each transcript based on the EBTest output.

Usage

GetPPMat(EBout)

Arguments

EBout

The output of EBTest function.

Value

The poster probabilities of being EE (first column) and DE (second column).

Author(s)

Ning Leng

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

Examples

data(GeneMat)
GeneMat.small = GeneMat[c(500:550),]
Sizes = MedianNorm(GeneMat.small)
EBOut = EBTest(Data = GeneMat.small,
	Conditions = as.factor(rep(c("C1","C2"), each=5)),
	sizeFactors = Sizes, maxround = 5)
PP = GetPPMat(EBOut)
str(PP)
head(PP)

Get selected patterns in a multiple condition study

Description

'GetSelectedPatterns' get selected patterns in a multiple condition study.

Usage

GetSelectedPatterns(EBout)

Arguments

EBout

Results from EBMultiTest

Value

A matrix describe selected patterns.

Author(s)

Ning Leng, Xiuyu Ma

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

Examples

data(MultiGeneMat)
Conditions=c("C1","C1","C2","C2","C3","C3")
MultiSize=MedianNorm(MultiGeneMat)
MultiOut=EBMultiTest(MultiGeneMat,Conditions=Conditions,
 sizeFactors=MultiSize)
PosParti=GetSelectedPatterns(MultiOut)

The simulated data for two condition isoform DE analysis

Description

'IsoList' gives the simulated data for two condition isoform DE analysis.

Usage

data(IsoList)

Source

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

See Also

GeteMat

Examples

data(IsoList)

The simulated data for multiple condition isoform DE analysis

Description

'IsoMultiList' gives a set of simulated data for multiple condition isoform DE analysis.

Usage

data(IsoMultiList)

Source

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

See Also

IsoList

Examples

data(IsoMultiList)

Likelihood Function of the NB-Beta Model

Description

'Likefun' specifies the Likelihood Function of the NB-Beta Model.

Usage

Likefun(ParamPool, InputPool)

Arguments

ParamPool

The parameters that will be estimated in EM.

InputPool

The control parameters that will not be estimated in EM.

Value

The function will return the log-likelihood.

Author(s)

Ning Leng

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

Examples

#x1 = c(.6,.7,.3)
#Input = matrix(rnorm(100,100,1), ncol=10)
#RIn = matrix(rnorm(100,200,1), ncol=10)
#InputPool = list(Input[,1:5], Input[,6:10], Input,
#	rep(.1,100), 1, RIn, RIn[,1:5], RIn[,6:10], 100) 
#Likefun(x1, InputPool)

Likelihood Function of the NB-Beta Model In Multiple Condition Test

Description

'LikefunMulti' specifies the Likelihood Function of the NB-Beta Model In Multiple Condition Test.

Usage

LikefunMulti(ParamPool, InputPool)

Arguments

ParamPool

The parameters that will be estimated in EM.

InputPool

The control parameters that will not be estimated in EM.

Value

The function will return the log-likelihood.

Author(s)

Ning Leng

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

Examples

#x1 = c(.6,.7,.3)
#Input = matrix(rnorm(100,100,1),ncol=10)
#RIn = matrix(rnorm(100,200,1),ncol=10)
#InputPool = list(list(Input[,1:5],Input[,6:10]), 
#	Input, cbind(rep(.1, 10), rep(.9,10)), 1, 
#	RIn, list(RIn[,1:5],RIn[,6:10]), 
#	10, rbind(c(1,1),c(1,2)))                    
#LikefunMulti(x1, InputPool)

The function to run EM (one round) algorithm for the NB-beta model.

Description

'LogN' specifies the function to run (one round of) the EM algorithm for the NB-beta model.

Usage

LogN(Input, InputSP, EmpiricalR, EmpiricalRSP, NumOfEachGroup, 
	AlphaIn, BetaIn, PIn, NoneZeroLength)

Arguments

Input, InputSP

The expressions among all the samples.

NumOfEachGroup

Number of genes in each Ng group.

AlphaIn, PIn, BetaIn, EmpiricalR, EmpiricalRSP

The parameters from the last EM step.

NoneZeroLength

Number of Ng groups.

Author(s)

Ning Leng

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

Examples

#Input = matrix(rnorm(100,100,1), ncol=10)
#rownames(Input) = paste("g",1:10)
#RIn = matrix(rnorm(100,200,1), ncol=10)
#res = LogN(Input, list(Input[,1:5], Input[,6:10]),
#	RIn, list(RIn[,1:5], RIn[,6:10]), 
#	10, .6, .7, .3, 1)

EM algorithm for the NB-beta model in the multiple condition test

Description

'LogNMulti' specifies the function to run (one round of) the EM algorithm for the NB-beta model in the multiple condition test.

Usage

LogNMulti(Input, InputSP, EmpiricalR, EmpiricalRSP, 
	NumOfEachGroup, AlphaIn, BetaIn, PIn, 
	NoneZeroLength, AllParti, Conditions)

Arguments

Input, InputSP

The expressions among all the samples.

NumOfEachGroup

Number of genes in each Ng group.

AlphaIn, PIn, BetaIn, EmpiricalR, EmpiricalRSP

The parameters from the last EM step.

NoneZeroLength

Number of Ng groups.

AllParti

The patterns of interests.

Conditions

The condition assignment for each sample.

Author(s)

Ning Leng

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

Examples

#

#Input = matrix(rnorm(100,100,1),ncol=10)
#rownames(Input) = paste("g",1:10)
#RIn = matrix(rnorm(100,200,1), ncol=10)
#res = LogNMulti(Input, list(Input[,1:5], Input[,6:10]),
#	RIn, list(RIn[,1:5], RIn[,6:10]), 10, .6, .7, 
#	c(.3,.7), 1, rbind(c(1,1), c(1,2)), 
#	as.factor(rep(c("C1","C2"), each=5)))

Median Normalization

Description

'MedianNorm' specifies the median-by-ratio normalization function from Anders et. al., 2010.

Usage

MedianNorm(Data, alternative = FALSE)

Arguments

Data

The data matrix with transcripts in rows and lanes in columns.

alternative

if alternative = TRUE, the alternative version of median normalization will be applied. The alternative method is similar to median-by-ratio normalization, but can deal with the cases when all of the genes/isoforms have at least one zero counts (in which case the median-by-ratio normalization will fail).

In more details, in median-by-ratio normalization (denote l_1 as libsize for sample 1 as an example, assume total S samples):

hatl_1 = median_g [ X_g1 / (X_g1*X_g2*...*X_gS)^-S ] (1)

which estimates l_1 / (l_1 * l_2 * ... * l_S)^-S. Since we have the constrain that (l_1 * l_2 * ... * l_S) = 1, equation (1) estimates l_1. Note (1) could also be written as:

hatl_1 = median_g [ (X_g1/X_g1 * X_g1/X_g2 * .... * X_g1/X_gS)^-S]

In the alternative method, we estimate l_1/l_1, l_1/l_2, ... l_1/l_S individually by taking median_g(X_g1/X_g1), median_g(X_g1/X_g2) ... Then estimate l_1 = l_1 / (l_1 * l_2 * ... * l_S)^-S by taking the geomean of these estimates:

hatl_1 = [ median_g(X_g1/X_g1) * median_g(X_g1/X_g2) * median_g(X_g1/X_g3) * ... * median_g(X_g1/X_gS) ] ^-S

Value

The function will return a vector contains the normalization factor for each lane.

Author(s)

Ning Leng

References

Simon Anders and Wolfgang Huber. Differential expression analysis for sequence count data. Genome Biology (2010) 11:R106 (open access)

See Also

QuantileNorm

Examples

data(GeneMat)
Sizes = MedianNorm(GeneMat)
#EBOut = EBTest(Data = GeneMat,
#	Conditions = as.factor(rep(c("C1","C2"), each=5)),
#	sizeFactors = Sizes, maxround = 5)

The simulated data for multiple condition gene DE analysis

Description

'MultiGeneMat' generates a set of the simulated data for multiple condition gene DE analysis.

Usage

data(MultiGeneMat)

Source

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

See Also

GeneMat

Examples

data(MultiGeneMat)

Visualize the patterns

Description

'PlotPattern' generates the visualized patterns before the multiple condition test.

Usage

PlotPattern(Patterns)

Arguments

Patterns

The output of GetPatterns function.

Value

A heatmap to visualize the patterns of interest.

Author(s)

Ning Leng

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

Examples

Conditions = c("C1","C1","C2","C2","C3","C3")
Patterns = GetPatterns(Conditions)
PlotPattern(Patterns)

Plot Posterior FC vs FC

Description

'PlotPostVsRawFC' helps the users visualize the posterior FC vs FC in a two condition study.

Usage

PlotPostVsRawFC(EBOut, FCOut)

Arguments

EBOut

The output of EBMultiTest function.

FCOut

The output of PostFC function.

Value

A figure shows fold change vs posterior fold change.

Author(s)

Ning Leng

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

See Also

PostFC

Examples

data(GeneMat)
GeneMat.small = GeneMat[c(500:600),]
Sizes = MedianNorm(GeneMat.small)
EBOut = EBTest(Data = GeneMat.small,
	Conditions = as.factor(rep(c("C1","C2"), each=5)),
	sizeFactors = Sizes, maxround = 5)
FC = PostFC(EBOut)
PlotPostVsRawFC(EBOut,FC)

Fit the mean-var relationship using polynomial regression

Description

'PolyFitPlot' fits the mean-var relationship using polynomial regression.

Usage

PolyFitPlot(X, Y, nterms, xname = "Estimated Mean", 
	yname = "Estimated Var", pdfname = "", 
	xlim =  c(-1,5), ylim = c(-1,7), ChangeXY = F, 
	col = "red")

Arguments

X

The first group of values want to be fitted by the polynomial regression (e.g Mean of the data).

Y

The second group of values want to be fitted by the polynomial regression (e.g. variance of the data). The length of Y should be the same as the length of X.

nterms

How many polynomial terms want to be used.

xname

Name of the x axis.

yname

Name of the y axis.

pdfname

Name of the plot.

xlim

The x limits of the plot.

ylim

The y limits of the plot.

ChangeXY

If ChangeXY is setted to be TRUE, X will be treated as the dependent variable and Y will be treated as the independent one. Default is FALSE.

col

Color of the fitted line.

Value

The PolyFitPlot function provides a smooth scatter plot of two variables and their best fitting line of polynomial regression.

Author(s)

Ning Leng

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

Examples

data(IsoList)
str(IsoList)
IsoMat = IsoList$IsoMat
IsoNames = IsoList$IsoNames
IsosGeneNames = IsoList$IsosGeneNames
IsoSizes = MedianNorm(IsoMat)
NgList = GetNg(IsoNames, IsosGeneNames)

IsoNgTrun = NgList$IsoformNgTrun
#IsoEBOut = EBTest(Data = IsoMat.small, 
#	NgVector = IsoNgTrun,
#	Conditions = as.factor(rep(c("C1","C2"), each=5)),
#	sizeFactors = IsoSizes, maxround = 5)

#par(mfrow=c(2,2))
#PolyFitValue = vector("list",3)

#for(i in 1:3)
#	PolyFitValue[[i]] = PolyFitPlot(IsoEBOut$C1Mean[[i]],
#		IsoEBOut$C1EstVar[[i]], 5)

#PolyAll = PolyFitPlot(unlist(IsoEBOut$C1Mean), 
#	unlist(IsoEBOut$C1EstVar), 5)

#lines(log10(IsoEBOut$C1Mean[[1]][PolyFitValue[[1]]$sort]),
#	PolyFitValue[[1]]$fit[PolyFitValue[[1]]$sort], 
#	col="yellow", lwd=2)
#lines(log10(IsoEBOut$C1Mean[[2]][PolyFitValue[[2]]$sort]),
#	PolyFitValue[[2]]$fit[PolyFitValue[[2]]$sort], 
#	col="pink", lwd=2)
#lines(log10(IsoEBOut$C1Mean[[3]][PolyFitValue[[3]]$sort]),
#	PolyFitValue[[3]]$fit[PolyFitValue[[3]]$sort], 
#	col="green", lwd=2)

#legend("topleft",c("All Isoforms","Ng = 1","Ng = 2","Ng = 3"),
#	col = c("red","yellow","pink","green"), 
#	lty=1, lwd=3, box.lwd=2)

Calculate the posterior fold change for each transcript across conditions

Description

'PostFC' calculates the posterior fold change for each transcript across conditions.

Usage

PostFC(EBoutput, SmallNum = 0.01)

Arguments

EBoutput

The ourput from function EBTest.

SmallNum

A small number will be added for each transcript in each condition to avoid Inf and NA. Default is 0.01.

Value

Provide both FC and posterior FC across two conditions. FC is calculated as (MeanC1+SmallNum)/(MeanC2+SmallNum). And Posterior FC is calculated as:

# Post alpha P_a_C1 = alpha + r_C1 * n_C1

# Post beta P_b_C1 = beta + Mean_C1 * n_C1

# P_q_C1 = P_a_C1 / (P_a_C1 + P_b_C1)

# Post FC = ((1-P_q_C1)/P_q_c1) / ( (1-P_q_c2)/P_q_c2)

PostFC

The posterior FC across two conditions.

RealFC

The FC across two conditions (adjusted by the normalization factors).

Direction

The diretion of FC calculation.

Author(s)

Ning Leng

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

See Also

EBTest, GetMultiFC

Examples

data(GeneMat)
GeneMat.small = GeneMat[c(500:550),]
Sizes = MedianNorm(GeneMat.small)
EBOut = EBTest(Data = GeneMat.small,
	Conditions = as.factor(rep(c("C1","C2"), each=5)),
	sizeFactors = Sizes, maxround = 5)
FC=PostFC(EBOut)

The Quantile-Quantile Plot to compare the empirical q's and simulated q's from fitted beta distribution

Description

'QQP' gives the Quantile-Quantile Plot to compare the empirical q's and simulated q's from fitted beta distribution.

Usage

QQP(EBOut, GeneLevel = F)

Arguments

EBOut

The output of EBTest or EBMultiTest.

GeneLevel

Indicate whether the results are from data at gene level.

Value

For data with n1 conditions and n2 uncertainty groups, n1*n2 plots will be generated. Each plot represents a subset of the data.

Author(s)

Ning Leng

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

See Also

EBTest, EBMultiTest, DenNHist

Examples

data(GeneMat)
GeneMat.small = GeneMat[c(500:1000),]
Sizes = MedianNorm(GeneMat.small)
EBOut = EBTest(Data = GeneMat.small,
	Conditions = as.factor(rep(c("C1","C2"), each=5)),
	sizeFactors = Sizes, maxround = 5)
par(mfrow=c(2,2))
QQP(EBOut)

Quantile Normalization

Description

'QuantileNorm' gives the quantile normalization.

Usage

QuantileNorm(Data, Quantile)

Arguments

Data

The data matrix with transcripts in rows and lanes in columns.

Quantile

The quantile the user wishs to use. Should be a number between 0 and 1.

Details

Use a quantile point to normalize the data.

Value

The function will return a vector contains the normalization factor for each lane.

Author(s)

Ning Leng

References

Bullard, James H., et al. Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC bioinformatics 11.1 (2010): 94.

See Also

MedianNorm

Examples

data(GeneMat)
Sizes = QuantileNorm(GeneMat,.75)
#EBOut = EBTest(Data = GeneMat,
#	Conditions = as.factor(rep(c("C1","C2"), each=5)),
#	sizeFactors = Sizes, maxround = 5)

Rank Normalization

Description

'RankNorm' gives the rank normalization.

Usage

RankNorm(Data)

Arguments

Data

The data matrix with transcripts in rows and lanes in columns.

Value

The function will return a matrix contains the normalization factor for each lane and each transcript.

Author(s)

Ning Leng

See Also

MedianNorm, QuantileNorm

Examples

data(GeneMat)
Sizes = RankNorm(GeneMat)
# Run EBSeq
# EBres = EBTest(Data = GeneData, NgVector = rep(1,10^4), 
#	Vect5End = rep(1,10^4), Vect3End = rep(1,10^4), 
#	Conditions = as.factor(rep(c(1,2), each=5)), 
#	sizeFactors = Sizes, maxround=5)