Package 'SCArray'

Title: Large-scale single-cell omics data manipulation with GDS files
Description: Provides large-scale single-cell omics data manipulation using Genomic Data Structure (GDS) files. It combines dense and sparse matrices stored in GDS files and the Bioconductor infrastructure framework (SingleCellExperiment and DelayedArray) to provide out-of-memory data storage and large-scale manipulation using the R programming language.
Authors: Xiuwen Zheng [aut, cre]
Maintainer: Xiuwen Zheng <[email protected]>
License: GPL-3
Version: 1.15.1
Built: 2025-01-20 06:13:51 UTC
Source: https://github.com/bioc/SCArray

Help Index


Large-scale single-cell omics data manipulation with GDS files

Description

The package combines dense/sparse matrices stored in GDS files and the Bioconductor infrastructure framework to provide out-of-memory data storage and manipulation using the R programming language.

Details

Package: SCArray
Type: Package
License: GPL version 3

Author(s)

Xiuwen Zheng [email protected]

Examples

# a GDS file for SingleCellExperiment
fn <- system.file("extdata", "example.gds", package="SCArray")

sce <- scExperiment(fn)
sce

rm(sce)

Numbers of Non-zeros

Description

Calculates the numbers of non-zeros for each row or column of a matrix-like object.

Usage

row_nnzero(x, na.counted=NA, ...)
col_nnzero(x, na.counted=NA, ...)

## S4 method for signature 'matrix'
row_nnzero(x, na.counted=NA, ...)
## S4 method for signature 'Matrix'
row_nnzero(x, na.counted=NA, ...)
## S4 method for signature 'DelayedMatrix'
row_nnzero(x, na.counted=NA, ...)
## S4 method for signature 'SC_GDSMatrix'
row_nnzero(x, na.counted=NA, ...)

## S4 method for signature 'matrix'
col_nnzero(x, na.counted=NA, ...)
## S4 method for signature 'Matrix'
col_nnzero(x, na.counted=NA, ...)
## S4 method for signature 'DelayedMatrix'
col_nnzero(x, na.counted=NA, ...)
## S4 method for signature 'SC_GDSMatrix'
col_nnzero(x, na.counted=NA, ...)

Arguments

x

a matrix-like object

na.counted

a logical: TRUE for counting NA/NaN as non-zero, FALSE for counting NA/NaN as zero, NA (default) for return NA when encountering NA/NaN

...

additional arguments passed to specific methods

Value

Return an integer vector object for the numbers of non-zeros.

Author(s)

Xiuwen Zheng

Examples

# a GDS file for SingleCellExperiment
fn <- system.file("extdata", "example.gds", package="SCArray")

cnt <- scArray(fn, "counts")
cnt

row_nnzero(cnt, na.counted=TRUE)
col_nnzero(cnt, na.counted=TRUE)


rm(cnt)

Get an DelayedArray instance

Description

Gets an DelayedArray instance from a single-cell omics GDS file.

Usage

scArray(gdsfile, varname)

Arguments

gdsfile

character for a file name, or a single-cell GDS object with class SCArrayFileClass

varname

character for the node name in the GDS file

Value

Return an object of class DelayedArray.

Author(s)

Xiuwen Zheng

See Also

scOpen, scExperiment

Examples

# a GDS file for SingleCellExperiment
fn <- system.file("extdata", "example.gds", package="SCArray")

cnt <- scArray(fn, "counts")
cnt

rm(cnt)

Class list defined in SCArray

Description

SCArrayFileClass is a class directly inheriting from gds.class. SC_GDSArray is a DelayedArray with a SCArraySeed. SC_GDSMatrix is 2-dim SC_GDSArray.

The package combines dense/sparse matrices stored in GDS files and the Bioconductor infrastructure framework to provide out-of-memory data storage and manipulation using the R programming language.

Author(s)

Xiuwen Zheng [email protected]


SC_GDSMatrix row/column summarization

Description

The row/column summarization methods for the SC_GDSMatrix matrix, extending the S4 methods in the DelayedArray and DelayedMatrixStats packages.

Usage

## S4 method for signature 'SC_GDSMatrix'
rowSums(x, na.rm=FALSE, dims=1)
## S4 method for signature 'SC_GDSMatrix'
colSums(x, na.rm=FALSE, dims=1)
## S4 method for signature 'SC_GDSMatrix'
rowSums2(x, rows=NULL, cols=NULL, na.rm=FALSE, ..., useNames=NA)
## S4 method for signature 'SC_GDSMatrix'
colSums2(x, rows=NULL, cols=NULL, na.rm=FALSE, ..., useNames=NA)

## S4 method for signature 'SC_GDSMatrix'
rowLogSumExps(lx, rows=NULL, cols=NULL, na.rm=FALSE, ..., useNames=NA)
## S4 method for signature 'SC_GDSMatrix'
colLogSumExps(lx, rows=NULL, cols=NULL, na.rm=FALSE, ..., useNames=NA)

## S4 method for signature 'SC_GDSMatrix'
rowProds(x, rows=NULL, cols=NULL, na.rm=FALSE,
    method=c("direct", "expSumLog"), ..., useNames=NA)
## S4 method for signature 'SC_GDSMatrix'
colProds(x, rows=NULL, cols=NULL, na.rm=FALSE,
    method=c("direct", "expSumLog"), ..., useNames=NA)

## S4 method for signature 'SC_GDSMatrix'
rowMeans(x, na.rm=FALSE, dims=1)
## S4 method for signature 'SC_GDSMatrix'
colMeans(x, na.rm=FALSE, dims=1)
## S4 method for signature 'SC_GDSMatrix'
rowMeans2(x, rows=NULL, cols=NULL, na.rm=FALSE, ..., useNames=NA)
## S4 method for signature 'SC_GDSMatrix'
colMeans2(x, rows=NULL, cols=NULL, na.rm=FALSE, ..., useNames=NA)
## S4 method for signature 'SC_GDSMatrix'
rowWeightedMeans(x, w=NULL, rows=NULL, cols=NULL, na.rm=FALSE, ..., useNames=NA)
## S4 method for signature 'SC_GDSMatrix'
colWeightedMeans(x, w=NULL, rows=NULL, cols=NULL, na.rm=FALSE, ..., useNames=NA)

## S4 method for signature 'SC_GDSMatrix'
rowVars(x, rows=NULL, cols=NULL, na.rm=FALSE, center=NULL, ..., useNames=NA)
## S4 method for signature 'SC_GDSMatrix'
colVars(x, rows=NULL, cols=NULL, na.rm=FALSE, center=NULL, ..., useNames=NA)
## S4 method for signature 'SC_GDSMatrix'
rowWeightedVars(x, w=NULL, rows=NULL, cols=NULL, na.rm=FALSE, ..., useNames=NA)
## S4 method for signature 'SC_GDSMatrix'
colWeightedVars(x, w=NULL, rows=NULL, cols=NULL, na.rm=FALSE, ..., useNames=NA)

## S4 method for signature 'SC_GDSMatrix'
rowSds(x, rows=NULL, cols=NULL, na.rm=FALSE, center=NULL, ..., useNames=NA)
## S4 method for signature 'SC_GDSMatrix'
colSds(x, rows=NULL, cols=NULL, na.rm=FALSE, center=NULL, ..., useNames=NA)
## S4 method for signature 'SC_GDSMatrix'
rowWeightedSds(x, w=NULL, rows=NULL, cols=NULL, na.rm=FALSE, ..., useNames=NA)
## S4 method for signature 'SC_GDSMatrix'
colWeightedSds(x, w=NULL, rows=NULL, cols=NULL, na.rm=FALSE, ..., useNames=NA)

## S4 method for signature 'SC_GDSMatrix'
rowMins(x, rows=NULL, cols=NULL, na.rm=FALSE)
## S4 method for signature 'SC_GDSMatrix'
colMins(x, rows=NULL, cols=NULL, na.rm=FALSE)
## S4 method for signature 'SC_GDSMatrix'
rowMaxs(x, rows=NULL, cols=NULL, na.rm=FALSE)
## S4 method for signature 'SC_GDSMatrix'
colMaxs(x, rows=NULL, cols=NULL, na.rm=FALSE)
## S4 method for signature 'SC_GDSMatrix'
rowRanges(x, rows=NULL, cols=NULL, na.rm=FALSE)
## S4 method for signature 'SC_GDSMatrix'
colRanges(x, rows=NULL, cols=NULL, na.rm=FALSE)

# Get means and variances together for each row or column,
#     return a matrix with two columns for mean and variance
scRowMeanVar(x, na.rm=FALSE, useNames=FALSE, ...)
scColMeanVar(x, na.rm=FALSE, useNames=FALSE, ...)
## S4 method for signature 'SC_GDSMatrix'
scRowMeanVar(x, na.rm=FALSE, useNames=FALSE, ...)
## S4 method for signature 'SC_GDSMatrix'
scColMeanVar(x, na.rm=FALSE, useNames=FALSE, ...)

# Compute column sums across rows
## S4 method for signature 'SC_GDSMatrix'
rowsum(x, group, reorder=TRUE, na.rm=FALSE, ...)
# Compute row sums across columns
## S4 method for signature 'SC_GDSMatrix'
colsum(x, group, reorder=TRUE, na.rm=FALSE, ...)

## S4 method for signature 'SC_GDSMatrix'
rowAnyNAs(x, rows=NULL, cols=NULL, ..., useNames=NA)
## S4 method for signature 'SC_GDSMatrix'
colAnyNAs(x, rows=NULL, cols=NULL, ..., useNames=NA)

## S4 method for signature 'SC_GDSMatrix'
rowCollapse(x, idxs, rows=NULL, ..., useNames=NA)
## S4 method for signature 'SC_GDSMatrix'
colCollapse(x, idxs, cols=NULL, ..., useNames=NA)

## S4 method for signature 'SC_GDSMatrix'
rowDiffs(x, rows=NULL, cols=NULL, lag=1L,
    differences=1L, ..., useNames=NA)
## S4 method for signature 'SC_GDSMatrix'
colDiffs(x, rows=NULL, cols=NULL, lag=1L,
    differences=1L, ..., useNames=NA)

## S4 method for signature 'SC_GDSMatrix'
rowSdDiffs(x, rows=NULL, cols=NULL, na.rm=FALSE,
    diff=1L, trim=0, ..., useNames=NA)
## S4 method for signature 'SC_GDSMatrix'
colSdDiffs(x, rows=NULL, cols=NULL, na.rm=FALSE,
    diff=1L, trim=0, ..., useNames=NA)

## S4 method for signature 'SC_GDSMatrix'
rowVarDiffs(x, rows=NULL, cols=NULL, na.rm=FALSE,
    diff=1L, trim=0, ..., useNames=NA)
## S4 method for signature 'SC_GDSMatrix'
colVarDiffs(x, rows=NULL, cols=NULL, na.rm=FALSE,
    diff=1L, trim=0, ..., useNames=NA)

## S4 method for signature 'SC_GDSMatrix'
rowAvgsPerColSet(X, W=NULL, rows=NULL, S, FUN=rowMeans, ...,
    na.rm=NA, tFUN=FALSE)
## S4 method for signature 'SC_GDSMatrix'
colAvgsPerRowSet(X, W=NULL, cols=NULL, S, FUN=colMeans, ...,
    na.rm=NA, tFUN=FALSE)

Arguments

x, lx, X

A SC_GDSMatrix object (inherited from DelayedMatrix)

dims

not used, it should be 1

rows, cols

specify the subset of rows (and/or columns) to operate over; if NULL, no subsetting

na.rm

if TRUE, missing values (NaN and NA) will be removed

w

NULL or a numeric vector for weights

W

NULL or a matrix for weights

center

NULL, or a vector of pre-calculated row (column) means

useNames

if TRUE, the name attributes of result are set

method

"direct" (by default) or "expSumLog" (calculates the product via the logarithmic transform)

group

a vector for grouping the rows or columns

reorder

if TRUE, order the resulting matrix as sort(unique(group)); otherwise, it will be in the order that groups were encountered

idxs

An index vector specifying the columns (rows) to be extracted; the vector will be reused if the length is less than the number of columns or rows

lag

the lag, an integer

differences, diff

the order of difference, an integer

trim

fraction of observations to be trimmed

S

an integer matrix specifying the subsets, see rowAvgsPerColSet

FUN

summary statistic function, see rowAvgsPerColSet

tFUN

If TRUE, X is transposed before it is passed to FUN, see rowAvgsPerColSet

...

additional arguments passed to specific methods: BPPARAM can be specified (if not specified, getAutoBPPARAM() is used instead)

Details

All these operations are block-processed according to the data stored in the GDS file.

Author(s)

Xiuwen Zheng

See Also


SC_GDSArray subsetting, Ops, Math

Description

Subsetting, Arith, Compare, Logic and Math operations on the SC_GDSArray object.

Usage

# x[i, j, ... , drop = TRUE]
## S4 method for signature 'SC_GDSArray'
i[j, ... , drop=TRUE]
# x[[i, j, ...]]
## S4 method for signature 'SC_GDSArray'
i[[j, ...]]

## S4 method for signature 'SC_GDSArray'
Ops(e1, e2)
## S4 method for signature 'SC_GDSArray'
Math(x)

# names(x) <- value
# dimnames(x) <- value

# Centers and/or scales the columns of a matrix
## S4 method for signature 'SC_GDSMatrix'
scale(x, center=TRUE, scale=TRUE)

## S4 method for signature 'SC_GDSArray,SC_GDSArray'
pmin2(e1, e2)
## S4 method for signature 'SC_GDSArray,vector'
pmin2(e1, e2)
## S4 method for signature 'vector,SC_GDSArray'
pmin2(e1, e2)
## S4 method for signature 'SC_GDSArray,SC_GDSArray'
pmax2(e1, e2)
## S4 method for signature 'SC_GDSArray,vector'
pmax2(e1, e2)
## S4 method for signature 'vector,SC_GDSArray'
pmax2(e1, e2)

Arguments

x

A SC_GDSArray or SC_GDSMatrix object

i, j, ...

indices specifying elements to extract

drop

if TRUE the result will be coerced to the lowest possible dimension

e1, e2

objects

value

NULL, a character vector for names<- or a list of character vectors for dimnames<-

center

either a logical value or a numeric vector (e.g., FALSE or 0 for no centering)

scale

either a logical value or a numeric vector (e.g., TRUE or 1 for no scaling)

Details

All these operations return a SC_GDSArray or SC_GDSMatrix object.

Arith:

"+", "-", "*", "^", "%%", "%/%", "/"

Compare:

"==", ">", "<", "!=", "<=", ">="

Logic:

"&", "|".

Ops:

"Arith", "Compare", "Logic"

Math:

"abs", "sign", "sqrt", "ceiling", "floor", "trunc", "cummax", "cummin", "cumprod", "cumsum", "log", "log10", "log2", "log1p", "acos", "acosh", "asin", "asinh", "atan", "atanh", "exp", "expm1", "cos", "cosh", "cospi", "sin", "sinh", "sinpi", "tan", "tanh", "tanpi", "gamma", "lgamma", "digamma", "trigamma"

Value

All these operations return a SC_GDSArray or SC_GDSMatrix object.

Author(s)

Xiuwen Zheng

See Also

Ops, Math, SCArray-stats

Examples

fn <- system.file("extdata", "example.gds", package="SCArray")

x <- scArray(fn, "counts")

x[1:8, 1:32]
x > 0
pmin2(x, 1)
log1p(x)
scale(x)

rm(x)

Create a GDS file

Description

Creates a single-cell GDS file from an R object.

Usage

scConvGDS(obj, outfn, assay.name=NULL, save.sp=TRUE,
    type=c("float32", "float64", "int32"), compress="LZMA_RA", clean=TRUE, verbose=TRUE)

Arguments

obj

a dense/sparse matrix, DelayedMatrix, SummarizedExperiment or SingleCellExperiment

outfn

the output file name in GDS format

assay.name

a character vector for assay names or NULL; if NULL, to include all available assays, otherwise only include the assays in assay.name

save.sp

if TRUE, save it to a sparse matrix in GDS; otherwise, store dense matrix

type

numeric data type in the output file

compress

the compression method, see add.gdsn; or "" for no data compression

clean

TRUE

verbose

if TRUE, show information

Value

Return the path of the output file.

Author(s)

Xiuwen Zheng

See Also

scOpen, scClose, scMEX2GDS, scHDF2GDS

Examples

# load a SingleCellExperiment object
fn <- system.file("extdata", "example.rds", package="SCArray")
sce <- readRDS(fn)
sce

scConvGDS(sce, "test.gds")

# remove the temporary file
unlink("test.gds")

Get a SummarizedExperiment

Description

Gets an instance of SingleCellExperiment or SummarizedExperiment.

Usage

scExperiment(gdsfile, sce=TRUE, use.names=TRUE, load.row=TRUE, load.col=TRUE)

Arguments

gdsfile

character for a file name, or a single-cell GDS object with class SCArrayFileClass

sce

if TRUE, return an instance of SingleCellExperiment, otherwise an instance of SummarizedExperiment

use.names

if TRUE, load dimnames from 'feature.id' and 'sample.id'

load.row

TRUE for loading rowData from the gds node "feature.data" in gdsfile

load.col

TRUE for loading colData from the gds node "sample.data" in gdsfile

Value

Return an instance of SingleCellExperiment or SummarizedExperiment.

Author(s)

Xiuwen Zheng

See Also

scOpen, scClose

Examples

# a GDS file for SingleCellExperiment
fn <- system.file("extdata", "example.gds", package="SCArray")

sce <- scExperiment(fn)
sce

remove(sce)

File names for on-disk backend

Description

Get a list of file names for DelayedArray with an on-disk backend.

Usage

scGetFiles(object, ...)
## S4 method for signature 'SC_GDSArray'
scGetFiles(object, ...)
## S4 method for signature 'SummarizedExperiment'
scGetFiles(object, ...)

Arguments

object

input R object (e.g., a GDS-specific DelayedArray)

...

additional arguments passed to specific methods

Value

Return a character vector storing file names.

Author(s)

Xiuwen Zheng

See Also

path


Convert HDF5 files to GDS

Description

Creates a single-cell GDS file from Cell Ranger HDF5 files.

Usage

scHDF2GDS(h5_fn, outfn, group=c("matrix", "mm10"), feature_path=character(),
    type=c("float32", "float64", "int32"), compress="LZMA_RA", clean=TRUE,
    verbose=TRUE)

Arguments

h5_fn

the input HDF5 file name

outfn

the output file name in GDS format

group

the name of the group in the HDF5 file where the sparse matrix is stored; if there are more than one group names, the first existing group in the HDF5 file is used; "mm10" is usually used for 10x Genomics datasets

feature_path

a character vector for feature variables, otherwise detecting automatically using "genes", "gene_names" and "features/*" when available

type

numeric data type in the output file

compress

the compression method, see add.gdsn

clean

TRUE

verbose

if TRUE, show information

Details

The packages rhdf5 and HDF5Array should be installed.

Value

Return the path of the output file.

Author(s)

Xiuwen Zheng

See Also

scConvGDS, scMEX2GDS


Load Data to Memory

Description

Loads the internal data to memory for any on-disk object.

Usage

scMemory(x, ...)
## S4 method for signature 'DelayedArray'
scMemory(x, ...)
## S4 method for signature 'SummarizedExperiment'
scMemory(x, ...)

Arguments

x

input R object (e.g., a DelayedArray)

...

additional arguments passed to specific methods

Value

Return an object (it maybe a different type compared with x).

Author(s)

Xiuwen Zheng

Examples

suppressPackageStartupMessages(library(DelayedArray))

m <- matrix(1:12, nrow=3)
(mat <- DelayedArray(m))

str(scMemory(mat))

Convert MEX files to GDS

Description

Creates a single-cell GDS file from Cell Ranger MEX files.

Usage

scMEX2GDS(feature_fn, barcode_fn, mtx_fn, outfn,
    feature_colnm=c("id", "gene", "feature_type"),
    type=c("float32", "float64", "int32"), compress="LZMA_RA", clean=TRUE,
    verbose=TRUE)

Arguments

feature_fn

the input file name for features

barcode_fn

the input file name for barcodes

mtx_fn

the input count matrix in MEX format

outfn

the output file name in GDS format

feature_colnm

the column names used in feature_fn

type

numeric data type in the output file

compress

the compression method, see add.gdsn

clean

TRUE

verbose

if TRUE, show information

Value

Return the path of the output file.

Author(s)

Xiuwen Zheng

See Also

scConvGDS, scHDF2GDS


Split a number

Description

Splits a number into multiple groups with equal size.

Usage

scNumSplit(num, BPPARAM=getAutoBPPARAM())

Arguments

num

a length-one number (the total count) for splitting (must be >= 0)

BPPARAM

NULL, a number for the number of groups, or a BiocParallelParam object; if not specified, call getAutoBPPARAM()

Value

Return a list of length-two numeric vectors for the start and end positions. BPPARAM=NULL is as the same as BPPARAM=1, if it is a BiocParallelParam object, call bpnworkers() to get the number of groups.

Author(s)

Xiuwen Zheng

See Also

getAutoBPPARAM, BiocParallelParam, bpnworkers

Examples

scNumSplit(100, NULL)
scNumSplit(100, 0)
scNumSplit(100, 1)
scNumSplit(100, 3)
scNumSplit(100)

scNumSplit(0)  # zero-length

DelayedArray Object in GDS

Description

Convert to SC_GDSArray/SC_GDSMatrix for utilizing GDS specific functions.

Usage

scObj(obj, verbose=FALSE)

Arguments

obj

a SummarizedExperiment, SingleCellExperiment or DelayedArray object

verbose

if TRUE, show information

Value

Return the object obj with the object class DelayedArray replaced by the class SC_GDSMatrix or SC_GDSArray.

Author(s)

Xiuwen Zheng

See Also

scArray, scExperiment


Open/Close a Single-cell GDS File

Description

Opens or closes a single-cell GDS file.

Usage

scOpen(gdsfn, readonly=TRUE, allow.duplicate=TRUE)
scClose(gdsfile)

Arguments

gdsfn

the input file name

readonly

whether read-only or not

allow.duplicate

if TRUE, it is allowed to open a GDS file with read-only mode when it has been opened in the same R session

gdsfile

a single-cell GDS object with class SCArrayFileClass

Value

Return an object of class SCArrayFileClass inherited from gds.class.

Author(s)

Xiuwen Zheng

See Also

scArray

Examples

# a GDS file for SingleCellExperiment
fn <- system.file("extdata", "example.gds", package="SCArray")

# open the GDS file
(f <- scOpen(fn))

# read a GDS file
cell.id <- read.gdsn(index.gdsn(f, "feature.id"))
samp.id <- read.gdsn(index.gdsn(f, "sample.id"))

# get a DelayedArray object
(cnt <- scArray(f, "counts"))

scClose(f)

Replacement

Description

Replace NA/NaN in a GDS-specific DelayedArray by a specified value.

Usage

scReplaceNA(x, v=0L)

Arguments

x

a SC_GDSArray object

v

a length-one double or integer value

Value

Return an object with the class SC_GDSMatrix or SC_GDSArray.

Author(s)

Xiuwen Zheng

See Also

scSetMin, scSetMax, scSetBounds

Examples

suppressPackageStartupMessages(library(DelayedArray))

m <- matrix(1:12, nrow=3)
m[2, c(1,3)] <- NA
(mat <- DelayedArray(m))

new_m <-  scObj(mat)  # wrap a in-memory DelayedMatrix
class(new_m)  # SC_GDSMatrix

scReplaceNA(new_m,  999)

Automatic grids for matrix-like objects

Description

Create automatic grids (RegularArrayGrid or ArbitraryArrayGrid for sparse matrices) to use for block processing of matrix-like objects, where the blocks are made of full rows or full columns.

Usage

scRowAutoGrid(x, force=FALSE, nnzero=NULL)
scColAutoGrid(x, force=FALSE, nnzero=NULL)

Arguments

x

a matrix-like object (e.g., a SC_GDSMatrix object)

force

a logical, only applicable when x is a sparse in-memory matrix or a sparse SC_GDSMatrix object, see details

nnzero

a numeric vector for the numbers of non-zeros for rows or columns, NULL (default) for calling row_nnzero() or col_nnzero() when needed

Details

The functions return regular RegularArrayGrid (calling rowAutoGrid() or colAutoGrid), when x is neither a sparse in-memory matrix nor a sparse SC_GDSMatrix object; otherwise, make use of the information of the numbers of non-zeros to create ArbitraryArrayGrid for more efficient grids. When force is applicable and force=TRUE, the functions return ArbitraryArrayGrid which needs the nnzero values. For force=FALSE, scRowAutoGrid() returns ArbitraryArrayGrid when x is not transposed, and scColAutoGrid() returns ArbitraryArrayGrid when x is transposed. If nnzero=NULL and it is needed, the numbers of non-zeros for rows or columns will be calculated internally. For a large matrix, it is more efficient when nnzero is pre-defined. The internal block size can be controlled by setAutoBlockSize(). If the number of blocks in ArbitraryArrayGrid is more than RegularArrayGrid, the functions return RegularArrayGrid instead when force is not TRUE.

Usually, gd <- scRowAutoGrid() or gd <- scColAutoGrid() is used together with blockApply(, grid=gd, as.sparse=attr(gd, "as.sparse")) or blockReduce(, grid=gd, as.sparse=attr(gd, "as.sparse")) to take advantage of sparse matrices.

Value

Return an object of RegularArrayGrid or ArbitraryArrayGrid. attr(, "as.sparse") is a suggested logical value for as.sparse in blockApply() or blockReduce().

Author(s)

Xiuwen Zheng

See Also

rowAutoGrid, colAutoGrid, setAutoBlockSize, blockApply, blockReduce

Examples

# a GDS file for SingleCellExperiment
fn <- system.file("extdata", "example.gds", package="SCArray")

cnt <- scArray(fn, "counts")
cnt

setAutoBlockSize(1048576)  # use 1MB

scRowAutoGrid(cnt)  # it returns RegularArrayGrid since cnt is not very sparse
rowAutoGrid(cnt)
scRowAutoGrid(cnt, force=TRUE)  # ArbitraryArrayGrid


library(Matrix)
cnt2 <- Diagonal(1e5)  # a very sparse matrix

scRowAutoGrid(cnt2)    # 5 blocks
length(rowAutoGrid(cnt2))    # 100000

scColAutoGrid(cnt2)          # 5 blocks
length(colAutoGrid(cnt2))    # 100000 blocks


setAutoBlockSize()  # reset

rm(cnt)

Perform PCA on SC_GDSMatrix and expression data

Description

Perform a Principal Components Analysis (PCA) on cells in the SingleCellExperiment object.

Usage

scRunPCA(sce, ncomponents=50, ntop=500, subset_row=NULL, scale=FALSE,
    altexp=NULL, name="PCA", exprs_values="logcounts", dimred=NULL,
    n_dimred=NULL, BSPARAM=NULL, BPPARAM=SerialParam(), verbose=TRUE)

## S4 method for signature 'SC_GDSMatrix'
runPCA(x, rank, center=TRUE, scale=FALSE, get.rotation=TRUE,
    get.pcs=TRUE, ...)

Arguments

sce

a SingleCellExperiment or SummarizedExperiment object

x

a SC_GDSMatrix object

ncomponents, rank

# of calculated principal components

ntop

# of features with the highest variances to use for PCA

subset_row

specifying the subset of features to use

center

if TRUE, expression values will be be centered

scale

if TRUE, expression values will be be standardized

altexp

String or integer scalar specifying an alternative experiment containing the input data

name

the name to be used to store the result in reducedDims

exprs_values

the assay name containing the expression values

dimred

String or integer scalar specifying the existing dimensionality reduction results to use

n_dimred

Integer scalar or vector specifying the dimensions to use if dimred is specified

BSPARAM

A BiocSingularParam object specifying which algorithm to be used in runPCA in the BiocSingular package

BPPARAM

A BiocParallelParam object for parallelized calculation

get.rotation

if TRUE, return rotation vectors

get.pcs

if TRUE, return principal component scores

verbose

if TRUE, show information

...

For runPCA, this contains further arguments to pass to runSVD, including BSPARAM to specify the algorithm that should be used, and BPPARAM to control parallelization.

Details

The function runPCA() simply calls runSVD and converts the results into a format similar to that returned by prcomp.

BSPARAM can be one of

ExactParam():

exact SVD with runExactSVD.

IrlbaParam():

approximate SVD with irlba via runIrlbaSVD.

RandomParam():

approximate SVD with rsvd via runRandomSVD.

FastAutoParam():

fast approximate SVD, chosen based on the matrix representation.

fold=1 in BiocSingularParam is used for the situation that the covariance matrix is relatively small, and running SVD on the small covariance matrix can be more effecient. When fold=Inf, running SVD on the matrix directly and will read the matrix multiple times. If it is a file-based matrix, fold=Inf could be slow.

Value

Returns a SingleCellExperiment object containing the PC coordinate matrix in reducedDims(..., name). The attributes of the PC coordinate matrix have "percentVar", "varExplained" and "rotation" (see scater::runPCA for more details).

Author(s)

Xiuwen Zheng

See Also

runSVD for the underlying SVD function.

?BiocSingularParam for the SVD algorithm choices.

runPCA.

Examples

library(BiocSingular)

# a GDS file for SingleCellExperiment
fn <- system.file("extdata", "example.gds", package="SCArray")

x <- scArray(fn, "counts")
x <- x[1:200, ]
x

pc <- runPCA(x, BSPARAM=ExactParam(fold=1))  # using covariance matrix
str(pc)

rm(x)

Set the bounds

Description

Set the maximum and/or minimum on a GDS-specific DelayedArray.

Usage

scSetMax(x, vmax)
scSetMin(x, vmin)
scSetBounds(x, vmin=NaN, vmax=NaN)

Arguments

x

a SC_GDSArray object

vmax

maximum, length-one

vmin

minimum, length-one

Value

Return an object with the class SC_GDSMatrix or SC_GDSArray.

Author(s)

Xiuwen Zheng

See Also

scReplaceNA

Examples

suppressPackageStartupMessages(library(DelayedArray))

m <- matrix(1:12, nrow=3)
(mat <- DelayedArray(m))

new_m <-  scObj(mat)  # wrap a in-memory DelayedMatrix
class(new_m)  # SC_GDSMatrix

scSetMax(new_m, 5)
scSetMin(new_m, 5)
scSetBounds(new_m, 4, 9)