Title: | Profile RNA-Seq Data Using TB Pathway Signatures |
---|---|
Description: | Gene signatures of TB progression, TB disease, and other TB disease states have been validated and published previously. This package aggregates known signatures and provides computational tools to enlist their usage on other datasets. The TBSignatureProfiler makes it easy to profile RNA-Seq data using these signatures and includes common signature profiling tools including ASSIGN, GSVA, and ssGSEA. Original models for some gene signatures are also available. A shiny app provides some functionality alongside for detailed command line accessibility. |
Authors: | Aubrey R. Odom [aut, cre, dtm] , David Jenkins [aut, org] , Xutao Wang [aut], Yue Zhao [ctb] , Christian Love [ctb], W. Evan Johnson [aut] |
Maintainer: | Aubrey R. Odom <[email protected]> |
License: | MIT + file LICENSE |
Version: | 1.19.0 |
Built: | 2024-10-31 05:54:14 UTC |
Source: | https://github.com/bioc/TBSignatureProfiler |
A function to obtain predicted score for TB gene signatures that do not need to be retrained.
.OriginalModel_NoRetraining(input, useAssay, geneSignaturesName, BPPARAM)
.OriginalModel_NoRetraining(input, useAssay, geneSignaturesName, BPPARAM)
input |
A SummarizedExperiment object with gene symbols as the assay row names. |
useAssay |
A character string or an integer specifying the assay in the
|
geneSignaturesName |
A character string/vector specifying the signature
of interest. If |
BPPARAM |
An instance inherited from |
Anderson_42 and Anderson_OD_51 used difference of sums to calculate prediction scores. Difference of sums is obtained by subtracting the sum of the expression of genes within signatures that are down-regulated from the sum of the expression of genes that are up-regulated within signatures. Kaforou_27, Kaforou_OD_44, and Kaforou_OD_53 used difference of arithmetic means to calculate prediction scores. Sweeney_OD_3 used difference of arithmetic mean to calculate prediction score.
A SummarizedExperiment object with predicted scores for each sample obtained from the signature's original model.
A function to obtain predicted score for TB gene signatures that need retraining of original models.
.OriginalModel_Retraining(input, useAssay, geneSignaturesName, adj, BPPARAM)
.OriginalModel_Retraining(input, useAssay, geneSignaturesName, adj, BPPARAM)
input |
A SummarizedExperiment object with gene symbols as the assay row names. |
useAssay |
A character string or an integer specifying the assay in the
|
geneSignaturesName |
A character string/vector specifying the signature
of interest. If |
adj |
A small positive real number used in |
BPPARAM |
An instance inherited from |
Maertzdorf_4 and Maertzdorf_15 were trained using a random forest to distinguish patients with active TB from healthy controls.
Verhagen_10 was also trained using a random forest to distinguish samples with active TB
from either latent infection or healthy controls.
The random forest model was build using randomForest
.
Jacobsen_3 were trained using linear discriminant analysis (LDA) to distinguish samples with active TB from latent infection status.
Sambarey_HIV_10 were also trained using LDA to distinguish samples with active TB
from either latent infection, healthy control, or other disease (HIV).
The LDA model was built using lda
.
Berry_OD_86 and Berry_393 were trained using K-nearest neighbors (KNN) model to
differentiate samples with active TB from latent infection status.
The KNN model was built using knn
.
Suliman_RISK_4 and Zak_RISK_16 were trained using support vector machines (SVM)
to distinguish TB progressor from non-progressors. The input gene expression features
for Suliman_RISK_4 used the paired ratio of GAS6/CD1C, SEPTIN4/BLK, SEPTIN4/CD1C, GAS6/BLK.
The SVM model was built using svm
.
A SummarizedExperiment object with predicted scores for each sample obtained from the signature's original model.
This function allows users to integrate new signatures into the TBSP with a function that updates the TBsignatures, TBcommon, sigAnnotData and common_sigAnnotData objects. Users that wish to use this function should do so with the downloaded package as a working directory, and not as a casual package function. This function does not complete all required updates to the package for a signature to be full added; users should check the vignette "Submitting Signatures to the TBSP Package" on the TBSP website for a walkthrough of this complete process. Also note that this function only adds one signature at a time, and must me run multiple times to add subsequent signatures.
addTBsignature( sigsymbols, authname, signame_common = NULL, sigtype, tissuetype, saveobjs = FALSE, views = TRUE )
addTBsignature( sigsymbols, authname, signame_common = NULL, sigtype, tissuetype, saveobjs = FALSE, views = TRUE )
sigsymbols |
a |
authname |
a |
signame_common |
a |
sigtype |
a |
tissuetype |
a |
saveobjs |
|
views |
logical. If |
Either data objects TBsignatures
, TBcommon
,
sigAnnotData
, and common_sigAnnotData
will be updated with the
new signature and overwritten if saveobjs = FALSE
, or no output will
be produced except errors and messages for checking that the function
runs correctly given the inputs.
# Mock example signature TBSignatureProfiler:::addTBsignature(sigsymbols = c("GBP5", "BATF2", "GZMA"), authname = "Odom", signame_common = NULL, sigtype = "Disease/HIV", tissuetype = "PBMC", saveobjs = FALSE, views = FALSE)
# Mock example signature TBSignatureProfiler:::addTBsignature(sigsymbols = c("GBP5", "BATF2", "GZMA"), authname = "Odom", signame_common = NULL, sigtype = "Disease/HIV", tissuetype = "PBMC", saveobjs = FALSE, views = FALSE)
Bootstrap on Leave-one-out CV with Logistic Regression.
Bootstrap_LOOCV_LR_AUC(df, targetVec, nboot)
Bootstrap_LOOCV_LR_AUC(df, targetVec, nboot)
df |
a |
targetVec |
a binary vector of the response variable. Should be
the same number of rows as |
nboot |
an integer specifying the number of bootstrap iterations. |
A list of length 2 with elements
auc |
A vector the length of
|
byClass |
A dataframe with number of rows equal to |
Run bootstrapping of the AUC and derive the p-value for a 2-sample t-test for all signatures tested on a given dataset.
bootstrapAUC( SE_scored, annotationColName, signatureColNames, num.boot = 100, pb.show = TRUE )
bootstrapAUC( SE_scored, annotationColName, signatureColNames, num.boot = 100, pb.show = TRUE )
SE_scored |
a |
annotationColName |
a character string giving the column name in
|
signatureColNames |
a vector of column names in the
|
num.boot |
integer. The number of times to bootstrap the data. The
default is |
pb.show |
logical for whether to show a progress bar while running code.
The default is |
A list of length 5 returning a vector of p-values for a 2-sample
t-test, bootstrapped AUC values, an AUC value for using all scored values
for all signatures specified in signatureColNames
,
and values for the lower and upper bounds of a bootstrapped AUC confidence
interval using pROC::roc()
.
# Run signature profiling choose_sigs <- list("madeupsig" = c("FCRL3", "OAS2", "IFITM3")) prof_indian <- runTBsigProfiler(TB_indian, useAssay = "logcounts", algorithm = "ssGSEA", combineSigAndAlgorithm = TRUE, signatures = choose_sigs, parallel.sz = 1) # Bootstrapping booted <- bootstrapAUC(SE_scored = prof_indian, annotationColName = "label", signatureColNames = names(choose_sigs), num.boot = 2) booted
# Run signature profiling choose_sigs <- list("madeupsig" = c("FCRL3", "OAS2", "IFITM3")) prof_indian <- runTBsigProfiler(TB_indian, useAssay = "logcounts", algorithm = "ssGSEA", combineSigAndAlgorithm = TRUE, signatures = choose_sigs, parallel.sz = 1) # Bootstrapping booted <- bootstrapAUC(SE_scored = prof_indian, annotationColName = "label", signatureColNames = names(choose_sigs), num.boot = 2) booted
A data.frame
of annotation information for published tuberculosis
signatures. This table differs from that of sigAnnotData
as it
refers to signatures via the name given in scientific publications, and
via a consistent naming system otherwise.
Currently, this table includes two variables, disease
and
tissue type
.
common_sigAnnotData
common_sigAnnotData
data.frame
The disease
variable indicates whether the signature was developed
to distinguish TB from LTBI ("Disease"), TB from some combination of other
diseases and possibly LTBI ("OD"), TB from Human Immunodeficiency Virus ("HIV"),
TB from pneumonia ("PNA"), or identify risk of progression to TB ("RISK"),
risk of TB treatment failure ("FAIL"), or classify treatment responses
(i.e., failures from cures, "RES").
The tissue type
variable denotes whether the signature was developed
using samples of either whole blood/paxgene or peripheral blood mononuclear
cells (PBMCs). Due to the manipulation of cells inherently required to obtain
PBMCs, many scientists prefer to use only whole blood samples for analysis.
See ?TBcommon
for reference information.
data("common_sigAnnotData")
data("common_sigAnnotData")
It may be useful to compare the results of scoring across several different
scoring algorithms via a method of visualization, such as a heatmap. The
compareSigs
function allows the input of a SummarizedExperiment
data object and conducts
profiling on each signature desired, and outputting a heatmap or boxplot
for each signature.
compareAlgs( input, signatures = NULL, annotationColName, useAssay = "counts", algorithm = c("GSVA", "ssGSEA", "ASSIGN", "PLAGE", "Zscore", "singscore"), showColumnNames = TRUE, showRowNames = TRUE, scale = FALSE, colorSets = c("Set1", "Set2", "Set3", "Pastel1", "Pastel2", "Accent", "Dark2", "Paired"), choose_color = c("blue", "gray95", "red"), colList = list(), show.pb = FALSE, parallel.sz = 0, output = "heatmap", num.boot = 100, column_order = NULL )
compareAlgs( input, signatures = NULL, annotationColName, useAssay = "counts", algorithm = c("GSVA", "ssGSEA", "ASSIGN", "PLAGE", "Zscore", "singscore"), showColumnNames = TRUE, showRowNames = TRUE, scale = FALSE, colorSets = c("Set1", "Set2", "Set3", "Pastel1", "Pastel2", "Accent", "Dark2", "Paired"), choose_color = c("blue", "gray95", "red"), colList = list(), show.pb = FALSE, parallel.sz = 0, output = "heatmap", num.boot = 100, column_order = NULL )
input |
an input data object of the class |
signatures |
a |
annotationColName |
a character string giving the column name in
|
useAssay |
a character string specifying the assay to use for signature
profiling when |
algorithm |
a vector of algorithms to run, or character string if only
one is desired. The default is |
showColumnNames |
logical. Setting |
showRowNames |
logical. Setting |
scale |
logical. Setting |
colorSets |
a vector of names listing the color sets in the order
that they should be used in creating the heatmap. By default, this function
will use the color sets in the order listed in |
choose_color |
a vector of color names to be interpolated for the
heatmap gradient, or a |
colList |
a named |
show.pb |
logical, whether warnings and other output
from the profiling should be suppressed (including progress bar output).
Default is |
parallel.sz |
an integer identifying the number of processors to use
when running the calculations in parallel for the GSVA and ssGSEA algorithms.
If |
output |
a character string specifying whether the outputted plot
should be a |
num.boot |
an integer indicating the number of times to bootstrap the data. |
column_order |
a vector of character strings indicating the order in
which to manually arrange the heatmap columns. Default is |
A heatmap or boxplot for each signature specified comparing the enumerated algorithms.
compareAlgs(TB_indian, signatures = TBsignatures[c("Gliddon_OD_3")], annotationColName = "label", algorithm = c("ssGSEA", "PLAGE"), scale = TRUE, parallel.sz = 1, output = "heatmap")
compareAlgs(TB_indian, signatures = TBsignatures[c("Gliddon_OD_3")], annotationColName = "label", algorithm = c("ssGSEA", "PLAGE"), scale = TRUE, parallel.sz = 1, output = "heatmap")
Present the results of AUC bootstrapping for a collection of scored signatures via boxplots.
compareBoxplots( SE_scored, annotationColName, signatureColNames, num.boot = 100, name = "Boxplot Comparison of Signature AUCs", pb.show = TRUE, abline.col = "red", fill.col = "gray79", outline.col = "black", rotateLabels = FALSE, violinPlot = FALSE )
compareBoxplots( SE_scored, annotationColName, signatureColNames, num.boot = 100, name = "Boxplot Comparison of Signature AUCs", pb.show = TRUE, abline.col = "red", fill.col = "gray79", outline.col = "black", rotateLabels = FALSE, violinPlot = FALSE )
SE_scored |
a |
annotationColName |
a character string giving the column name in
|
signatureColNames |
a vector of column names in the
|
num.boot |
an integer indicating the number of times to bootstrap the data. |
name |
a character string giving the overall title for the plot.
The default is |
pb.show |
logical for whether to show a progress bar while running code.
Default is |
abline.col |
the color to be used for the dotted line at AUC = 0.5
(the chance line). The default is |
fill.col |
the color to be used to fill the boxplots.
The default is |
outline.col |
the color to be used for the boxplot outlines.
The default is |
rotateLabels |
If |
violinPlot |
logical. Setting |
A plot with side-by-side boxplots of bootstrapped AUC values for each specified signature.
# Run signature profiling choose_sigs <- TBsignatures[c("Zak_RISK_16", "Zhao_NANO_6")] prof_indian <- runTBsigProfiler(TB_indian[seq_len(25), ], useAssay = "logcounts", algorithm = "ssGSEA", signatures = choose_sigs, parallel.sz = 1) # Create boxplots compareBoxplots(prof_indian, annotationColName = "label", signatureColNames = names(choose_sigs), rotateLabels = TRUE)
# Run signature profiling choose_sigs <- TBsignatures[c("Zak_RISK_16", "Zhao_NANO_6")] prof_indian <- runTBsigProfiler(TB_indian[seq_len(25), ], useAssay = "logcounts", algorithm = "ssGSEA", signatures = choose_sigs, parallel.sz = 1) # Create boxplots compareBoxplots(prof_indian, annotationColName = "label", signatureColNames = names(choose_sigs), rotateLabels = TRUE)
A set of 47 COVID-19 gene signatures from various single-cell and bulk RNA-seq publications and preprint manuscripts from early- to mid-2020. This set of signatures uses gene symbols.
COVIDsignatures
COVIDsignatures
list
Signature names are composed of the last name of the primary author, followed by the type of sequencing data from which the signature was derived, the tissue from which the signature was derived, and ending with a reference to the cell type, infection status, or disease to which the signature belongs, as defined in the original publication.
Note that in some cases signatures will be positive identifiers of COVID-19 as positive markers of immune cell clusters are often provided for single-cell RNA-seq data; this should be taken into account when creating ROC curves and computing any AUC or disease risk estimates.
Wilk_sc_PBMC_monocytes_up: Wilk, A.J., Rustagi, A., Zhao, N.Q. et al. 2020. "A single-cell atlas of the peripheral immune response in patients with severe COVID-19." Nature Medicine 26 (7): 1070-1076. https://doi.org/10.1038/s41591-020-0944-y
Wilk_sc_PBMC_monocytes_up: Wilk, A.J., Rustagi, A., Zhao, N.Q. et al. 2020. "A single-cell atlas of the peripheral immune response in patients with severe COVID-19." Nature Medicine 26 (7): 1070-1076. https://doi.org/10.1038/s41591-020-0944-y
Wilk_sc_PBMC_monocytes_down: Wilk, A.J., Rustagi, A., Zhao, N.Q. et al. 2020. "A single-cell atlas of the peripheral immune response in patients with severe COVID-19." Nature Medicine 26 (7): 1070-1076. https://doi.org/10.1038/s41591-020-0944-y
Wilk_sc_PBMC_NK_cells_up: Wilk, A.J., Rustagi, A., Zhao, N.Q. et al. 2020. "A single-cell atlas of the peripheral immune response in patients with severe COVID-19." Nature Medicine 26 (7): 1070-1076. https://doi.org/10.1038/s41591-020-0944-y
Wilk_sc_PBMC_NK_cells_down: Wilk, A.J., Rustagi, A., Zhao, N.Q. et al. 2020. "A single-cell atlas of the peripheral immune response in patients with severe COVID-19." Nature Medicine 26 (7): 1070-1076. https://doi.org/10.1038/s41591-020-0944-y
Wilk_sc_PBMCs_ISG_signature: Wilk, A.J., Rustagi, A., Zhao, N.Q. et al. 2020. "A single-cell atlas of the peripheral immune response in patients with severe COVID-19." Nature Medicine 26 (7): 1070-1076. https://doi.org/10.1038/s41591-020-0944-y
Wilk_sc_PBMC_activated_granulocytes: Wilk, A.J., Rustagi, A., Zhao, N.Q. et al. 2020. "A single-cell atlas of the peripheral immune response in patients with severe COVID-19." Nature Medicine 26 (7): 1070-1076. https://doi.org/10.1038/s41591-020-0944-y
Huang_sc_PBMC_IFN_signature: Wilk, A.J., Rustagi, A., Zhao, N.Q. et al. 2020. "Blood single cell immune profiling reveals the interferon-MAPK pathway mediated adaptive immune response for COVID-19." medRxiv.org: https://doi.org/10.1101/2020.03.15.20033472
Wen_sc_PBMC_monocytes: Wen, W., Su, W., Tang, H. et al. 2020. "Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing." Cell Discovery 6 (31). https://doi.org/10.1038/s41421-020-0168-9
Wen_sc_PBMC_NK_cells: Wen, W., Su, W., Tang, H. et al. 2020. "Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing." Cell Discovery 6 (31). https://doi.org/10.1038/s41421-020-0168-9
Wen_sc_PBMC_CD4_T_cells: Wen, W., Su, W., Tang, H. et al. 2020. "Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing." Cell Discovery 6 (31). https://doi.org/10.1038/s41421-020-0168-9
Wen_sc_PBMC_CD8_T_cells: Wen, W., Su, W., Tang, H. et al. 2020. "Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing." Cell Discovery 6 (31). https://doi.org/10.1038/s41421-020-0168-9
Wen_sc_PBMC_B_cells: Wen, W., Su, W., Tang, H. et al. 2020. "Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing." Cell Discovery 6 (31). https://doi.org/10.1038/s41421-020-0168-9
Xiong_bulk_PBMC_gene_signature_up: Xiong Y, Liu Y, Cao L, et al. 2020. "Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients." Emerging Microbes & Infections 9 (1):761-770. https://doi/org/10.1080/22221751.2020.1747363
Xiong_bulk_PBMC_gene_signature_down: Xiong Y, Liu Y, Cao L, et al. 2020. "Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients." Emerging Microbes & Infections 9 (1):761-770. https://doi/org/10.1080/22221751.2020.1747363
Xiong_sc_PBMC_cytokines_up: Xiong Y, Liu Y, Cao L, et al. 2020. "Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients." Emerging Microbes & Infections 9 (1):761-770. https://doi/org/10.1080/22221751.2020.1747363
Xiong_sc_PBMC_cytokines_down: Xiong Y, Liu Y, Cao L, et al. 2020. "Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients." Emerging Microbes & Infections 9 (1):761-770. https://doi/org/10.1080/22221751.2020.1747363
Liao_sc_BALF_G1_macrophages: Liao, M., Liu, Y., Yuan, J. et al. 2020. "Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19." Nature Medicine 26 (6): 842-844. https://doi.org/10.1038/s41591-020-0901-9
Liao_sc_BALF_G1_2_macrophages: Liao, M., Liu, Y., Yuan, J. et al. 2020. "Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19." Nature Medicine 26 (6): 842-844. https://doi.org/10.1038/s41591-020-0901-9
Liao_sc_BALF_G2_macrophages: Liao, M., Liu, Y., Yuan, J. et al. 2020. "Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19." Nature Medicine 26 (6): 842-844. https://doi.org/10.1038/s41591-020-0901-9
Liao_sc_BALF_G3_macrophages: Liao, M., Liu, Y., Yuan, J. et al. 2020. "Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19." Nature Medicine 26 (6): 842-844. https://doi.org/10.1038/s41591-020-0901-9
Liao_sc_BALF_G4_macrophages: Liao, M., Liu, Y., Yuan, J. et al. 2020. "Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19." Nature Medicine 26 (6): 842-844. https://doi.org/10.1038/s41591-020-0901-9
Liao_sc_BALF_CD8_T_cells_up: Liao, M., Liu, Y., Yuan, J. et al. 2020. "Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19." Nature Medicine 26 (6): 842-844. https://doi.org/10.1038/s41591-020-0901-9
Liao_sc_BALF_CD8_T_cells_down: Liao, M., Liu, Y., Yuan, J. et al. 2020. "Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19." Nature Medicine 26 (6): 842-844. https://doi.org/10.1038/s41591-020-0901-9
Hadjadj_nanostring_WB_gene_signature_up: Hadjadj J, Yatim N, Barnabei L, et al. 2020. "Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients." Science 369 (6504): 718-724. https://doi.org/10.1126/science.abc6027
Hadjadj_nanostring_WB_gene_signature_down: Hadjadj J, Yatim N, Barnabei L, et al. 2020. "Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients." Science 369 (6504): 718-724. https://doi.org/10.1126/science.abc6027
Hadjadj_nanostring_WB_ISG_signature: Hadjadj J, Yatim N, Barnabei L, et al. 2020. "Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients." Science 369 (6504): 718-724. https://doi.org/10.1126/science.abc6027
Hadjadj_nanostring_WB_mild_moderate_up: Hadjadj J, Yatim N, Barnabei L, et al. 2020. "Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients." Science 369 (6504): 718-724. https://doi.org/10.1126/science.abc6027
Hadjadj_nanostring_WB_mild_moderate_down: Hadjadj J, Yatim N, Barnabei L, et al. 2020. "Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients." Science 369 (6504): 718-724. https://doi.org/10.1126/science.abc6027
Hadjadj_nanostring_WB_severe_up: Hadjadj J, Yatim N, Barnabei L, et al. 2020. "Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients." Science 369 (6504): 718-724. https://doi.org/10.1126/science.abc6027
Hadjadj_nanostring_WB_severe_down: Hadjadj J, Yatim N, Barnabei L, et al. 2020. "Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients." Science 369 (6504): 718-724. https://doi.org/10.1126/science.abc6027
Hadjadj_nanostring_critical_up: Hadjadj J, Yatim N, Barnabei L, et al. 2020. "Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients." Science 369 (6504): 718-724. https://doi.org/10.1126/science.abc6027
Hadjadj_nanostring_critical_down: Hadjadj J, Yatim N, Barnabei L, et al. 2020. "Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients." Science 369 (6504): 718-724. https://doi.org/10.1126/science.abc6027
Wei_sc_PBMC_inactivated_monocytes: Wei et al. 2020. "Viral Invasion and Type I Interferon Response Characterize the Immunophenotypes during COVID-19 Infection." SSRN: https://dx.doi.org/10.2139/ssrn.3555695
Wei_sc_PBMC_classical_monocytes: Wei et al. 2020. "Viral Invasion and Type I Interferon Response Characterize the Immunophenotypes during COVID-19 Infection." SSRN: https://dx.doi.org/10.2139/ssrn.3555695
Wei_sc_PBMCs_T_cells: Wei et al. 2020. "Viral Invasion and Type I Interferon Response Characterize the Immunophenotypes during COVID-19 Infection." SSRN: https://dx.doi.org/10.2139/ssrn.3555695
Wei_sc_PBMC_B_cells: Wei et al. 2020. "Viral Invasion and Type I Interferon Response Characterize the Immunophenotypes during COVID-19 Infection." SSRN: https://dx.doi.org/10.2139/ssrn.3555695
Silvin_sc_WB_combined_signature: Silvin A, Chapuis N, Dunsmore G, et al. 2020. "Elevated Calprotectin and Abnormal Myeloid Cell Subsets Discriminate Severe from Mild COVID-19." Cell 182 (6): 1401-1418.E18. https://doi.org/10.1016/j.cell.2020.08.002
Silvin_sc_WB_monocytes_up: Silvin A, Chapuis N, Dunsmore G, et al. 2020. "Elevated Calprotectin and Abnormal Myeloid Cell Subsets Discriminate Severe from Mild COVID-19." Cell 182 (6): 1401-1418.E18. https://doi.org/10.1016/j.cell.2020.08.002
Silvin_sc_WB_monocytes_down: Silvin A, Chapuis N, Dunsmore G, et al. 2020. "Elevated Calprotectin and Abnormal Myeloid Cell Subsets Discriminate Severe from Mild COVID-19." Cell 182 (6): 1401-1418.E18. https://doi.org/10.1016/j.cell.2020.08.002
Silvin_sc_WB_neutrophils_up: Silvin A, Chapuis N, Dunsmore G, et al. "Elevated Calprotectin and Abnormal Myeloid Cell Subsets Discriminate Severe from Mild COVID-19." Cell 182 (6): 1401-1418.E18. https://doi.org/10.1016/j.cell.2020.08.002
Silvin_sc_WB_neutrophils_down: Silvin A, Chapuis N, Dunsmore G, et al. "Elevated Calprotectin and Abnormal Myeloid Cell Subsets Discriminate Severe from Mild COVID-19." Cell 182 (6): 1401-1418.E18. https://doi.org/10.1016/j.cell.2020.08.002
Arunachalam_bulk_PBMC_blood_modules: Arunachalam PS, Wimmers F, Mok CKP, et al. 2020. "Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans." Science 369 (6508): 1210-1220. https://doi.org/10.1126/science.abc6261
Arunachalam_bulk_PBMC_covid_combined: Arunachalam PS, Wimmers F, Mok CKP, et al. 2020. "Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans." Science 369 (6508): 1210-1220. https://doi.org/10.1126/science.abc6261
Arunachalam_bulk_PBMC_moderate: Arunachalam PS, Wimmers F, Mok CKP, et al. 2020. "Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans." Science 369 (6508): 1210-1220. https://doi.org/10.1126/science.abc6261
Arunachalam_bulk_PBMC_severe: Arunachalam PS, Wimmers F, Mok CKP, et al. 2020. "Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans." Science 369 (6508): 1210-1220. https://doi.org/10.1126/science.abc6261
Arunachalam_bulk_PBMC_intensive_care: Arunachalam PS, Wimmers F, Mok CKP, et al. 2020. "Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans." Science 369 (6508): 1210-1220. https://doi.org/10.1126/science.abc6261
Dunning_bulk_WB_flu: Dunning J, Blankley S, Hoang LT, et al. 2018. "Progression of whole-blood transcriptional signatures from interferon-induced to neutrophil-associated patterns in severe influenza." Nature Immunology 19 (6): 625-635. https://doi.org/10.1038/s41590-018-0111-5
data("COVIDsignatures")
data("COVIDsignatures")
Train original model for gene signatures Leong_24, Leong_RISK_29, Zhao_NANO_6 using lasso logistic regression.
cv_glmnet_OriginalModel(dat_list, dat_test_sig)
cv_glmnet_OriginalModel(dat_list, dat_test_sig)
dat_list |
A |
dat_test_sig |
A |
The predicted score for each sample in the test study.
Normalize gene expression count data.
deseq2_norm_rle(inputData)
deseq2_norm_rle(inputData)
inputData |
a |
A data.frame
or matrix
of normalized count data.
## Example using the counts assay from a SummarizedExperiment data_in <- SummarizedExperiment::assay(TB_indian, "counts") res <- deseq2_norm_rle(data_in)
## Example using the counts assay from a SummarizedExperiment data_in <- SummarizedExperiment::assay(TB_indian, "counts") res <- deseq2_norm_rle(data_in)
Create a distinct palette for coloring different heatmap clusters. The
function returns colors for input into ComplexHeatmap:Heatmap()
,
signatureGeneHeatmap()
and signatureHeatmap()
.
distinctColors( n, hues = c("red", "cyan", "orange", "blue", "yellow", "purple", "green", "magenta"), saturation.range = c(0.7, 1), value.range = c(0.7, 1) )
distinctColors( n, hues = c("red", "cyan", "orange", "blue", "yellow", "purple", "green", "magenta"), saturation.range = c(0.7, 1), value.range = c(0.7, 1) )
n |
an integer describing the number of colors to generate. Required. |
hues |
a vector of character strings indicating the R colors available
from the |
saturation.range |
a numeric vector of length 2 with values between 0
and 1 giving the range of saturation. The default is |
value.range |
a numeric vector of length 2 with values between 0 and 1
giving the range of values. The default is |
A vector of distinct colors that have been converted to HEX from HSV.
distinctColors(10)
distinctColors(10)
This function computes prediction for multiple TB signatures based on their training
models/methods. To avoid naming issues, the gene names for both training data and
input gene sets have been updated using the checkGeneSymbols
.
TB signatures with available original models are: Anderson_42,
Anderson_OD_51, Kaforou_27, Kaforou_OD_44, Kaforou_OD_53, Sweeney_OD_3,
Maertzdorf_4, Verhagen_10, Jacobsen_3, Sambarey_HIV_10, Leong_24,
Berry_OD_86, Berry_393, Bloom_OD_144, Suliman_RISK_4, Zak_RISK_16,
Leong_RISK_29, and Zhao_NANO_6.
The predicted score for each signature has been stored in the column data
section of the input SummarizedExperiment study.
evaluateOriginalModel( input, geneSignaturesName, useAssay = 1, adj = 0.001, BPPARAM = BiocParallel::SerialParam(progressbar = TRUE) )
evaluateOriginalModel( input, geneSignaturesName, useAssay = 1, adj = 0.001, BPPARAM = BiocParallel::SerialParam(progressbar = TRUE) )
input |
A SummarizedExperiment object with gene symbols as the assay row names. |
geneSignaturesName |
A character string/vector specifying the signature
of interest. If |
useAssay |
A character string or an integer specifying the assay in the
|
adj |
A small positive real number used in |
BPPARAM |
An instance inherited from |
A SummarizedExperiment object with predicted scores for each sample obtained from the signature's original model.
re <- evaluateOriginalModel(input = TB_indian, geneSignaturesName = c("Anderson_42"), useAssay = "counts") re$Anderson_42_OriginalModel
re <- evaluateOriginalModel(input = TB_indian, geneSignaturesName = c("Anderson_42"), useAssay = "counts") re$Anderson_42_OriginalModel
Train original model for gene signatures Berry_393 and Berry_OD_86.
knn_OriginalModel(dat_list, dat_test_sig)
knn_OriginalModel(dat_list, dat_test_sig)
dat_list |
A |
dat_test_sig |
A |
The predicted score for each sample in the test study.
Train original model for gene signatures Jacobsen_3 and Sambarey_HIV_10.
lda_OriginalModel(dat_list, dat_test_sig)
lda_OriginalModel(dat_list, dat_test_sig)
dat_list |
A |
dat_test_sig |
A |
The predicted score for each sample in the test study.
Perform Leave-one-out CV with Logistic Regression.
LOOAUC_simple_multiple_noplot_one_df(df, targetVec)
LOOAUC_simple_multiple_noplot_one_df(df, targetVec)
df |
a |
targetVec |
a binary vector of the response variable. Should be
the same number of samples as in |
A list of length 3 with elements
auc |
The AUC from the LOOCV procedure. |
byClass |
A vector containing the sensitivity, specificity, positive predictive value, negative predictive value, precision, recall, F1, prevalence, detection rate, detection prevalence and balanced accuracy. |
prob |
A vector of the test prediction probabilities. |
Given a SummarizedExperiment
input with a counts or CPM assay, this
function creates additional assays for by computing the CPM, log, or both
of the input assay to be used in further analysis.
mkAssay( SE_obj, input_name = "counts", output_name = NULL, log = FALSE, counts_to_CPM = TRUE, prior_counts = 3 )
mkAssay( SE_obj, input_name = "counts", output_name = NULL, log = FALSE, counts_to_CPM = TRUE, prior_counts = 3 )
SE_obj |
a |
input_name |
a character string specifying the name of the assay to
be referenced for creating additional assays. Default is |
output_name |
a character string to use in place of the |
log |
logical. Indicate whether an assay returned should be the log
of whichever assay is specified in |
counts_to_CPM |
logical. This argument only applies if the
|
prior_counts |
a small integer specifying the average count to be added to
each observation to avoid taking the log of zero. Used only if
|
This function returns a SummarizedExperiment
object with up
to 3 additional assay types attached to the original inputted object.
output_name_cpm |
Counts per million |
log_output_name_cpm |
Log counts per million |
log_output_name |
Log of original input assay. |
Aubrey Odom-Mabey
# Create a log assay of the original assay input # TB_hiv dataset already has counts data log_only <- mkAssay(TB_hiv, log = TRUE, counts_to_CPM = FALSE) log_only # Create a CPM assay CPM_only <- mkAssay(TB_hiv) CPM_only # Create a logCPM, logcounts, and CPM assay all_assays <- mkAssay(TB_hiv, log = TRUE) all_assays
# Create a log assay of the original assay input # TB_hiv dataset already has counts data log_only <- mkAssay(TB_hiv, log = TRUE, counts_to_CPM = FALSE) log_only # Create a CPM assay CPM_only <- mkAssay(TB_hiv) CPM_only # Create a logCPM, logcounts, and CPM assay all_assays <- mkAssay(TB_hiv, log = TRUE) all_assays
Obtain training data, testing data, and train signature's original model.
ObtainSampleScore_OriginalModel( theObject_train, useAssay, gene_set, input, SigName, obtainDiagnosis, annotationColName, FUN, adj )
ObtainSampleScore_OriginalModel( theObject_train, useAssay, gene_set, input, SigName, obtainDiagnosis, annotationColName, FUN, adj )
theObject_train |
A SummarizedExperiment object that has been pre-stored in the data file: OriginalTrainingData. |
useAssay |
A character string or an integer specifying the assay in the |
gene_set |
A character vector that includes gene symbols for selected gene signature. |
input |
A SummarizedExperiment object with gene symbols as the assay row names. |
SigName |
Optional. A character string that indicates the name for |
obtainDiagnosis |
Boolean. Used to create training data if TRUE. Default is FALSE |
annotationColName |
A character string specifying the column name of disease status. Only used when creating training data. Default is NULL. |
FUN |
A character string specifying the function name of the corresponding signature's original model. |
adj |
A small real number used in combat to solve for genes with 0 counts in rare cases. Not required for most of cases. |
The predicted score for each sample in the test study using corresponding gene signature's original model.
Discovery datasets for corresponding gene signatures.
OriginalTrainingData
OriginalTrainingData
list
See ?TBsignatures
for reference information.
data("OriginalTrainingData")
data("OriginalTrainingData")
This function takes as input a data.frame
with genetic expression
count data, and uses a bootstrapped leave-one-out cross validation procedure
with logistic regression to allow for numeric and graphical comparison
across any number of genetic signatures. It creates a boxplot of bootstrapped
AUC values.
plotQuantitative( df.input, targetVec.num, signature.list = NULL, signature.name.vec = NULL, num.boot = 100, pb.show = TRUE, name = "Signature Evaluation: Bootstrapped AUCs", fill.col = "white", outline.col = "black", abline.col = "red", rotateLabels = FALSE )
plotQuantitative( df.input, targetVec.num, signature.list = NULL, signature.name.vec = NULL, num.boot = 100, pb.show = TRUE, name = "Signature Evaluation: Bootstrapped AUCs", fill.col = "white", outline.col = "black", abline.col = "red", rotateLabels = FALSE )
df.input |
a |
targetVec.num |
a numeric binary vector of the response variable.
The vector should be the same number of rows as |
signature.list |
a |
signature.name.vec |
A vector specifying the names of the signatures
to be compared. This should be the same length as |
num.boot |
an integer specifying the number of bootstrap iterations. |
pb.show |
logical. If |
name |
a character string giving a name for the outputted boxplot of
bootstrapped AUCs. The default is |
fill.col |
the color to be used to fill the boxplots.
The default is |
outline.col |
the color to be used for the boxplot outlines.
The default is |
abline.col |
the color to be used for the dotted line at AUC = 0.5
(the chance line). The default is |
rotateLabels |
logical. If |
a boxplot comparing the bootstrapped AUCs of inputted signatures
inputTest <- matrix(rnorm(1000), 100, 20, dimnames = list(paste0("gene", seq.int(1, 100)), paste0("sample", seq.int(1, 20)))) inputTest <- as.data.frame(inputTest) targetVec <- sample(c(0,1), replace = TRUE, size = 20) signature.list <- list(sig1 = c("gene1", "gene2", "gene3"), sig2 = c("gene4", "gene5", "gene6")) signature.name.vec <- c("sig1", "sig2") num.boot <- 5 plotQuantitative(inputTest, targetVec.num = targetVec, signature.list = signature.list, signature.name.vec = signature.name.vec, num.boot = num.boot, rotateLabels = FALSE)
inputTest <- matrix(rnorm(1000), 100, 20, dimnames = list(paste0("gene", seq.int(1, 100)), paste0("sample", seq.int(1, 20)))) inputTest <- as.data.frame(inputTest) targetVec <- sample(c(0,1), replace = TRUE, size = 20) signature.list <- list(sig1 = c("gene1", "gene2", "gene3"), sig2 = c("gene4", "gene5", "gene6")) signature.name.vec <- c("sig1", "sig2") num.boot <- 5 plotQuantitative(inputTest, targetVec.num = targetVec, signature.list = signature.list, signature.name.vec = signature.name.vec, num.boot = num.boot, rotateLabels = FALSE)
Train original model for gene signatures Maertzdorf_4, Maertzdorf_15, Verhagen_10, and LauxdaCosta_OD_3.
randomForest_OriginalModel(dat_list, dat_test_sig)
randomForest_OriginalModel(dat_list, dat_test_sig)
dat_list |
A |
dat_test_sig |
A |
The predicted score for each sample in the test study.
A function used to perform reference batch correction and imputation in the
testing data for gene signatures that require retraining of the model.
We used the k-nearest neighbors to impute the expression values for missing gene(s).
The imputation operation is achieved using impute.knn
.
Since the computational time for the imputation step can be excessive for large
number of missing genes. We made some constrains to prevent the overflow of imputation
operation. The evaluation will not run if more than geneMax
*100\
of the genes are not found for the corresponding gene signature in the input study.
By default geneMax
= 0.8, so the evaluation will not run if more than 80\
of the genes are missing when matching the input study to the reference data.
ref_combat_impute( theObject_train, useAssay, gene_set, input, SigName, adj, geneMax = 0.8 )
ref_combat_impute( theObject_train, useAssay, gene_set, input, SigName, adj, geneMax = 0.8 )
theObject_train |
A SummarizedExperiment object that has been pre-stored in the data file: OriginalTrainingData. |
useAssay |
A character string or an integer specifying the assay in the |
gene_set |
A character vector that includes gene symbols for selected gene signature. |
input |
A SummarizedExperiment object with gene symbols as the assay row names. |
SigName |
Optional. A character string that indicates the name for |
adj |
A small real number used in combat to solve for genes with 0 counts in rare cases. Not required for most of cases. |
geneMax |
A real number between 0 and 1. This is used to detect the
maximum percent missing genes allowed in the evaluated signatures.
See |
Gene set subset
Using some subset of the signatures listed in TBsignatures
and
specified scoring algorithms, this function runs gene signature profiling
on an input gene expression dataset. It allows for scores to be computed for
these signatures which can be compared using various visualization tools also
provided in the TBSignatureProfiler package.
runTBsigProfiler( input, useAssay = NULL, signatures = NULL, algorithm = c("GSVA", "ssGSEA", "ASSIGN", "PLAGE", "Zscore", "singscore"), combineSigAndAlgorithm = FALSE, assignDir = NULL, outputFormat = NULL, parallel.sz = 0, ASSIGNiter = 1e+05, ASSIGNburnin = 50000, ssgsea_norm = TRUE, update_genes = TRUE )
runTBsigProfiler( input, useAssay = NULL, signatures = NULL, algorithm = c("GSVA", "ssGSEA", "ASSIGN", "PLAGE", "Zscore", "singscore"), combineSigAndAlgorithm = FALSE, assignDir = NULL, outputFormat = NULL, parallel.sz = 0, ASSIGNiter = 1e+05, ASSIGNburnin = 50000, ssgsea_norm = TRUE, update_genes = TRUE )
input |
an input data object of the class |
useAssay |
a character string specifying the assay to use for signature
profiling when |
signatures |
a |
algorithm |
a vector of algorithms to run, or character string if only
one is desired. The default is |
combineSigAndAlgorithm |
logical, if |
assignDir |
a character string naming a directory to save intermediate
ASSIGN results if |
outputFormat |
a character string specifying the output data format.
Possible values are |
parallel.sz |
an integer identifying the number of processors to use
when running the calculations in parallel for the GSVA and ssGSEA algorithms.
If |
ASSIGNiter |
an integer indicating the number of iterations to use in
the MCMC for the ASSIGN algorithm. The default is |
ASSIGNburnin |
an integer indicating the number of burn-in iterations
to use in the MCMC for the ASSIGN algorithm. These iterations are discarded
when computing the posterior means of the model parameters. The default is
|
ssgsea_norm |
logical, passed to |
update_genes |
logical, denotes whether gene names from |
A SummarizedExperiment
object, data.frame
, or
matrix
of signature profiling results. The returned object will be
of the format specified in outputFormat
.
If input
is a SummarizedExperiment
and
outputFormat = "SummarizedExperiment"
, then the output will retain
any input information stored in the input colData. In general, if
outputFormat = "SummarizedExperiment"
then columns in the colData
will include the scores for each desired signature with samples on the rows.
If input
is a data.frame
or matrix
, then the returned
object will have signatures on the rows and samples on the columns.
Profiling for the Z-Score, PLAGE, GSVA, ssGSEA algorithms are all
conducted with the Bioconductor GSVA
package. Profiling for the
singscore algorithm is conducted with the Bioconductor singscore
package.
Barbie, D.A., Tamayo, P., Boehm, J.S., Kim, S.Y., Moody, S.E., Dunn, I.F., Schinzel, A.C., Sandy, P., Meylan, E., Scholl, C., et al. (2009). Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462, 108-112. doi: 10.1038/nature08460.
Foroutan, M. et al. (2018). Single sample scoring of molecular phenotypes. BMC Bioinformatics, 19. doi: 10.1186/s12859-018-2435-4.
Lee, E. et al. (2008). Inferring pathway activity toward precise disease classification. PLoS Comp Biol, 4(11):e1000217. doi: 10.1371/journal.pcbi.1000217
Shen, Y. et al. (2015). ASSIGN: context-specific genomic profiling of multiple heterogeneous biological pathways. Bioinformatics, 31, 1745-1753. doi: 10.1093/bioinformatics/btv031.
Subramanian, A. et al. (2005). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. PNAS, 102, 15545-15550. doi: 10.1073/pnas.0506580102.
Tomfohr, J. et al. (2005). Pathway level analysis of gene expression using singular value decomposition. BMC Bioinformatics, 6:225. doi: 10.1186/1471-2105-6-225
## Using a data.frame input/output # Create some toy data to test Zak_RISK_16 signature, using 5 samples with low # expression & five samples with high expression of the signatures genes. df_testdata <- as.data.frame(rbind(matrix(c(rnorm(80), rnorm(80) + 5), 16, 10, dimnames = list(TBsignatures$Zak_RISK_16, paste0("sample", seq_len(10)))), matrix(rnorm(1000), 100, 10, dimnames = list(paste0("gene", seq_len(100)), paste0("sample", seq_len(10)))))) res <- runTBsigProfiler(input = df_testdata, signatures = TBsignatures["Zak_RISK_16"], algorithm = c("GSVA", "ssGSEA"), combineSigAndAlgorithm = FALSE, parallel.sz = 1) subset(res, res$pathway == "Zak_RISK_16") ## Using a SummarizedExperiment input/output # The TB_indian SummarizedExperiment data is included in the package. GSVA_res <- runTBsigProfiler(input = TB_indian, useAssay = "logcounts", signatures = TBsignatures["Zak_RISK_16"], algorithm = c("GSVA"), combineSigAndAlgorithm = FALSE, parallel.sz = 1) GSVA_res$Zak_RISK_16
## Using a data.frame input/output # Create some toy data to test Zak_RISK_16 signature, using 5 samples with low # expression & five samples with high expression of the signatures genes. df_testdata <- as.data.frame(rbind(matrix(c(rnorm(80), rnorm(80) + 5), 16, 10, dimnames = list(TBsignatures$Zak_RISK_16, paste0("sample", seq_len(10)))), matrix(rnorm(1000), 100, 10, dimnames = list(paste0("gene", seq_len(100)), paste0("sample", seq_len(10)))))) res <- runTBsigProfiler(input = df_testdata, signatures = TBsignatures["Zak_RISK_16"], algorithm = c("GSVA", "ssGSEA"), combineSigAndAlgorithm = FALSE, parallel.sz = 1) subset(res, res$pathway == "Zak_RISK_16") ## Using a SummarizedExperiment input/output # The TB_indian SummarizedExperiment data is included in the package. GSVA_res <- runTBsigProfiler(input = TB_indian, useAssay = "logcounts", signatures = TBsignatures["Zak_RISK_16"], algorithm = c("GSVA"), combineSigAndAlgorithm = FALSE, parallel.sz = 1) GSVA_res$Zak_RISK_16
A data.frame of annotation information for published tuberculosis signatures.
Currently, this table includes two variables, disease
and
tissue type
.
sigAnnotData
sigAnnotData
data.frame
The disease
variable indicates whether the signature was developed
to distinguish TB from LTBI ("Disease"), TB from some combination of other
diseases and possibly LTBI ("OD"), TB from Human Immunodeficiency Virus ("HIV"),
TB from pneumonia ("PNA"), or identify risk of progression to TB ("RISK"),
risk of TB treatment failure ("FAIL"), or classify treatment responses
(i.e., failures from cures, "RES").
The tissue type
variable denotes whether the signature was developed
using samples of either whole blood/paxgene or peripheral blood mononuclear
cells (PBMCs). Due to the manipulation of cells inherently required to obtain
PBMCs, many scientists prefer to use only whole blood samples for analysis.
See ?TBsignatures
for reference information.
data("sigAnnotData")
data("sigAnnotData")
Plot a boxplot of signature genes.
signatureBoxplot( inputData, annotationData, signatureColNames, annotationColName, name = "Signatures", scale = FALSE, violinPlot = FALSE, includePoints = TRUE, notch = FALSE, rotateLabels = FALSE, nrow = NULL, ncol = NULL, fill_colors = NULL )
signatureBoxplot( inputData, annotationData, signatureColNames, annotationColName, name = "Signatures", scale = FALSE, violinPlot = FALSE, includePoints = TRUE, notch = FALSE, rotateLabels = FALSE, nrow = NULL, ncol = NULL, fill_colors = NULL )
inputData |
an input data object. It should either be of the class
|
annotationData |
a |
signatureColNames |
a |
annotationColName |
a character string naming the column name in the
|
name |
a character string giving the title of the boxplot. The default
is |
scale |
logical. Setting |
violinPlot |
logical. Setting |
includePoints |
logical. If |
notch |
logical. Notches are used to compare groups; if the notches of
two boxes do not overlap, this suggests that the medians are significantly
different. If |
rotateLabels |
logical. If |
nrow |
integer giving the number of rows in the resulting array. |
ncol |
integer giving the number of columns in the resulting array. |
fill_colors |
a vector of color names to be used as the fill colors for
the boxplot. If |
A ggplot2
boxplot of the signature data using the provided
annotation information.
library(SummarizedExperiment) # Generate some artificial data that shows a difference in Zak_RISK_16 mat_testdata <- rbind(matrix(c(rnorm(80), rnorm(80) + 5), 16, 10, dimnames = list(TBsignatures$Zak_RISK_16, paste0("sample", seq_len(10)))), matrix(rnorm(1000), 100, 10, dimnames = list(paste0("gene", seq_len(100)), paste0("sample", seq_len(10))))) # Create a SummarizedExperiment object that contains the data testdataSE <- SummarizedExperiment(assays = SimpleList(data = mat_testdata), colData = DataFrame(sample = c(rep("down", 5), rep("up", 5)))) # Run profiler using GSVA and ssGSEA on Zak_RISK_16 signature res <- runTBsigProfiler(testdataSE, useAssay = "data", signatures = TBsignatures["Zak_RISK_16"], algorithm = c("GSVA", "ssGSEA"), parallel.sz = 1, combineSigAndAlgorithm = TRUE) signatureBoxplot(res, signatureColNames = c("GSVA_Zak_RISK_16", "ssGSEA_Zak_RISK_16"), annotationColName = "sample", name = "Zak_RISK_16 Signature")
library(SummarizedExperiment) # Generate some artificial data that shows a difference in Zak_RISK_16 mat_testdata <- rbind(matrix(c(rnorm(80), rnorm(80) + 5), 16, 10, dimnames = list(TBsignatures$Zak_RISK_16, paste0("sample", seq_len(10)))), matrix(rnorm(1000), 100, 10, dimnames = list(paste0("gene", seq_len(100)), paste0("sample", seq_len(10))))) # Create a SummarizedExperiment object that contains the data testdataSE <- SummarizedExperiment(assays = SimpleList(data = mat_testdata), colData = DataFrame(sample = c(rep("down", 5), rep("up", 5)))) # Run profiler using GSVA and ssGSEA on Zak_RISK_16 signature res <- runTBsigProfiler(testdataSE, useAssay = "data", signatures = TBsignatures["Zak_RISK_16"], algorithm = c("GSVA", "ssGSEA"), parallel.sz = 1, combineSigAndAlgorithm = TRUE) signatureBoxplot(res, signatureColNames = c("GSVA_Zak_RISK_16", "ssGSEA_Zak_RISK_16"), annotationColName = "sample", name = "Zak_RISK_16 Signature")
This function takes the profiled gene expression data for a single signature and creates a heatmap based on the expression scores.
signatureGeneHeatmap( inputData, useAssay, sigGenes, name = "Signature", signatureColNames = NULL, annotationColNames = NULL, scale = TRUE, showColumnNames = TRUE, showRowNames = TRUE, colList = list(), colorSets = c("Set1", "Set2", "Set3", "Pastel1", "Pastel2", "Accent", "Dark2", "Paired"), choose_color = c("blue", "gray95", "red"), column_order = NULL, ... )
signatureGeneHeatmap( inputData, useAssay, sigGenes, name = "Signature", signatureColNames = NULL, annotationColNames = NULL, scale = TRUE, showColumnNames = TRUE, showRowNames = TRUE, colList = list(), colorSets = c("Set1", "Set2", "Set3", "Pastel1", "Pastel2", "Accent", "Dark2", "Paired"), choose_color = c("blue", "gray95", "red"), column_order = NULL, ... )
inputData |
a |
useAssay |
a character string specifying the assay to use for the gene expression data. Required. |
sigGenes |
a vector identifying the genes in the signature to use in
the heatmap. For inbuilt signatures, you can use |
name |
a character string with the plot title of the heatmap. The
default is |
signatureColNames |
a vector of the column names in the |
annotationColNames |
a vector of the column names in the |
scale |
logical. Setting |
showColumnNames |
logical. Setting |
showRowNames |
logical. Setting |
colList |
a named |
colorSets |
a vector of names listing the color sets in the order
that they should be used in creating the heatmap. By default, this function
will use the color sets in the order listed in |
choose_color |
a vector of color names to be interpolated for the
heatmap gradient, or a |
column_order |
a vector of character strings indicating the order in
which to manually arrange the heatmap columns. Default is |
... |
Additional arguments to be passed to
|
A ComplexHeatmap
plot.
library(SummarizedExperiment) # Generate some artificial data that shows a difference in Zak_RISK_16 mat_testdata <- rbind(matrix(c(rnorm(80), rnorm(80) + 5), 16, 10, dimnames = list(TBsignatures$Zak_RISK_16, paste0("sample", seq_len(10)))), matrix(rnorm(1000), 100, 10, dimnames = list(paste0("gene", seq_len(100)), paste0("sample", seq_len(10))))) # Create a SummarizedExperiment object that contains the data testdataSE <- SummarizedExperiment(assays = SimpleList(data = mat_testdata), colData = DataFrame(sample = c(rep("down", 5), rep("up", 5)))) # Run profiler using GSVA and ssGSEA on Zak_RISK_16 res <- runTBsigProfiler(testdataSE, useAssay = "data", signatures = TBsignatures["Zak_RISK_16"], algorithm = c("GSVA", "ssGSEA"), parallel.sz = 1, combineSigAndAlgorithm = TRUE) # Plot a heatmap of signature genes and pathway predictions signatureGeneHeatmap(res, useAssay = "data", sigGenes = TBsignatures[["Zak_RISK_16"]], signatureColNames = c("GSVA_Zak_RISK_16", "ssGSEA_Zak_RISK_16"), annotationColNames = c("sample"), showColumnNames = FALSE, name = "Zak_RISK_16")
library(SummarizedExperiment) # Generate some artificial data that shows a difference in Zak_RISK_16 mat_testdata <- rbind(matrix(c(rnorm(80), rnorm(80) + 5), 16, 10, dimnames = list(TBsignatures$Zak_RISK_16, paste0("sample", seq_len(10)))), matrix(rnorm(1000), 100, 10, dimnames = list(paste0("gene", seq_len(100)), paste0("sample", seq_len(10))))) # Create a SummarizedExperiment object that contains the data testdataSE <- SummarizedExperiment(assays = SimpleList(data = mat_testdata), colData = DataFrame(sample = c(rep("down", 5), rep("up", 5)))) # Run profiler using GSVA and ssGSEA on Zak_RISK_16 res <- runTBsigProfiler(testdataSE, useAssay = "data", signatures = TBsignatures["Zak_RISK_16"], algorithm = c("GSVA", "ssGSEA"), parallel.sz = 1, combineSigAndAlgorithm = TRUE) # Plot a heatmap of signature genes and pathway predictions signatureGeneHeatmap(res, useAssay = "data", sigGenes = TBsignatures[["Zak_RISK_16"]], signatureColNames = c("GSVA_Zak_RISK_16", "ssGSEA_Zak_RISK_16"), annotationColNames = c("sample"), showColumnNames = FALSE, name = "Zak_RISK_16")
This function takes a dataset of scored gene expression data as an input
and returns a ComplexHeatmap
plot for for visual comparison of
signature performance. The function takes arguments listed here as well
as any others to be passed on to ComplexHeatmap::Heatmap()
.
signatureHeatmap( inputData, annotationData = NULL, name = "Signatures", signatureColNames, annotationColNames = NULL, colList = list(), scale = FALSE, showColumnNames = TRUE, showRowNames = TRUE, colorSets = c("Set1", "Set2", "Set3", "Pastel1", "Pastel2", "Accent", "Dark2", "Paired"), choose_color = c("blue", "gray95", "red"), split_heatmap = "none", annotationSignature = sigAnnotData, column_order = NULL, ... )
signatureHeatmap( inputData, annotationData = NULL, name = "Signatures", signatureColNames, annotationColNames = NULL, colList = list(), scale = FALSE, showColumnNames = TRUE, showRowNames = TRUE, colorSets = c("Set1", "Set2", "Set3", "Pastel1", "Pastel2", "Accent", "Dark2", "Paired"), choose_color = c("blue", "gray95", "red"), split_heatmap = "none", annotationSignature = sigAnnotData, column_order = NULL, ... )
inputData |
an input data object. It should either be of the class
|
annotationData |
a |
name |
a character string with the plot title of the heatmap. The
default is |
signatureColNames |
a vector of the column names in |
annotationColNames |
a vector of the column names in |
colList |
a named |
scale |
logical. Setting |
showColumnNames |
logical. Setting |
showRowNames |
logical. Setting |
colorSets |
a vector of names listing the color sets in the order
that they should be used in creating the heatmap. By default, this function
will use the color sets in the order listed in |
choose_color |
a vector of color names to be interpolated for the
heatmap gradient, or a |
split_heatmap |
a character string either giving the column title of
|
annotationSignature |
a |
column_order |
a vector of character strings indicating the order in
which to manually arrange the heatmap columns. Default is |
... |
Additional arguments to be passed to
|
If both annotationData = NULL
and annotationColNames = NULL
,
no annotation bar will be drawn on the heatmap.
A ComplexHeatmap plot.
library(SummarizedExperiment) # Generate some artificial data that shows a difference in Zak_RISK_16 mat_testdata <- rbind(matrix(c(rnorm(80), rnorm(80) + 5), 16, 10, dimnames = list(TBsignatures$Zak_RISK_16, paste0("sample", seq_len(10)))), matrix(rnorm(1000), 100, 10, dimnames = list(paste0("gene", seq_len(100)), paste0("sample", seq_len(10))))) # Create a SummarizedExperiment object that contains the data testdataSE <- SummarizedExperiment(assays = SimpleList(data = mat_testdata), colData = DataFrame(sample = c(rep("down", 5), rep("up", 5)))) res <- runTBsigProfiler(testdataSE, useAssay = "data", signatures = TBsignatures["Zak_RISK_16"], algorithm = c("GSVA", "ssGSEA"), parallel.sz = 1, combineSigAndAlgorithm = TRUE) signatureHeatmap(res, signatureColNames = c("GSVA_Zak_RISK_16", "ssGSEA_Zak_RISK_16"), annotationColNames = "sample", scale = TRUE, showColumnNames = FALSE, split_heatmap = "none") # Example using custom colors for the annotation information color2 <- stats::setNames(c("purple", "black"), c("down", "up")) color.list <- list("sample" = color2) signatureHeatmap(res, signatureColNames = c("GSVA_Zak_RISK_16", "ssGSEA_Zak_RISK_16"), annotationColNames = "sample", scale = TRUE, showColumnNames = FALSE, colList = color.list, split_heatmap = "none")
library(SummarizedExperiment) # Generate some artificial data that shows a difference in Zak_RISK_16 mat_testdata <- rbind(matrix(c(rnorm(80), rnorm(80) + 5), 16, 10, dimnames = list(TBsignatures$Zak_RISK_16, paste0("sample", seq_len(10)))), matrix(rnorm(1000), 100, 10, dimnames = list(paste0("gene", seq_len(100)), paste0("sample", seq_len(10))))) # Create a SummarizedExperiment object that contains the data testdataSE <- SummarizedExperiment(assays = SimpleList(data = mat_testdata), colData = DataFrame(sample = c(rep("down", 5), rep("up", 5)))) res <- runTBsigProfiler(testdataSE, useAssay = "data", signatures = TBsignatures["Zak_RISK_16"], algorithm = c("GSVA", "ssGSEA"), parallel.sz = 1, combineSigAndAlgorithm = TRUE) signatureHeatmap(res, signatureColNames = c("GSVA_Zak_RISK_16", "ssGSEA_Zak_RISK_16"), annotationColNames = "sample", scale = TRUE, showColumnNames = FALSE, split_heatmap = "none") # Example using custom colors for the annotation information color2 <- stats::setNames(c("purple", "black"), c("down", "up")) color.list <- list("sample" = color2) signatureHeatmap(res, signatureColNames = c("GSVA_Zak_RISK_16", "ssGSEA_Zak_RISK_16"), annotationColNames = "sample", scale = TRUE, showColumnNames = FALSE, colList = color.list, split_heatmap = "none")
This function takes as input a data.frame
with genetic expression
count data, and uses a bootstrapped leave-one-out cross validation procedure
with logistic regression to allow for numeric and graphical comparison
across any number of genetic signatures.
SignatureQuantitative( df.input, targetVec.num, signature.list = NULL, signature.name.vec = NULL, num.boot = 100, pb.show = TRUE )
SignatureQuantitative( df.input, targetVec.num, signature.list = NULL, signature.name.vec = NULL, num.boot = 100, pb.show = TRUE )
df.input |
a |
targetVec.num |
a numeric binary vector of the response variable.
The vector should be the same number of rows as |
signature.list |
a |
signature.name.vec |
A vector specifying the names of the signatures
to be compared. This should be the same length as |
num.boot |
an integer specifying the number of bootstrap iterations. |
pb.show |
logical. If |
name |
a character string giving a name for the outputted boxplot of
bootstrapped AUCs. The default is |
the AUC, sensitivity and specificity
inputTest <- matrix(rnorm(1000), 100, 20, dimnames = list(paste0("gene", seq.int(1, 100)), paste0("sample", seq.int(1, 20)))) inputTest <- as.data.frame(inputTest) targetVec <- sample(c(0,1), replace = TRUE, size = 20) signature.list <- list(sig1 = c("gene1", "gene2", "gene3"), sig2 = c("gene4", "gene5", "gene6")) signature.name.vec <- c("sig1", "sig2") num.boot <- 2 SignatureQuantitative(inputTest, targetVec.num = targetVec, signature.list = signature.list, signature.name.vec = signature.name.vec, num.boot = num.boot)
inputTest <- matrix(rnorm(1000), 100, 20, dimnames = list(paste0("gene", seq.int(1, 100)), paste0("sample", seq.int(1, 20)))) inputTest <- as.data.frame(inputTest) targetVec <- sample(c(0,1), replace = TRUE, size = 20) signature.list <- list(sig1 = c("gene1", "gene2", "gene3"), sig2 = c("gene4", "gene5", "gene6")) signature.name.vec <- c("sig1", "sig2") num.boot <- 2 SignatureQuantitative(inputTest, targetVec.num = targetVec, signature.list = signature.list, signature.name.vec = signature.name.vec, num.boot = num.boot)
Create an array of ROC plots to compare signatures.
signatureROCplot( inputData, annotationData, signatureColNames, annotationColName, scale = FALSE, choose_colors = c("cornflowerblue", "gray24"), name = "Signatures", nrow = NULL, ncol = NULL )
signatureROCplot( inputData, annotationData, signatureColNames, annotationColName, scale = FALSE, choose_colors = c("cornflowerblue", "gray24"), name = "Signatures", nrow = NULL, ncol = NULL )
inputData |
an input data object. It should either be of the class
|
annotationData |
a |
signatureColNames |
a |
annotationColName |
a character string naming the column name in the
|
scale |
logical. Setting |
choose_colors |
a |
name |
a character string giving the title of the boxplot. The default
is |
nrow |
integer giving the number of rows in the resulting array. |
ncol |
integer giving the number of columns in the resulting array. |
An array of ROC plots.
# Run signature profiling choose_sigs <- subset(TBsignatures, !(names(TBsignatures) %in% c("Lee_4", "Roe_OD_4")))[c(1,2)] prof_indian <- runTBsigProfiler(TB_indian, useAssay = "logcounts", algorithm = "ssGSEA", signatures = choose_sigs, parallel.sz = 1) # Create ROC plots signatureROCplot(prof_indian, signatureColNames = names(choose_sigs), annotationColName = "label")
# Run signature profiling choose_sigs <- subset(TBsignatures, !(names(TBsignatures) %in% c("Lee_4", "Roe_OD_4")))[c(1,2)] prof_indian <- runTBsigProfiler(TB_indian, useAssay = "logcounts", algorithm = "ssGSEA", signatures = choose_sigs, parallel.sz = 1) # Create ROC plots signatureROCplot(prof_indian, signatureColNames = names(choose_sigs), annotationColName = "label")
Create an array of ROC plots with confidence interval bands to compare signatures.
signatureROCplot_CI( inputData, annotationData, signatureColNames, annotationColName, scale = FALSE, choose_colors = c("cornflowerblue", "gray50", "gray79"), name = NULL, nrow = NULL, ncol = NULL, ci.lev = 0.95, pb.show = TRUE )
signatureROCplot_CI( inputData, annotationData, signatureColNames, annotationColName, scale = FALSE, choose_colors = c("cornflowerblue", "gray50", "gray79"), name = NULL, nrow = NULL, ncol = NULL, ci.lev = 0.95, pb.show = TRUE )
inputData |
an input data object. It should either be of the class
|
annotationData |
a |
signatureColNames |
a |
annotationColName |
a character string naming the column name in the
|
scale |
logical. Setting |
choose_colors |
a vector of length 3 defining the colors to be used
in the ROC plots. The default is |
name |
a character string giving the title of the ROC plot. If
|
nrow |
integer giving the number of rows in the resulting array. |
ncol |
integer giving the number of columns in the resulting array. |
ci.lev |
a number between 0 and 1 giving the desired level of confidence for computing ROC curve estimations. |
pb.show |
logical for whether to show a progress bar while running code.
The default is |
An array of ROC plots.
# Run signature profiling choose_sigs <- TBsignatures[c(1, 2)] prof_indian <- runTBsigProfiler(TB_indian, useAssay = "logcounts", algorithm = "Zscore", signatures = choose_sigs, parallel.sz = 1) # Create ROC plots with confidence intervals signatureROCplot_CI(prof_indian, signatureColNames = names(choose_sigs), annotationColName = "label")
# Run signature profiling choose_sigs <- TBsignatures[c(1, 2)] prof_indian <- runTBsigProfiler(TB_indian, useAssay = "logcounts", algorithm = "Zscore", signatures = choose_sigs, parallel.sz = 1) # Create ROC plots with confidence intervals signatureROCplot_CI(prof_indian, signatureColNames = names(choose_sigs), annotationColName = "label")
A function used to subset gene expression value matrix based on certain gene sets.
subsetGeneSet( theObject, gene_set, useAssay, obtainDiagnosis = FALSE, annotationColName = NULL )
subsetGeneSet( theObject, gene_set, useAssay, obtainDiagnosis = FALSE, annotationColName = NULL )
theObject |
A SummarizedExperiment object that has been pre-stored in OriginalTrainingData.RDA |
gene_set |
A character vector that includes gene symbols for gene signatures. |
useAssay |
A character string or an integer specifying the assay in the |
obtainDiagnosis |
Boolean. Usually used to create training data if TRUE. Default is FALSE |
annotationColName |
A character string specifying the column name of disease status. Only used when creating training data. Default is NULL. |
A matrix
with selected gene expression value if obtainDiagnosis == FALSE
.
If obtainDiagnosis == TRUE
, return a list
contains the selected
gene expression value and diagnosis results for each sample.
Train original model gene signature Suliman_RISK_4.
SulimanOriginalModel(dat_list, dat_test_sig)
SulimanOriginalModel(dat_list, dat_test_sig)
dat_list |
A |
dat_test_sig |
A |
The predicted score for each sample in the test study.
Train original model for gene signatures Bloom_OD_144 and Zak_RISK_16.
svm_OriginalModel(dat_list, dat_test_sig)
svm_OriginalModel(dat_list, dat_test_sig)
dat_list |
A |
dat_test_sig |
A |
The predicted score for each sample in the test study.
This function collects the results of bootstrapping and t-tests for a scored
gene expression dataset and presents them using a JavaScript table with an
R interface, or as a data.frame
.
tableAUC( SE_scored, annotationColName, signatureColNames, num.boot = 100, pb.show = TRUE, output = "DataTable" )
tableAUC( SE_scored, annotationColName, signatureColNames, num.boot = 100, pb.show = TRUE, output = "DataTable" )
SE_scored |
a |
annotationColName |
a character string giving the column name in
|
signatureColNames |
a vector of column names in the
|
num.boot |
integer. The number of times to bootstrap the data. The
default is |
pb.show |
logical for whether to show a progress bar while running code.
The default is |
output |
a character string indicating the table output format. Possible
values are |
A JavaScript table with an R interface using the DT
package.
# Run signature profiling choose_sigs <- TBsignatures[c(1, 2)] prof_indian <- runTBsigProfiler(TB_indian, useAssay = "logcounts", algorithm = "ssGSEA", signatures = choose_sigs, parallel.sz = 1, update_genes = FALSE) # Create table tableAUC(SE_scored = prof_indian, annotationColName = "label", signatureColNames = names(choose_sigs)) # Create data.frame object h <- tableAUC(SE_scored = prof_indian, annotationColName = "label", signatureColNames = names(choose_sigs), output = "data.frame", num.boot = 5) head(h)
# Run signature profiling choose_sigs <- TBsignatures[c(1, 2)] prof_indian <- runTBsigProfiler(TB_indian, useAssay = "logcounts", algorithm = "ssGSEA", signatures = choose_sigs, parallel.sz = 1, update_genes = FALSE) # Create table tableAUC(SE_scored = prof_indian, annotationColName = "label", signatureColNames = names(choose_sigs)) # Create data.frame object h <- tableAUC(SE_scored = prof_indian, annotationColName = "label", signatureColNames = names(choose_sigs), output = "data.frame", num.boot = 5) head(h)
An example dataset containing the gene expression and metadata in a
SummarizedExperiment object for 31 subjects with HIV and/or Tuberculosis
diseases. Information on subject infection status can be accessed with
TB_hiv$Disease
. Samples with both TB and HIV contamination are
marked as tb_hiv
, while samples with HIV and no TB are marked
as hiv_only
.
TB_hiv
TB_hiv
SummarizedExperiment
This dataset was published as part of a study to assess whether gene expression signatures and cytokine levels would distinguish active TB in advanced HIV in a cohort residing in Sub-Saharan Africa (Verma et. al 2018). Participants were severely immunosuppressed TB-HIV patients who had not yet received TB treatment or anti-retroviral therapy (ART). The dataset included in this package has been lightly edited from the originally published dataset due to the removal of one participant who was HIV positive, on ART and developed TB during follow-up. Whole blood RNA-Seq analysis was performed on all 31 participants.
Verma S., Du P., et. al. (2018). Tuberculosis in advanced HIV infection is associated with increased expression of IFN and its downstream targets. BMC Infectious Diseases 18:220. doi: https://doi.org/10.1186/s12879-018-3127-410.1186/s12879-018-3127-4.
data("TB_hiv")
data("TB_hiv")
An example dataset containing the gene expression and metadata in a
SummarizedExperiment object for an Indian population. Active TB contamination
of the 44 subjects is denoted for each as a "1"(active) or "0"
(latent/not present), and can be accessed via TB_indian$label
. The
SummarizedExperiment object contains 2 assays (counts and log(counts)),
and the column names give the unique subject identification number along
with the subject's gender.
TB_indian
TB_indian
SummarizedExperiment
This dataset was published as part of a study to assess performance of published TB signatures in a South Indian population (Leong et. al 2018). RNA sequencing was performed on whole blood PAX gene samples collected from 28 TB patients and 16 latent TB infected (LTBI) subjects enrolled as part of an ongoing household contact study. Whole blood RNA-Seq analysis was performed on all 44 participants.
Leong S., Zhao Y., et. al. (2018). Existing blood transcriptional classifiers accurately discriminate active tuberculosis from latent infection in individuals from south India. Tuberculosis 109, 41-51. doi: https://doi.org/10.1016/j.tube.2018.01.00210.1016/j.tube.2018.01.002.
data("TB_indian")
data("TB_indian")
A set of Tuberculosis gene signatures from various publications. This set of signatures uses gene symbols. Attempts have been made to use updated gene symbols and remove symbols that did not match the most recent annotation. Additional sets for Entrez IDs and Ensembl IDs are forthcoming.
TBcommon
TBcommon
list
This list differs from TBsignatures
in that signatures with names
specified in their originating publication (or that of a peer)
are given that common name rather than using the TBSignatureProfiler
naming system. Otherwise, signature names are composed of the last name
of the primary author, followed by
a possible context for the signature, and ending with either the number of
gene transcripts or genes in the signature with respect to however
it was described in the original publication.
Possible signature contexts:
<blank>
: TB vs LTBI or Healthy Controls
OD: Other diseases
HIV: Human Immunodeficiency Virus
PNA: Pneumonia
RISK: Risk of developing active TB
RES: Response to TB treatment
FAIL: Failure of TB treatment
Note that in some cases signatures will be positive identifiers of TB whereas others are negative identifiers; this should be taken into account when creating ROC curves and computing any AUC estimates.
Anderson_42: Anderson, Suzanne T., Myrsini Kaforou, Andrew J. Brent, Victoria J. Wright, Claire M. Banwell, George Chagaluka, Amelia C. Crampin, et al. 2014. "Diagnosis of Childhood Tuberculosis and Host RNA Expression in Africa." The New England Journal of Medicine 370 (18): 1712-23. https://dx.doi.org/10.1056/NEJMoa130365710.1056/NEJMoa1303657
Anderson_OD_51: Anderson, Suzanne T., Myrsini Kaforou, Andrew J. Brent, Victoria J. Wright, Claire M. Banwell, George Chagaluka, Amelia C. Crampin, et al. 2014. "Diagnosis of Childhood Tuberculosis and Host RNA Expression in Africa." The New England Journal of Medicine 370 (18): 1712-23. https://dx.doi.org/10.1056/NEJMoa130365710.1056/NEJMoa1303657
Berry_393: Berry, Matthew P. R., Christine M. Graham, Finlay W. McNab, Zhaohui Xu, Susannah A. A. Bloch, Tolu Oni, Katalin A. Wilkinson, et al. 2010. "An Interferon-Inducible Neutrophil-Driven Blood Transcriptional Signature in Human Tuberculosis." Nature 466 (7309): 973-77. https://dx.doi.org/10.1038/nature0924710.1038/nature09247
Berry_OD_86: Berry, Matthew P. R., Christine M. Graham, Finlay W. McNab, Zhaohui Xu, Susannah A. A. Bloch, Tolu Oni, Katalin A. Wilkinson, et al. 2010. "An Interferon-Inducible Neutrophil-Driven Blood Transcriptional Signature in Human Tuberculosis." Nature 466 (7309): 973-77. https://dx.doi.org/10.1038/nature0924710.1038/nature09247
Blankley_380: Blankley, Simon, Christine M. Graham, Joe Levin, Jacob Turner, Matthew P. R. Berry, Chloe I. Bloom, Zhaohui Xu, et al. 2016. "A 380-Gene Meta-Signature of Active Tuberculosis Compared with Healthy Controls." The European Respiratory Journal: Official Journal of the European Society for Clinical Respiratory Physiology 47 (6): 1873-76. https://dx.doi.org/10.1183/13993003.02121-201510.1183/13993003.02121-2015
Blankley_5: Blankley, Simon, Christine M. Graham, Joe Levin, Jacob Turner, Matthew P. R. Berry, Chloe I. Bloom, Zhaohui Xu, et al. 2016. "A 380-Gene Meta-Signature of Active Tuberculosis Compared with Healthy Controls." The European Respiratory Journal: Official Journal of the European Society for Clinical Respiratory Physiology 47 (6): 1873-76. https://dx.doi.org/10.1183/13993003.02121-201510.1183/13993003.02121-2015
Bloom_OD_144: Bloom, Chloe I., Christine M. Graham, Matthew P. R. Berry, Fotini Rozakeas, Paul S. Redford, Yuanyuan Wang, Zhaohui Xu, et al. 2013. "Transcriptional Blood Signatures Distinguish Pulmonary Tuberculosis, Pulmonary Sarcoidosis, Pneumonias and Lung Cancers." PloS One 8 (8): e70630. https://dx.doi.org/10.1371/journal.pone.007063010.1371/journal.pone.0070630
Bloom_RES_268: Bloom CI, Graham CM, Berry MP, et al. Detectable changes in the blood transcriptome are present after two weeks of antituberculosis therapy. PLoS One. 2012;7(10):e46191. https://dx.doi.org/10.3389/fmicb.2021.65056710.3389/fmicb.2021.650567
Bloom_RES_558: Bloom CI, Graham CM, Berry MP, et al. Detectable changes in the blood transcriptome are present after two weeks of antituberculosis therapy. PLoS One. 2012;7(10):e46191. https://dx.doi.org/10.3389/fmicb.2021.65056710.3389/fmicb.2021.650567
Chen_5: Chen L, Hua J, He X. Coexpression Network Analysis-Based Identification of Critical Genes Differentiating between Latent and Active Tuberculosis. Dis Markers. 2022;2022:2090560. http://dx.doi.org/10.1155/2022/209056010.1155/2022/2090560
Chen_HIV_4: Chen Y, Wang Q, Lin S, et al. Meta-Analysis of Peripheral Blood Transcriptome Datasets Reveals a Biomarker Panel for Tuberculosis in Patients Infected With HIV. Front Cell Infect Microbiol. 2021;11:585919. Published 2021 Mar 19. https://dx.doi.org/10.3389/fcimb.2021.58591910.3389/fcimb.2021.585919
Chendi_HIV_2: Chendi BH, Tveiten H, Snyders CI, et al. CCL1 and IL-2Ra differentiate Tuberculosis disease from latent infection Irrespective of HIV infection in low TB burden countries. J Infect. 2021;S0163-4453(21)00379-0. https://dx.doi.org/10.1016/j.jinf.2021.07.03610.1016/j.jinf.2021.07.036
RISK11: Darboe, F. et al. Diagnostic performance of an optimized transcriptomic signature of risk of tuberculosis in cryopreserved peripheral blood mononuclear cells. Tuberculosis 108, 124-126 (2018). https://dx.doi.org/ 10.1016/j.tube.2017.11.001 10.1016/j.tube.2017.11.001
Dawany_HIV_251: Dawany, N. et al. Identification of a 251 gene expression signature that can accurately detect M. tuberculosis in patients with and without HIV co-infection. PLoS One 9, (2014). https://dx.doi.org/10.1371/journal.pone.008992510.1371/journal.pone.0089925
CMTB_CT: Duffy FJ, Olson GS, Gold ES, Jahn A, Aderem A, Aitchison J, Rothchild AC, Diercks AH, Nemeth J. A contained Mycobacterium tuberculosis mouse infection model predicts active disease and containment in humans. The Journal of Infectious Diseases. 2021 Mar 10. https://dx.doi.org/10.1093/infdis/jiab13010.1093/infdis/jiab130
Esmail_203: Esmail, Hanif, Rachel P. Lai, Maia Lesosky, Katalin A. Wilkinson, Christine M. Graham, Stuart Horswell, Anna K. Coussens, Clifton E. Barry 3rd, Anne O'Garra, and Robert J. Wilkinson. 2018. "Complement Pathway Gene Activation and Rising Circulating Immune Complexes Characterize Early Disease in HIV-Associated Tuberculosis." Proceedings of the National Academy of Sciences of the United States of America 115 (5): E964-73. https://dx.doi.org/10.1073/pnas.171185311510.1073/pnas.1711853115
Esmail_82: Esmail, Hanif, Rachel P. Lai, Maia Lesosky, Katalin A. Wilkinson, Christine M. Graham, Stuart Horswell, Anna K. Coussens, Clifton E. Barry 3rd, Anne O'Garra, and Robert J. Wilkinson. 2018. "Complement Pathway Gene Activation and Rising Circulating Immune Complexes Characterize Early Disease in HIV-Associated Tuberculosis." Proceedings of the National Academy of Sciences of the United States of America 115 (5): E964-73. https://dx.doi.org/10.1073/pnas.171185311510.1073/pnas.1711853115
Esmail_OD_893: Esmail, Hanif, Rachel P. Lai, Maia Lesosky, Katalin A. Wilkinson, Christine M. Graham, Stuart Horswell, Anna K. Coussens, Clifton E. Barry 3rd, Anne O'Garra, and Robert J. Wilkinson. 2018. "Complement Pathway Gene Activation and Rising Circulating Immune Complexes Characterize Early Disease in HIV-Associated Tuberculosis." Proceedings of the National Academy of Sciences of the United States of America 115 (5): E964-73. https://dx.doi.org/10.1073/pnas.171185311510.1073/pnas.1711853115
Estevez_133: Estévez O, Anibarro L, Garet E, et al. An RNA-seq Based Machine Learning Approach Identifies Latent Tuberculosis Patients With an Active Tuberculosis Profile. Front Immunol. 2020;11:1470. Published 2020 Jul 14. https://dx.doi.org/10.3389/fimmu.2020.0147010.3389/fimmu.2020.01470
Estevez_259: Estévez O, Anibarro L, Garet E, et al. An RNA-seq Based Machine Learning Approach Identifies Latent Tuberculosis Patients With an Active Tuberculosis Profile. Front Immunol. 2020;11:1470. Published 2020 Jul 14. https://dx.doi.org/10.3389/fimmu.2020.0147010.3389/fimmu.2020.01470
Francisco_OD_2: Francisco NM, Fang YM, Ding L, et al. Diagnostic accuracy of a selected signature gene set that discriminates active pulmonary tuberculosis and other pulmonary diseases. J Infect. 2017;75(6):499-510. http://dx.doi.org/10.1016/j.jinf.2017.09.01210.1016/j.jinf.2017.09.012
Gjoen_10: Gjøen, J.E., Jenum, S., Sivakumaran, D. et al. 'Novel transcriptional signatures for sputum-independent diagnostics of tuberculosis in children.' Sci Rep 7, 5839 (2017). https://doi.org/10.1038/s41598-017-05057-x10.1038/s41598-017-05057-x
Gjoen_7: Gjøen, J.E., Jenum, S., Sivakumaran, D. et al. 'Novel transcriptional signatures for sputum-independent diagnostics of tuberculosis in children.' Sci Rep 7, 5839 (2017). https://doi.org/10.1038/s41598-017-05057-x10.1038/s41598-017-05057-x
Gliddon_2_OD_4: Gliddon HD, Kaforou M, Alikian M, et al. Identification of Reduced Host Transcriptomic Signatures for Tuberculosis Disease and Digital PCR-Based Validation and Quantification. Front Immunol. 2021;12:637164. Published 2021 Mar 2. https://dx.doi.org/10.3389/fimmu.2021.63716410.3389/fimmu.2021.637164
Gliddon_HIV_3: Gliddon HD, Kaforou M, Alikian M, et al. Identification of Reduced Host Transcriptomic Signatures for Tuberculosis Disease and Digital PCR-Based Validation and Quantification. Front Immunol. 2021;12:637164. Published 2021 Mar 2. https://dx.doi.org/10.3389/fimmu.2021.63716410.3389/fimmu.2021.637164
Gliddon_OD_3: Gliddon, Harriet D., Kaforou, Myrsini, Alikian, Mary, Habgood-Coote, Dominic, Zhou, Chenxi, Oni, Tolu, Anderson, Suzanne T., Brent, Andrew J., Crampin, Amelia C., Eley, Brian, Kern, Florian, Langford, Paul R., Ottenhoff, Tom H. M., Hibberd, Martin L., French, Neil, Wright, Victoria J., Dockrell, Hazel M., Coin, Lachlan J., Wilkinson, Robert J., Levin, Michael. 2019 "Identification of reduced host transcriptomic signatures for tuberculosis and digital PCR-based validation and quantification" biorxiv.org: . https://dx.doi.org/10.1101/58367410.1101/583674
Gliddon_OD_4: Gliddon, Harriet D., Kaforou, Myrsini, Alikian, Mary, Habgood-Coote, Dominic, Zhou, Chenxi, Oni, Tolu, Anderson, Suzanne T., Brent, Andrew J., Crampin, Amelia C., Eley, Brian, Kern, Florian, Langford, Paul R., Ottenhoff, Tom H. M., Hibberd, Martin L., French, Neil, Wright, Victoria J., Dockrell, Hazel M., Coin, Lachlan J., Wilkinson, Robert J., Levin, Michael. 2019 "Identification of reduced host transcriptomic signatures for tuberculosis and digital PCR-based validation and quantification" biorxiv.org: . https://dx.doi.org/10.1101/58367410.1101/583674
Gong_OD_4: Gong Z, Gu Y, Xiong K, Niu J, Zheng R, Su B, Fan L and Xie J (2021) The Evaluation and Validation of Blood-Derived Novel Biomarkers for Precise and Rapid Diagnosis of Tuberculosis in Areas With High-TB Burden. Front. Microbiol. 12:650567. https://dx.doi.org/10.3389/fmicb.2021.65056710.3389/fmicb.2021.650567
Heycken_FAIL_22: Heyckendorf J, Marwitz S, Reimann M, et al. Prediction of anti-tuberculosis treatment duration based on a 22-gene transcriptomic model. Eur Respir J. 2021;2003492. https://dx.doi.org/10.1183/13993003.03492-202010.1183/13993003.03492-2020
Hoang_OD_13: Hoang, Long & Jain, Pooja & Pillay, Timesh & Tolosa-Wright, Mica & Niazi, Umar & Takwoingi, Yemisi & Halliday, Alice & Berrocal-Almanza, Luis & Deeks, Jonathan & Beverley, Peter & Kon, Onn & Lalvani, Ajit. (2021). Transcriptomic signatures for diagnosing tuberculosis in clinical practice: a prospective, multicentre cohort study. The Lancet Infectious Diseases. https://dx.doi.org/10.1016/S1473-3099(20)30928-210.1016/S1473-3099(20)30928-2
Hoang_OD_20: Hoang, Long & Jain, Pooja & Pillay, Timesh & Tolosa-Wright, Mica & Niazi, Umar & Takwoingi, Yemisi & Halliday, Alice & Berrocal-Almanza, Luis & Deeks, Jonathan & Beverley, Peter & Kon, Onn & Lalvani, Ajit. (2021). Transcriptomic signatures for diagnosing tuberculosis in clinical practice: a prospective, multicentre cohort study. The Lancet Infectious Diseases. https://dx.doi.org/10.1016/S1473-3099(20)30928-210.1016/S1473-3099(20)30928-2
Hoang_OD_3: Hoang, Long & Jain, Pooja & Pillay, Timesh & Tolosa-Wright, Mica & Niazi, Umar & Takwoingi, Yemisi & Halliday, Alice & Berrocal-Almanza, Luis & Deeks, Jonathan & Beverley, Peter & Kon, Onn & Lalvani, Ajit. (2021). Transcriptomic signatures for diagnosing tuberculosis in clinical practice: a prospective, multicentre cohort study. The Lancet Infectious Diseases. https://dx.doi.org/10.1016/S1473-3099(20)30928-210.1016/S1473-3099(20)30928-2
Huang_13: Huang, Hai-Hui et al. 'Identification of 13 Blood-based Gene Expression Signatures to Accurately Distinguish Tuberculosis from Other Pulmonary Diseases and Healthy Controls'. 1 Jan. 2015 : S1837 - S1843.https://doi.org/10.3233/BME-15148610.3233/BME-151486
Jacobsen_3: Jacobsen, Marc, Dirk Repsilber, Andrea Gutschmidt, Albert Neher, Knut Feldmann, Hans J. Mollenkopf, Andreas Ziegler, and Stefan H. E. Kaufmann. 2007. "Candidate Biomarkers for Discrimination between Infection and Disease Caused by Mycobacterium Tuberculosis." Journal of Molecular Medicine 85 (6): 613-21. https://dx.doi.org/10.1007/s00109-007-0157-610.1007/s00109-007-0157-6
Jenum_8: Jenum, S., Dhanasekaran, S., Lodha, R. et al. Approaching a diagnostic point-of-care test for pediatric tuberculosis through evaluation of immune biomarkers across the clinical disease spectrum. Sci Rep 6, 18520 (2016). https://doi.org/10.1038/srep1852010.1038/srep18520
Kaforou_27: Kaforou, Myrsini, Victoria J. Wright, Tolu Oni, Neil French, Suzanne T. Anderson, Nonzwakazi Bangani, Claire M. Banwell, et al. 2013. "Detection of Tuberculosis in HIV-Infected and -Uninfected African Adults Using Whole Blood RNA Expression Signatures: A Case-Control Study." PLoS Medicine 10 (10): e1001538. https://dx.doi.org/10.1371/journal.pmed.100153810.1371/journal.pmed.1001538
Kaforou_OD_44: Kaforou, Myrsini, Victoria J. Wright, Tolu Oni, Neil French, Suzanne T. Anderson, Nonzwakazi Bangani, Claire M. Banwell, et al. 2013. "Detection of Tuberculosis in HIV-Infected and -Uninfected African Adults Using Whole Blood RNA Expression Signatures: A Case-Control Study." PLoS Medicine 10 (10): e1001538. https://dx.doi.org/10.1371/journal.pmed.100153810.1371/journal.pmed.1001538
Kaforou_OD_53: Kaforou, Myrsini, Victoria J. Wright, Tolu Oni, Neil French, Suzanne T. Anderson, Nonzwakazi Bangani, Claire M. Banwell, et al. 2013. "Detection of Tuberculosis in HIV-Infected and -Uninfected African Adults Using Whole Blood RNA Expression Signatures: A Case-Control Study." PLoS Medicine 10 (10): e1001538. https://dx.doi.org/10.1371/journal.pmed.100153810.1371/journal.pmed.1001538
Kaul_3: Kaul S, Nair V, Birla S, et al. Latent Tuberculosis Infection Diagnosis among Household Contacts in a High Tuberculosis-Burden Area: a Comparison between Transcript Signature and Interferon Gamma Release Assay. Microbiol Spectr. 2022;10(2):e0244521. http://dx.doi.org/10.1128/spectrum.02445-2110.1128/spectrum.02445-21
Kulkarni_HIV_2: Kulkarni V, Queiroz ATL, Sangle S, et al. A Two-Gene Signature for Tuberculosis Diagnosis in Persons With Advanced HIV. Front Immunol. 2021;12:631165. Published 2021 Feb 22. https://dx.doi.org/10.3389/fimmu.2021.63116510.3389/fimmu.2021.631165
Kwan_186: Kwan PKW, Periaswamy B, De Sessions PF, et al. A blood RNA transcript signature for TB exposure in household contacts. BMC Infect Dis. 2020;20(1):403. http://dx.doi.org/10.1186/s12879-020-05116-110.1186/s12879-020-05116-1
LauxdaCosta_OD_3: Laux da Costa L, Delcroix M, Dalla Costa ER, et al. A real-time PCR signature to discriminate between tuberculosis and other pulmonary diseases. Tuberculosis (Edinb). 2015;95(4):421-425. https://dx.doi.org/10.1016/j.tube.2015.04.00810.1016/j.tube.2015.04.008
Lee_4: Lee, Shih-Wei, Lawrence Shih-Hsin Wu, Guan-Mau Huang, Kai-Yao Huang, Tzong-Yi Lee, and Julia Tzu-Ya Weng. 2016. "Gene Expression Profiling Identifies Candidate Biomarkers for Active and Latent Tuberculosis." BMC Bioinformatics 17 Suppl 1 (January): 3. https://dx.doi.org/10.1186/s12859-015-0848-x10.1186/s12859-015-0848-x
Leong_24: Leong, Samantha, Yue Zhao, Noyal M. Joseph, Natasha S. Hochberg, Sonali Sarkar, Jane Pleskunas, David Hom, et al. 2018. "Existing blood transcriptional classifiers accurately discriminate active tuberculosis from latent infection in individuals from south India." Tuberculosis (109): 41-51. https://doi.org/10.1016/j.tube.2018.01.00210.1016/j.tube.2018.01.002
PREDICT29: Leong, S., Zhao, Y., Ribeiro-Rodrigues, R., Jones-López, E. C., Acuña-Villaorduña, C., Rodrigues, P. M., Palaci, M., Alland, D., Dietze, R., Ellner, J. J., Johnson, W. E., Salgame, P., Cross-validation of existing signatures and derivation of a novel 29-gene transcriptomic signature predictive of progression to TB in a Brazilian cohort of household contacts of pulmonary TB. Tuberculosis (Edinb). 2020 Jan;120:101898. https://dx.doi.org/10.1016/j.tube.2020.10189810.1016/j.tube.2020.101898
Long_RES_10: Long NP, Phat NK, Yen NTH, et al. A 10-gene biosignature of tuberculosis treatment monitoring and treatment outcome prediction. Tuberculosis (Edinb). 2021;131:102138. http://dx.doi.org/10.1016/j.tube.2021.10213810.1016/j.tube.2021.102138
Maertzdorf_15: Maertzdorf J, McEwen G, Weiner J 3rd, et al. Concise gene signature for point-of-care classification of tuberculosis. EMBO Mol Med. 2016;8(2):86-95. https://dx.doi.org/10.15252/emmm.20150579010.15252/emmm.201505790
DIAG4: Maertzdorf, Jeroen, Gayle McEwen, January Weiner 3rd, Song Tian, Eric Lader, Ulrich Schriek, Harriet Mayanja-Kizza, Martin Ota, John Kenneth, and Stefan He Kaufmann. 2016. "Concise Gene Signature for Point-of-Care Classification of Tuberculosis." EMBO Molecular Medicine 8 (2): 86-95. https://dx.doi.org/10.15252/emmm.20150579010.15252/emmm.201505790
Maertzdorf_OD_100: Maertzdorf, Jeroen, January Weiner 3rd, Hans-Joachim Mollenkopf, TBornot TB Network, Torsten Bauer, Antje Prasse, Joachim Müller-Quernheim, and Stefan H. E. Kaufmann. 2012. "Common Patterns and Disease-Related Signatures in Tuberculosis and Sarcoidosis." Proceedings of the National Academy of Sciences of the United States of America 109 (20): 7853-58. https://dx.doi.org/10.1073/pnas.112107210910.1073/pnas.1121072109
Natarajan_7: Natarajan S, Ranganathan M, Hanna LE, Tripathy S. Transcriptional Profiling and Deriving a Seven-Gene Signature That Discriminates Active and Latent Tuberculosis: An Integrative Bioinformatics Approach. Genes (Basel). 2022;13(4):616. Published 2022 Mar 29. http://dx.doi.org/10.3390/genes1304061610.3390/genes13040616
RISK6: Penn-Nicholson, A. et al. RISK6, a 6-gene transcriptomic signature of TB disease risk, diagnosis and treatment response. Sci. Rep. 10, (2020). https://dx.doi.org/10.1038/s41598-020-65043-810.1038/s41598-020-65043-8
Qian_OD_17: Qian, Zhongqing et al. "Expression of nuclear factor, erythroid 2-like 2-mediated genes differentiates tuberculosis." Tuberculosis (Edinburgh, Scotland) vol. 99 (2016): 56-62. https://doi.org/10.1016/j.tube.2016.04.00810.1016/j.tube.2016.04.008
Rajan_HIV_5: Rajan, Jayant V., Semitala, Fred C., Kamya, Moses R., Yoon, Christina., Mehta, Tejas., Cattamanchi, Adithya., Seielstad, Mark., Montalvo, Lani., Andama, Alfred., Katende, Jane., Asege, Lucy., Nakaye, Martha., Mwebe, Sandra. 2018 "A Novel, 5-Transcript, Whole-blood Gene-expression Signature for Tuberculosis Screening Among People Living With Human Immunodeficiency Virus" Clinical Infectious Diseases: 1-7. https://doi.org/10.1093/cid/ciy83510.1093/cid/ciy835
Roe_3: Roe, Jennifer, Venturini, Cristina, Gupta, Rishi K., Gurry, Celine, Chain, Benjamin M., Sun, Yuxin, Southern, Jo, Jackson, Charlotte, Lipman, Marc, C., Miller, Robert F., Martineau, Adrian R., Abubakar, Ibrahim, Noursadeghi, Mahdad. 2019 "T1 Blood transcriptomic stratification of short-term risk in contacts of tuberculosis": . https://doi.org/10.1093/cid/ciz25210.1093/cid/ciz252
Roe_OD_4: Roe, Jennifer K., Niclas Thomas, Eliza Gil, Katharine Best, Evdokia Tsaliki, Stephen Morris-Jones, Sian Stafford, et al. 2016. "Blood Transcriptomic Diagnosis of Pulmonary and Extrapulmonary Tuberculosis." JCI Insight 1 (16): e87238. https://dx.doi.org/10.1172/jci.insight.8723810.1172/jci.insight.87238
Sambarey_HIV_10: Sambarey, Awanti, Abhinandan Devaprasad, Abhilash Mohan, Asma Ahmed, Soumya Nayak, Soumya Swaminathan, George D'Souza, et al. 2017. "Unbiased Identification of Blood-Based Biomarkers for Pulmonary Tuberculosis by Modeling and Mining Molecular Interaction Networks." EBioMedicine 15 (February): 112-26. https://dx.doi.org/10.1016/j.ebiom.2016.12.00910.1016/j.ebiom.2016.12.009
Singhania_OD_20: Singhania, Akul, Raman Verma, Christine M. Graham, Jo Lee, Trang Tran, Matthew Richardson, Patrick Lecine, et al. 2018. "A Modular Transcriptional Signature Identifies Phenotypic Heterogeneity of Human Tuberculosis Infection." Nature Communications 9 (1): 2308. https://dx.doi.org/10.1038/s41467-018-04579-w10.1038/s41467-018-04579-w
Sivakumaran_11: Sivakumaran D, Ritz C, Gjøen JE, et al. Host Blood RNA Transcript and Protein Signatures for Sputum-Independent Diagnostics of Tuberculosis in Adults. Front Immunol. 2021;11:626049. Published 2021 Feb 4. https://dx.doi.org/10.3389/fimmu.2020.62604910.3389/fimmu.2020.626049
Sloot_HIV_2: Sloot, Rosa, Maarten F. Schim van der Loeff, Erik W. van Zwet, Mariëlle C. Haks, Sytze T. Keizer, Maarten Scholing, Tom H. M. Ottenhoff, Martien W. Borgdorff, and Simone A. Joosten. 2015. "Biomarkers Can Identify Pulmonary Tuberculosis in HIV-Infected Drug Users Months Prior to Clinical Diagnosis." EBioMedicine 2 (2): 172-79. https://dx.doi.org/10.1016/j.ebiom.2014.12.00110.1016/j.ebiom.2014.12.001
Suliman_4: Suliman, Sara, Ethan Thompson, Jayne Sutherland, January Weiner Rd, Martin O. C. Ota, Smitha Shankar, Adam Penn-Nicholson, et al. 2018. "Four-Gene Pan-African Blood Signature Predicts Progression to Tuberculosis." American Journal of Respiratory and Critical Care Medicine, April. https://doi.org/10.1164/rccm.201711-2340OC. https://dx.doi.org/10.1164/rccm.201711-2340OC10.1164/rccm.201711-2340OC
Suliman_RISK_2: Suliman, S. et al. Four-gene pan-African blood signature predicts progression to tuberculosis. Am. J. Respir. Crit. Care Med. 197, 1198-1208 (2018). https://dx.doi.org/10.1164/rccm.201711-2340OC10.1164/rccm.201711-2340OC
RISK4: Suliman, Sara, Ethan Thompson, Jayne Sutherland, January Weiner Rd, Martin O. C. Ota, Smitha Shankar, Adam Penn-Nicholson, et al. 2018. "Four-Gene Pan-African Blood Signature Predicts Progression to Tuberculosis." American Journal of Respiratory and Critical Care Medicine, April. https://doi.org/10.1164/rccm.201711-2340OC. https://dx.doi.org/10.1164/rccm.201711-2340OC10.1164/rccm.201711-2340OC
DIAG3: Sweeney, Timothy E., Lindsay Braviak, Cristina M. Tato, and Purvesh Khatri. 2016. "Genome-Wide Expression for Diagnosis of Pulmonary Tuberculosis: A Multicohort Analysis." The Lancet. Respiratory Medicine 4 (3): 213-24. https://dx.doi.org/10.1016/S2213-2600(16)00048-510.1016/S2213-2600(16)00048-5
TB12: Tabone O, Verma R, Singhania A, et al. Blood transcriptomics reveal the evolution and resolution of the immune response in tuberculosis. J Exp Med. 2021;218(10):e20210915. http://dx.doi.org/10.1084/jem.2021091510.1084/jem.20210915
EarlyRESP-TB25: Tabone O, Verma R, Singhania A, et al. Blood transcriptomics reveal the evolution and resolution of the immune response in tuberculosis. J Exp Med. 2021;218(10):e20210915. http://dx.doi.org/10.1084/jem.2021091510.1084/jem.20210915
TREAT-TB27: Tabone O, Verma R, Singhania A, et al. Blood transcriptomics reveal the evolution and resolution of the immune response in tuberculosis. J Exp Med. 2021;218(10):e20210915. http://dx.doi.org/10.1084/jem.2021091510.1084/jem.20210915
DISEASE: Thompson, Ethan G., Ying Du, Stephanus T. Malherbe, Smitha Shankar, Jackie Braun, Joe Valvo, Katharina Ronacher, et al. 2017. "Host Blood RNA Signatures Predict the Outcome of Tuberculosis Treatment." Tuberculosis 107 (December): 48-58. https://dx.doi.org/10.1016/j.tube.2017.08.00410.1016/j.tube.2017.08.004
FAILURE: Thompson, Ethan G., Ying Du, Stephanus T. Malherbe, Smitha Shankar, Jackie Braun, Joe Valvo, Katharina Ronacher, et al. 2017. "Host Blood RNA Signatures Predict the Outcome of Tuberculosis Treatment." Tuberculosis 107 (December): 48-58. https://dx.doi.org/10.1016/j.tube.2017.08.00410.1016/j.tube.2017.08.004
RESPONSE5: Thompson, Ethan G., Ying Du, Stephanus T. Malherbe, Smitha Shankar, Jackie Braun, Joe Valvo, Katharina Ronacher, et al. 2017. "Host Blood RNA Signatures Predict the Outcome of Tuberculosis Treatment." Tuberculosis 107 (December): 48-58. https://dx.doi.org/10.1016/j.tube.2017.08.00410.1016/j.tube.2017.08.004
Tornheim_71: Tornheim, Jeffrey A., Anil K. Madugundu, Mandar Paradkar, Kiyoshi F. Fukutani, Artur TL Queiroz, Nikhil Gupte, Akshay N. Gupte et al. 2020. "Transcriptomic Profiles of Confirmed Pediatric Tuberculosis Patients and Household Contacts Identifies Active Tuberculosis, Infection, and Treatment Response Among Indian Children." The Journal of Infectious Diseases 221(10): 1647-1658. https://doi.org/10.1093/infdis/jiz63910.1093/infdis/jiz639
Tornheim_RES_25: Tornheim, Jeffrey A., Anil K. Madugundu, Mandar Paradkar, Kiyoshi F. Fukutani, Artur TL Queiroz, Nikhil Gupte, Akshay N. Gupte et al. 2020. "Transcriptomic Profiles of Confirmed Pediatric Tuberculosis Patients and Household Contacts Identifies Active Tuberculosis, Infection, and Treatment Response Among Indian Children." The Journal of Infectious Diseases 221(10): 1647-1658. https://doi.org/10.1093/infdis/jiz63910.1093/infdis/jiz639
Vargas_18: Vargas R, Abbott L, Bower D, Frahm N, Shaffer M, Yu WH. Gene signature discovery and systematic validation across diverse clinical cohorts for TB prognosis and response to treatment. PLoS Comput Biol. 2023;19(7):e1010770. http://dx.doi.org/10.1371/journal.pcbi.101077010.1371/journal.pcbi.1010770
Vargas_42: Vargas R, Abbott L, Bower D, Frahm N, Shaffer M, Yu WH. Gene signature discovery and systematic validation across diverse clinical cohorts for TB prognosis and response to treatment. PLoS Comput Biol. 2023;19(7):e1010770. http://dx.doi.org/10.1371/journal.pcbi.101077010.1371/journal.pcbi.1010770
Verhagen_10: Verhagen, L.M., Zomer, A., Maes, M. et al. A predictive signature gene set for discriminating active from latent tuberculosis in Warao Amerindian children. BMC Genomics 14, 74 (2013). https://doi.org/10.1186/1471-2164-14-7410.1186/1471-2164-14-74
Walter_51: Walter, Nicholas D., Mikaela A. Miller, Joshua Vasquez, Marc Weiner, Adam Chapman, Melissa Engle, Michael Higgins, et al. 2016. "Blood Transcriptional Biomarkers for Active Tuberculosis among Patients in the United States: A Case-Control Study with Systematic Cross-Classifier Evaluation." Journal of Clinical Microbiology 54 (2): 274-82. https://dx.doi.org/10.1128/JCM.01990-1510.1128/JCM.01990-15
Walter_PNA_119: Walter, Nicholas D., Mikaela A. Miller, Joshua Vasquez, Marc Weiner, Adam Chapman, Melissa Engle, Michael Higgins, et al. 2016. "Blood Transcriptional Biomarkers for Active Tuberculosis among Patients in the United States: A Case-Control Study with Systematic Cross-Classifier Evaluation." Journal of Clinical Microbiology 54 (2): 274-82. https://dx.doi.org/10.1128/JCM.01990-1510.1128/JCM.01990-15
Walter_PNA_47: Walter, Nicholas D., Mikaela A. Miller, Joshua Vasquez, Marc Weiner, Adam Chapman, Melissa Engle, Michael Higgins, et al. 2016. "Blood Transcriptional Biomarkers for Active Tuberculosis among Patients in the United States: A Case-Control Study with Systematic Cross-Classifier Evaluation." Journal of Clinical Microbiology 54 (2): 274-82. https://dx.doi.org/10.1128/JCM.01990-1510.1128/JCM.01990-15
ACS_COR: Zak, Daniel E., Adam Penn-Nicholson, Thomas J. Scriba, Ethan Thompson, Sara Suliman, Lynn M. Amon, Hassan Mahomed, et al. 2016. "A Blood RNA Signature for Tuberculosis Disease Risk: A Prospective Cohort Study." The Lancet 387 (10035): 231222. https://dx.doi.org/10.1016/S0140-6736(15)01316-110.1016/S0140-6736(15)01316-1
Zhao_NANO_6: To be available when published
data("TBcommon")
data("TBcommon")
A set of Tuberculosis gene signatures compiled from various publications. This set of signatures uses gene symbols. Attempts have been made to use updated gene symbols and remove symbols that did not match the most recent annotation. Additional sets for Entrez IDs and Ensembl IDs are forthcoming.
TBsignatures
TBsignatures
list
Signature names are composed of the last name of the primary author, followed by a possible context for the signature, and ending with either the number of gene transcripts or genes in the signature, with respect to however it was described in the signature's original publication.
Possible signature contexts:
<blank>
: TB vs LTBI or Healthy Controls
OD: Other diseases
HIV: Human Immunodeficiency Virus
PNA: Pneumonia
RISK: Risk of developing active TB
RES: Response to TB treatment
FAIL: Failure of TB treatment
Note that in some cases signatures will be positive identifiers of TB whereas others are negative identifiers; this should be taken into account when creating ROC curves and computing any AUC estimates.
Anderson_42: Anderson, Suzanne T., Myrsini Kaforou, Andrew J. Brent, Victoria J. Wright, Claire M. Banwell, George Chagaluka, Amelia C. Crampin, et al. 2014. "Diagnosis of Childhood Tuberculosis and Host RNA Expression in Africa." The New England Journal of Medicine 370 (18): 1712-23. https://dx.doi.org/10.1056/NEJMoa130365710.1056/NEJMoa1303657
Anderson_OD_51: Anderson, Suzanne T., Myrsini Kaforou, Andrew J. Brent, Victoria J. Wright, Claire M. Banwell, George Chagaluka, Amelia C. Crampin, et al. 2014. "Diagnosis of Childhood Tuberculosis and Host RNA Expression in Africa." The New England Journal of Medicine 370 (18): 1712-23. https://dx.doi.org/10.1056/NEJMoa130365710.1056/NEJMoa1303657
Berry_393: Berry, Matthew P. R., Christine M. Graham, Finlay W. McNab, Zhaohui Xu, Susannah A. A. Bloch, Tolu Oni, Katalin A. Wilkinson, et al. 2010. "An Interferon-Inducible Neutrophil-Driven Blood Transcriptional Signature in Human Tuberculosis." Nature 466 (7309): 973-77. https://dx.doi.org/10.1038/nature0924710.1038/nature09247
Berry_OD_86: Berry, Matthew P. R., Christine M. Graham, Finlay W. McNab, Zhaohui Xu, Susannah A. A. Bloch, Tolu Oni, Katalin A. Wilkinson, et al. 2010. "An Interferon-Inducible Neutrophil-Driven Blood Transcriptional Signature in Human Tuberculosis." Nature 466 (7309): 973-77. https://dx.doi.org/10.1038/nature0924710.1038/nature09247
Blankley_380: Blankley, Simon, Christine M. Graham, Joe Levin, Jacob Turner, Matthew P. R. Berry, Chloe I. Bloom, Zhaohui Xu, et al. 2016. "A 380-Gene Meta-Signature of Active Tuberculosis Compared with Healthy Controls." The European Respiratory Journal: Official Journal of the European Society for Clinical Respiratory Physiology 47 (6): 1873-76. https://dx.doi.org/10.1183/13993003.02121-201510.1183/13993003.02121-2015
Blankley_5: Blankley, Simon, Christine M. Graham, Joe Levin, Jacob Turner, Matthew P. R. Berry, Chloe I. Bloom, Zhaohui Xu, et al. 2016. "A 380-Gene Meta-Signature of Active Tuberculosis Compared with Healthy Controls." The European Respiratory Journal: Official Journal of the European Society for Clinical Respiratory Physiology 47 (6): 1873-76. https://dx.doi.org/10.1183/13993003.02121-201510.1183/13993003.02121-2015
Bloom_OD_144: Bloom, Chloe I., Christine M. Graham, Matthew P. R. Berry, Fotini Rozakeas, Paul S. Redford, Yuanyuan Wang, Zhaohui Xu, et al. 2013. "Transcriptional Blood Signatures Distinguish Pulmonary Tuberculosis, Pulmonary Sarcoidosis, Pneumonias and Lung Cancers." PloS One 8 (8): e70630. https://dx.doi.org/10.1371/journal.pone.007063010.1371/journal.pone.0070630
Bloom_RES_268: Bloom CI, Graham CM, Berry MP, et al. Detectable changes in the blood transcriptome are present after two weeks of antituberculosis therapy. PLoS One. 2012;7(10):e46191. https://dx.doi.org/10.3389/fmicb.2021.65056710.3389/fmicb.2021.650567
Bloom_RES_558: Bloom CI, Graham CM, Berry MP, et al. Detectable changes in the blood transcriptome are present after two weeks of antituberculosis therapy. PLoS One. 2012;7(10):e46191. https://dx.doi.org/10.3389/fmicb.2021.65056710.3389/fmicb.2021.650567
Chen_5: Chen L, Hua J, He X. Coexpression Network Analysis-Based Identification of Critical Genes Differentiating between Latent and Active Tuberculosis. Dis Markers. 2022;2022:2090560. http://dx.doi.org/10.1155/2022/209056010.1155/2022/2090560
Chen_HIV_4: Chen Y, Wang Q, Lin S, et al. Meta-Analysis of Peripheral Blood Transcriptome Datasets Reveals a Biomarker Panel for Tuberculosis in Patients Infected With HIV. Front Cell Infect Microbiol. 2021;11:585919. Published 2021 Mar 19. https://dx.doi.org/10.3389/fcimb.2021.58591910.3389/fcimb.2021.585919
Chendi_HIV_2: Chendi BH, Tveiten H, Snyders CI, et al. CCL1 and IL-2Ra differentiate Tuberculosis disease from latent infection Irrespective of HIV infection in low TB burden countries. J Infect. 2021;S0163-4453(21)00379-0. https://dx.doi.org/10.1016/j.jinf.2021.07.03610.1016/j.jinf.2021.07.036
Darboe_RISK_11: Darboe, F. et al. Diagnostic performance of an optimized transcriptomic signature of risk of tuberculosis in cryopreserved peripheral blood mononuclear cells. Tuberculosis 108, 124-126 (2018). https://dx.doi.org/ 10.1016/j.tube.2017.11.001 10.1016/j.tube.2017.11.001
Dawany_HIV_251: Dawany, N. et al. Identification of a 251 gene expression signature that can accurately detect M. tuberculosis in patients with and without HIV co-infection. PLoS One 9, (2014). https://dx.doi.org/10.1371/journal.pone.008992510.1371/journal.pone.0089925
Duffy_23: Duffy FJ, Olson GS, Gold ES, Jahn A, Aderem A, Aitchison J, Rothchild AC, Diercks AH, Nemeth J. A contained Mycobacterium tuberculosis mouse infection model predicts active disease and containment in humans. The Journal of Infectious Diseases. 2021 Mar 10. https://dx.doi.org/10.1093/infdis/jiab13010.1093/infdis/jiab130
Esmail_203: Esmail, Hanif, Rachel P. Lai, Maia Lesosky, Katalin A. Wilkinson, Christine M. Graham, Stuart Horswell, Anna K. Coussens, Clifton E. Barry 3rd, Anne O'Garra, and Robert J. Wilkinson. 2018. "Complement Pathway Gene Activation and Rising Circulating Immune Complexes Characterize Early Disease in HIV-Associated Tuberculosis." Proceedings of the National Academy of Sciences of the United States of America 115 (5): E964-73. https://dx.doi.org/10.1073/pnas.171185311510.1073/pnas.1711853115
Esmail_82: Esmail, Hanif, Rachel P. Lai, Maia Lesosky, Katalin A. Wilkinson, Christine M. Graham, Stuart Horswell, Anna K. Coussens, Clifton E. Barry 3rd, Anne O'Garra, and Robert J. Wilkinson. 2018. "Complement Pathway Gene Activation and Rising Circulating Immune Complexes Characterize Early Disease in HIV-Associated Tuberculosis." Proceedings of the National Academy of Sciences of the United States of America 115 (5): E964-73. https://dx.doi.org/10.1073/pnas.171185311510.1073/pnas.1711853115
Esmail_893: Esmail, Hanif, Rachel P. Lai, Maia Lesosky, Katalin A. Wilkinson, Christine M. Graham, Stuart Horswell, Anna K. Coussens, Clifton E. Barry 3rd, Anne O'Garra, and Robert J. Wilkinson. 2018. "Complement Pathway Gene Activation and Rising Circulating Immune Complexes Characterize Early Disease in HIV-Associated Tuberculosis." Proceedings of the National Academy of Sciences of the United States of America 115 (5): E964-73. https://dx.doi.org/10.1073/pnas.171185311510.1073/pnas.1711853115
Estevez_133: Estévez O, Anibarro L, Garet E, et al. An RNA-seq Based Machine Learning Approach Identifies Latent Tuberculosis Patients With an Active Tuberculosis Profile. Front Immunol. 2020;11:1470. Published 2020 Jul 14. https://dx.doi.org/10.3389/fimmu.2020.0147010.3389/fimmu.2020.01470
Estevez_259: Estévez O, Anibarro L, Garet E, et al. An RNA-seq Based Machine Learning Approach Identifies Latent Tuberculosis Patients With an Active Tuberculosis Profile. Front Immunol. 2020;11:1470. Published 2020 Jul 14. https://dx.doi.org/10.3389/fimmu.2020.0147010.3389/fimmu.2020.01470
Francisco_OD_2: Francisco NM, Fang YM, Ding L, et al. Diagnostic accuracy of a selected signature gene set that discriminates active pulmonary tuberculosis and other pulmonary diseases. J Infect. 2017;75(6):499-510. http://dx.doi.org/10.1016/j.jinf.2017.09.01210.1016/j.jinf.2017.09.012
Gjoen_10: Gjøen, J.E., Jenum, S., Sivakumaran, D. et al. 'Novel transcriptional signatures for sputum-independent diagnostics of tuberculosis in children.' Sci Rep 7, 5839 (2017). https://doi.org/10.1038/s41598-017-05057-x10.1038/s41598-017-05057-x
Gjoen_7: Gjøen, J.E., Jenum, S., Sivakumaran, D. et al. 'Novel transcriptional signatures for sputum-independent diagnostics of tuberculosis in children.' Sci Rep 7, 5839 (2017). https://doi.org/10.1038/s41598-017-05057-x10.1038/s41598-017-05057-x
Gliddon_2_OD_4: Gliddon HD, Kaforou M, Alikian M, et al. Identification of Reduced Host Transcriptomic Signatures for Tuberculosis Disease and Digital PCR-Based Validation and Quantification. Front Immunol. 2021;12:637164. Published 2021 Mar 2. https://dx.doi.org/10.3389/fimmu.2021.63716410.3389/fimmu.2021.637164
Gliddon_HIV_3: Gliddon HD, Kaforou M, Alikian M, et al. Identification of Reduced Host Transcriptomic Signatures for Tuberculosis Disease and Digital PCR-Based Validation and Quantification. Front Immunol. 2021;12:637164. Published 2021 Mar 2. https://dx.doi.org/10.3389/fimmu.2021.63716410.3389/fimmu.2021.637164
Gliddon_OD_3: Gliddon, Harriet D., Kaforou, Myrsini, Alikian, Mary, Habgood-Coote, Dominic, Zhou, Chenxi, Oni, Tolu, Anderson, Suzanne T., Brent, Andrew J., Crampin, Amelia C., Eley, Brian, Kern, Florian, Langford, Paul R., Ottenhoff, Tom H. M., Hibberd, Martin L., French, Neil, Wright, Victoria J., Dockrell, Hazel M., Coin, Lachlan J., Wilkinson, Robert J., Levin, Michael. 2019 "Identification of reduced host transcriptomic signatures for tuberculosis and digital PCR-based validation and quantification" biorxiv.org:https://dx.doi.org/10.1101/58367410.1101/583674
Gliddon_OD_4: Gliddon, Harriet D., Kaforou, Myrsini, Alikian, Mary, Habgood-Coote, Dominic, Zhou, Chenxi, Oni, Tolu, Anderson, Suzanne T., Brent, Andrew J., Crampin, Amelia C., Eley, Brian, Kern, Florian, Langford, Paul R., Ottenhoff, Tom H. M., Hibberd, Martin L., French, Neil, Wright, Victoria J., Dockrell, Hazel M., Coin, Lachlan J., Wilkinson, Robert J., Levin, Michael. 2019 "Identification of reduced host transcriptomic signatures for tuberculosis and digital PCR-based validation and quantification" biorxiv.org:https://dx.doi.org/10.1101/58367410.1101/583674
Gong_OD_4: Gong Z, Gu Y, Xiong K, Niu J, Zheng R, Su B, Fan L and Xie J (2021) The Evaluation and Validation of Blood-Derived Novel Biomarkers for Precise and Rapid Diagnosis of Tuberculosis in Areas With High-TB Burden. Front. Microbiol. 12:650567. https://dx.doi.org/10.3389/fmicb.2021.65056710.3389/fmicb.2021.650567
Heycken_FAIL_22: Heyckendorf J, Marwitz S, Reimann M, et al. Prediction of anti-tuberculosis treatment duration based on a 22-gene transcriptomic model. Eur Respir J. 2021;2003492. https://dx.doi.org/10.1183/13993003.03492-202010.1183/13993003.03492-2020
Hoang_OD_13: Hoang, Long & Jain, Pooja & Pillay, Timesh & Tolosa-Wright, Mica & Niazi, Umar & Takwoingi, Yemisi & Halliday, Alice & Berrocal-Almanza, Luis & Deeks, Jonathan & Beverley, Peter & Kon, Onn & Lalvani, Ajit. (2021). Transcriptomic signatures for diagnosing tuberculosis in clinical practice: a prospective, multicentre cohort study. The Lancet Infectious Diseases. https://dx.doi.org/10.1016/S1473-3099(20)30928-210.1016/S1473-3099(20)30928-2
Hoang_OD_20: Hoang, Long & Jain, Pooja & Pillay, Timesh & Tolosa-Wright, Mica & Niazi, Umar & Takwoingi, Yemisi & Halliday, Alice & Berrocal-Almanza, Luis & Deeks, Jonathan & Beverley, Peter & Kon, Onn & Lalvani, Ajit. (2021). Transcriptomic signatures for diagnosing tuberculosis in clinical practice: a prospective, multicentre cohort study. The Lancet Infectious Diseases. https://dx.doi.org/10.1016/S1473-3099(20)30928-210.1016/S1473-3099(20)30928-2
Hoang_OD_3: Hoang, Long & Jain, Pooja & Pillay, Timesh & Tolosa-Wright, Mica & Niazi, Umar & Takwoingi, Yemisi & Halliday, Alice & Berrocal-Almanza, Luis & Deeks, Jonathan & Beverley, Peter & Kon, Onn & Lalvani, Ajit. (2021). Transcriptomic signatures for diagnosing tuberculosis in clinical practice: a prospective, multicentre cohort study. The Lancet Infectious Diseases. https://dx.doi.org/10.1016/S1473-3099(20)30928-210.1016/S1473-3099(20)30928-2
Huang_13: Huang, Hai-Hui et al. 'Identification of 13 Blood-based Gene Expression Signatures to Accurately Distinguish Tuberculosis from Other Pulmonary Diseases and Healthy Controls'. 1 Jan. 2015 : S1837 - S1843.https://doi.org/10.3233/BME-15148610.3233/BME-151486
Jacobsen_3: Jacobsen, Marc, Dirk Repsilber, Andrea Gutschmidt, Albert Neher, Knut Feldmann, Hans J. Mollenkopf, Andreas Ziegler, and Stefan H. E. Kaufmann. 2007. "Candidate Biomarkers for Discrimination between Infection and Disease Caused by Mycobacterium Tuberculosis." Journal of Molecular Medicine 85 (6): 613-21. https://dx.doi.org/10.1007/s00109-007-0157-610.1007/s00109-007-0157-6
Jenum_8: Jenum, S., Dhanasekaran, S., Lodha, R. et al. Approaching a diagnostic point-of-care test for pediatric tuberculosis through evaluation of immune biomarkers across the clinical disease spectrum. Sci Rep 6, 18520 (2016). https://doi.org/10.1038/srep1852010.1038/srep18520
Kaforou_27: Kaforou, Myrsini, Victoria J. Wright, Tolu Oni, Neil French, Suzanne T. Anderson, Nonzwakazi Bangani, Claire M. Banwell, et al. 2013. "Detection of Tuberculosis in HIV-Infected and -Uninfected African Adults Using Whole Blood RNA Expression Signatures: A Case-Control Study." PLoS Medicine 10 (10): e1001538. https://dx.doi.org/10.1371/journal.pmed.100153810.1371/journal.pmed.1001538
Kaforou_OD_44: Kaforou, Myrsini, Victoria J. Wright, Tolu Oni, Neil French, Suzanne T. Anderson, Nonzwakazi Bangani, Claire M. Banwell, et al. 2013. "Detection of Tuberculosis in HIV-Infected and -Uninfected African Adults Using Whole Blood RNA Expression Signatures: A Case-Control Study." PLoS Medicine 10 (10): e1001538. https://dx.doi.org/10.1371/journal.pmed.100153810.1371/journal.pmed.1001538
Kaforou_OD_53: Kaforou, Myrsini, Victoria J. Wright, Tolu Oni, Neil French, Suzanne T. Anderson, Nonzwakazi Bangani, Claire M. Banwell, et al. 2013. "Detection of Tuberculosis in HIV-Infected and -Uninfected African Adults Using Whole Blood RNA Expression Signatures: A Case-Control Study." PLoS Medicine 10 (10): e1001538. https://dx.doi.org/10.1371/journal.pmed.100153810.1371/journal.pmed.1001538
Kaul_3: Kaul S, Nair V, Birla S, et al. Latent Tuberculosis Infection Diagnosis among Household Contacts in a High Tuberculosis-Burden Area: a Comparison between Transcript Signature and Interferon Gamma Release Assay. Microbiol Spectr. 2022;10(2):e0244521. http://dx.doi.org/10.1128/spectrum.02445-2110.1128/spectrum.02445-21
Kulkarni_HIV_2: Kulkarni V, Queiroz ATL, Sangle S, et al. A Two-Gene Signature for Tuberculosis Diagnosis in Persons With Advanced HIV. Front Immunol. 2021;12:631165. Published 2021 Feb 22. https://dx.doi.org/10.3389/fimmu.2021.63116510.3389/fimmu.2021.631165
Kwan_186: Kwan PKW, Periaswamy B, De Sessions PF, et al. A blood RNA transcript signature for TB exposure in household contacts. BMC Infect Dis. 2020;20(1):403. http://dx.doi.org/10.1186/s12879-020-05116-110.1186/s12879-020-05116-1
LauxdaCosta_OD_3: Laux da Costa L, Delcroix M, Dalla Costa ER, et al. A real-time PCR signature to discriminate between tuberculosis and other pulmonary diseases. Tuberculosis (Edinb). 2015;95(4):421-425. https://dx.doi.org/10.1016/j.tube.2015.04.00810.1016/j.tube.2015.04.008
Lee_4: Lee, Shih-Wei, Lawrence Shih-Hsin Wu, Guan-Mau Huang, Kai-Yao Huang, Tzong-Yi Lee, and Julia Tzu-Ya Weng. 2016. "Gene Expression Profiling Identifies Candidate Biomarkers for Active and Latent Tuberculosis." BMC Bioinformatics 17 Suppl 1 (January): 3. https://dx.doi.org/10.1186/s12859-015-0848-x10.1186/s12859-015-0848-x
Leong_24: Leong, Samantha, Yue Zhao, Noyal M. Joseph, Natasha S. Hochberg, Sonali Sarkar, Jane Pleskunas, David Hom, et al. 2018. "Existing blood transcriptional classifiers accurately discriminate active tuberculosis from latent infection in individuals from south India." Tuberculosis (109): 41-51. https://doi.org/10.1016/j.tube.2018.01.00210.1016/j.tube.2018.01.002
Leong_RISK_29: Leong, S., Zhao, Y., Ribeiro-Rodrigues, R., Jones-López, E. C., Acuña-Villaorduña, C., Rodrigues, P. M., Palaci, M., Alland, D., Dietze, R., Ellner, J. J., Johnson, W. E., Salgame, P., Cross-validation of existing signatures and derivation of a novel 29-gene transcriptomic signature predictive of progression to TB in a Brazilian cohort of household contacts of pulmonary TB. Tuberculosis (Edinb). 2020 Jan;120:101898. https://dx.doi.org/10.1016/j.tube.2020.10189810.1016/j.tube.2020.101898
Long_RES_10: Long NP, Phat NK, Yen NTH, et al. A 10-gene biosignature of tuberculosis treatment monitoring and treatment outcome prediction. Tuberculosis (Edinb). 2021;131:102138. http://dx.doi.org/10.1016/j.tube.2021.10213810.1016/j.tube.2021.102138
Maertzdorf_15: Maertzdorf J, McEwen G, Weiner J 3rd, et al. Concise gene signature for point-of-care classification of tuberculosis. EMBO Mol Med. 2016;8(2):86-95. https://dx.doi.org/10.15252/emmm.20150579010.15252/emmm.201505790
Maertzdorf_4: Maertzdorf, Jeroen, Gayle McEwen, January Weiner 3rd, Song Tian, Eric Lader, Ulrich Schriek, Harriet Mayanja-Kizza, Martin Ota, John Kenneth, and Stefan He Kaufmann. 2016. "Concise Gene Signature for Point-of-Care Classification of Tuberculosis." EMBO Molecular Medicine 8 (2): 86-95. https://dx.doi.org/10.15252/emmm.20150579010.15252/emmm.201505790
Maertzdorf_OD_100: Maertzdorf, Jeroen, January Weiner 3rd, Hans-Joachim Mollenkopf, TBornot TB Network, Torsten Bauer, Antje Prasse, Joachim Müller-Quernheim, and Stefan H. E. Kaufmann. 2012. "Common Patterns and Disease-Related Signatures in Tuberculosis and Sarcoidosis." Proceedings of the National Academy of Sciences of the United States of America 109 (20): 7853-58. https://dx.doi.org/10.1073/pnas.112107210910.1073/pnas.1121072109
Natarajan_7: Natarajan S, Ranganathan M, Hanna LE, Tripathy S. Transcriptional Profiling and Deriving a Seven-Gene Signature That Discriminates Active and Latent Tuberculosis: An Integrative Bioinformatics Approach. Genes (Basel). 2022;13(4):616. Published 2022 Mar 29. http://dx.doi.org/10.3390/genes1304061610.3390/genes13040616
PennNich_RISK_6: Penn-Nicholson, A. et al. RISK6, a 6-gene transcriptomic signature of TB disease risk, diagnosis and treatment response. Sci. Rep. 10, (2020). https://dx.doi.org/10.1038/s41598-020-65043-810.1038/s41598-020-65043-8
Qian_OD_17: Qian, Zhongqing et al. "Expression of nuclear factor, erythroid 2-like 2-mediated genes differentiates tuberculosis." Tuberculosis (Edinburgh, Scotland) vol. 99 (2016): 56-62. https://doi.org/10.1016/j.tube.2016.04.00810.1016/j.tube.2016.04.008
Rajan_HIV_5: Rajan, Jayant V., Semitala, Fred C., Kamya, Moses R., Yoon, Christina., Mehta, Tejas., Cattamanchi, Adithya., Seielstad, Mark., Montalvo, Lani., Andama, Alfred., Katende, Jane., Asege, Lucy., Nakaye, Martha., Mwebe, Sandra. 2018 "A Novel, 5-Transcript, Whole-blood Gene-expression Signature for Tuberculosis Screening Among People Living With Human Immunodeficiency Virus" Clinical Infectious Diseases: 1-7. https://doi.org/10.1093/cid/ciy83510.1093/cid/ciy835
Roe_3: Roe, Jennifer, Venturini, Cristina, Gupta, Rishi K., Gurry, Celine, Chain, Benjamin M., Sun, Yuxin, Southern, Jo, Jackson, Charlotte, Lipman, Marc, C., Miller, Robert F., Martineau, Adrian R., Abubakar, Ibrahim, Noursadeghi, Mahdad. 2019 "T1 Blood transcriptomic stratification of short-term risk in contacts of tuberculosis": . https://doi.org/10.1093/cid/ciz25210.1093/cid/ciz252
Roe_OD_4: Roe, Jennifer K., Niclas Thomas, Eliza Gil, Katharine Best, Evdokia Tsaliki, Stephen Morris-Jones, Sian Stafford, et al. 2016. "Blood Transcriptomic Diagnosis of Pulmonary and Extrapulmonary Tuberculosis." JCI Insight 1 (16): e87238. https://dx.doi.org/10.1172/jci.insight.8723810.1172/jci.insight.87238
Sambarey_HIV_10: Sambarey, Awanti, Abhinandan Devaprasad, Abhilash Mohan, Asma Ahmed, Soumya Nayak, Soumya Swaminathan, George D'Souza, et al. 2017. "Unbiased Identification of Blood-Based Biomarkers for Pulmonary Tuberculosis by Modeling and Mining Molecular Interaction Networks." EBioMedicine 15 (February): 112-26. https://dx.doi.org/10.1016/j.ebiom.2016.12.00910.1016/j.ebiom.2016.12.009
Singhania_OD_20: Singhania, Akul, Raman Verma, Christine M. Graham, Jo Lee, Trang Tran, Matthew Richardson, Patrick Lecine, et al. 2018. "A Modular Transcriptional Signature Identifies Phenotypic Heterogeneity of Human Tuberculosis Infection." Nature Communications 9 (1): 2308. https://dx.doi.org/10.1038/s41467-018-04579-w10.1038/s41467-018-04579-w
Sivakumaran_11: Sivakumaran D, Ritz C, Gjøen JE, et al. Host Blood RNA Transcript and Protein Signatures for Sputum-Independent Diagnostics of Tuberculosis in Adults. Front Immunol. 2021;11:626049. Published 2021 Feb 4. https://dx.doi.org/10.3389/fimmu.2020.62604910.3389/fimmu.2020.626049
Sloot_HIV_2: Sloot, Rosa, Maarten F. Schim van der Loeff, Erik W. van Zwet, Mariëlle C. Haks, Sytze T. Keizer, Maarten Scholing, Tom H. M. Ottenhoff, Martien W. Borgdorff, and Simone A. Joosten. 2015. "Biomarkers Can Identify Pulmonary Tuberculosis in HIV-Infected Drug Users Months Prior to Clinical Diagnosis." EBioMedicine 2 (2): 172-79. https://dx.doi.org/10.1016/j.ebiom.2014.12.00110.1016/j.ebiom.2014.12.001
Suliman_4: Suliman, Sara, Ethan Thompson, Jayne Sutherland, January Weiner Rd, Martin O. C. Ota, Smitha Shankar, Adam Penn-Nicholson, et al. 2018. "Four-Gene Pan-African Blood Signature Predicts Progression to Tuberculosis." American Journal of Respiratory and Critical Care Medicine, April. https://doi.org/10.1164/rccm.201711-2340OC. https://dx.doi.org/10.1164/rccm.201711-2340OC10.1164/rccm.201711-2340OC
Suliman_RISK_2: Suliman, S. et al. Four-gene pan-African blood signature predicts progression to tuberculosis. Am. J. Respir. Crit. Care Med. 197, 1198-1208 (2018). https://dx.doi.org/10.1164/rccm.201711-2340OC10.1164/rccm.201711-2340OC
Suliman_RISK_4: Suliman, Sara, Ethan Thompson, Jayne Sutherland, January Weiner Rd, Martin O. C. Ota, Smitha Shankar, Adam Penn-Nicholson, et al. 2018. "Four-Gene Pan-African Blood Signature Predicts Progression to Tuberculosis." American Journal of Respiratory and Critical Care Medicine, April. https://doi.org/10.1164/rccm.201711-2340OC. https://dx.doi.org/10.1164/rccm.201711-2340OC10.1164/rccm.201711-2340OC
Sweeney_OD_3: Sweeney, Timothy E., Lindsay Braviak, Cristina M. Tato, and Purvesh Khatri. 2016. "Genome-Wide Expression for Diagnosis of Pulmonary Tuberculosis: A Multicohort Analysis." The Lancet. Respiratory Medicine 4 (3): 213-24. https://dx.doi.org/10.1016/S2213-2600(16)00048-510.1016/S2213-2600(16)00048-5
Tabone_OD_11: Tabone O, Verma R, Singhania A, et al. Blood transcriptomics reveal the evolution and resolution of the immune response in tuberculosis. J Exp Med. 2021;218(10):e20210915. http://dx.doi.org/10.1084/jem.2021091510.1084/jem.20210915
Tabone_RES_25: Tabone O, Verma R, Singhania A, et al. Blood transcriptomics reveal the evolution and resolution of the immune response in tuberculosis. J Exp Med. 2021;218(10):e20210915. http://dx.doi.org/10.1084/jem.2021091510.1084/jem.20210915
Tabone_RES_27: Tabone O, Verma R, Singhania A, et al. Blood transcriptomics reveal the evolution and resolution of the immune response in tuberculosis. J Exp Med. 2021;218(10):e20210915. http://dx.doi.org/10.1084/jem.2021091510.1084/jem.20210915
Thompson_9: Thompson, Ethan G., Ying Du, Stephanus T. Malherbe, Smitha Shankar, Jackie Braun, Joe Valvo, Katharina Ronacher, et al. 2017. "Host Blood RNA Signatures Predict the Outcome of Tuberculosis Treatment." Tuberculosis 107 (December): 48-58. https://dx.doi.org/10.1016/j.tube.2017.08.00410.1016/j.tube.2017.08.004
Thompson_FAIL_13: Thompson, Ethan G., Ying Du, Stephanus T. Malherbe, Smitha Shankar, Jackie Braun, Joe Valvo, Katharina Ronacher, et al. 2017. "Host Blood RNA Signatures Predict the Outcome of Tuberculosis Treatment." Tuberculosis 107 (December): 48-58. https://dx.doi.org/10.1016/j.tube.2017.08.00410.1016/j.tube.2017.08.004
Thompson_RES_5: Thompson, Ethan G., Ying Du, Stephanus T. Malherbe, Smitha Shankar, Jackie Braun, Joe Valvo, Katharina Ronacher, et al. 2017. "Host Blood RNA Signatures Predict the Outcome of Tuberculosis Treatment." Tuberculosis 107 (December): 48-58. https://dx.doi.org/10.1016/j.tube.2017.08.00410.1016/j.tube.2017.08.004
Tornheim_71: Tornheim, Jeffrey A., Anil K. Madugundu, Mandar Paradkar, Kiyoshi F. Fukutani, Artur TL Queiroz, Nikhil Gupte, Akshay N. Gupte et al. 2020. "Transcriptomic Profiles of Confirmed Pediatric Tuberculosis Patients and Household Contacts Identifies Active Tuberculosis, Infection, and Treatment Response Among Indian Children." The Journal of Infectious Diseases 221(10): 1647-1658. https://doi.org/10.1093/infdis/jiz63910.1093/infdis/jiz639
Tornheim_RES_25: Tornheim, Jeffrey A., Anil K. Madugundu, Mandar Paradkar, Kiyoshi F. Fukutani, Artur TL Queiroz, Nikhil Gupte, Akshay N. Gupte et al. 2020. "Transcriptomic Profiles of Confirmed Pediatric Tuberculosis Patients and Household Contacts Identifies Active Tuberculosis, Infection, and Treatment Response Among Indian Children." The Journal of Infectious Diseases 221(10): 1647-1658. https://doi.org/10.1093/infdis/jiz63910.1093/infdis/jiz639
Vargas_18: Vargas R, Abbott L, Bower D, Frahm N, Shaffer M, Yu WH. Gene signature discovery and systematic validation across diverse clinical cohorts for TB prognosis and response to treatment. PLoS Comput Biol. 2023;19(7):e1010770. http://dx.doi.org/10.1371/journal.pcbi.101077010.1371/journal.pcbi.1010770
Vargas_42: Vargas R, Abbott L, Bower D, Frahm N, Shaffer M, Yu WH. Gene signature discovery and systematic validation across diverse clinical cohorts for TB prognosis and response to treatment. PLoS Comput Biol. 2023;19(7):e1010770. http://dx.doi.org/10.1371/journal.pcbi.101077010.1371/journal.pcbi.1010770
Verhagen_10: Verhagen, L.M., Zomer, A., Maes, M. et al. A predictive signature gene set for discriminating active from latent tuberculosis in Warao Amerindian children. BMC Genomics 14, 74 (2013). https://doi.org/10.1186/1471-2164-14-7410.1186/1471-2164-14-74
Walter_51: Walter, Nicholas D., Mikaela A. Miller, Joshua Vasquez, Marc Weiner, Adam Chapman, Melissa Engle, Michael Higgins, et al. 2016. "Blood Transcriptional Biomarkers for Active Tuberculosis among Patients in the United States: A Case-Control Study with Systematic Cross-Classifier Evaluation." Journal of Clinical Microbiology 54 (2): 274-82. https://dx.doi.org/10.1128/JCM.01990-1510.1128/JCM.01990-15
Walter_PNA_119: Walter, Nicholas D., Mikaela A. Miller, Joshua Vasquez, Marc Weiner, Adam Chapman, Melissa Engle, Michael Higgins, et al. 2016. "Blood Transcriptional Biomarkers for Active Tuberculosis among Patients in the United States: A Case-Control Study with Systematic Cross-Classifier Evaluation." Journal of Clinical Microbiology 54 (2): 274-82. https://dx.doi.org/10.1128/JCM.01990-1510.1128/JCM.01990-15
Walter_PNA_47: Walter, Nicholas D., Mikaela A. Miller, Joshua Vasquez, Marc Weiner, Adam Chapman, Melissa Engle, Michael Higgins, et al. 2016. "Blood Transcriptional Biomarkers for Active Tuberculosis among Patients in the United States: A Case-Control Study with Systematic Cross-Classifier Evaluation." Journal of Clinical Microbiology 54 (2): 274-82. https://dx.doi.org/10.1128/JCM.01990-1510.1128/JCM.01990-15
Zak_RISK_16: Zak, Daniel E., Adam Penn-Nicholson, Thomas J. Scriba, Ethan Thompson, Sara Suliman, Lynn M. Amon, Hassan Mahomed, et al. 2016. "A Blood RNA Signature for Tuberculosis Disease Risk: A Prospective Cohort Study." The Lancet 387 (10035): 231222. https://dx.doi.org/10.1016/S0140-6736(15)01316-110.1016/S0140-6736(15)01316-1
Zhao_NANO_6: To be available when published
data("TBsignatures")
data("TBsignatures")
Up/Down-regulated genes information for selected TB signatures.
TBsignaturesSplit
TBsignaturesSplit
list
See ?TBsignatures
for reference information.
data("TBsignaturesSplit")
data("TBsignaturesSplit")
Use this function to run the TBSignatureProfiler application.
TBSPapp()
TBSPapp()
The Shiny application will open.
# Upload data through the app if (interactive()) { TBSPapp() }
# Upload data through the app if (interactive()) { TBSPapp() }