Title: | Survival analysis using transcriptional networks inferred by the RTN package |
---|---|
Description: | RTNsurvival is a tool for integrating regulons generated by the RTN package with survival information. For a given regulon, the 2-tailed GSEA approach computes a differential Enrichment Score (dES) for each individual sample, and the dES distribution of all samples is then used to assess the survival statistics for the cohort. There are two main survival analysis workflows: a Cox Proportional Hazards approach used to model regulons as predictors of survival time, and a Kaplan-Meier analysis assessing the stratification of a cohort based on the regulon activity. All plots can be fine-tuned to the user's specifications. |
Authors: | Clarice S. Groeneveld, Vinicius S. Chagas, Mauro A. A. Castro |
Maintainer: | Clarice Groeneveld <[email protected]>, Mauro A. A. Castro <[email protected]> |
License: | Artistic-2.0 |
Version: | 1.31.0 |
Built: | 2025-01-07 06:18:05 UTC |
Source: | https://github.com/bioc/RTNsurvival |
This package provides classes and methods to perform survival analysis using transcriptional networks inferred by the RTN package, including Kaplan-Meier and multivariate survival analysis using Cox's regression model.
Package: | RTNsurvival |
Type: | Package |
Depends: | R(>= 3.5), RTN(>= 2.6.3), RTNduals(>= 1.6.1), methods |
Imports: | survival, RColorBrewer, grDevices, graphics, stats, utils, scales, data.table, egg, ggplot2, pheatmap, dunn.test |
Suggests: | Fletcher2013b, knitr, rmarkdown, BiocStyle, RUnit, BiocGenerics |
License: | Artistic-2.0 |
biocViews: | NetworkInference, NetworkEnrichment, GeneRegulation, GeneExpression, GraphAndNetwork, GeneSetEnrichment |
TNS-class: | an S4 class for survival survival analysis using RTN transcriptional networks. |
tni2tnsPreprocess: | a preprocessing method for objects of class TNS. |
tnsGSEA2: | compute regulon activity by calling 'GSEA2' algorithm. |
tnsPlotGSEA2: | plot results from the two-tailed GSEA. |
tnsKM: | Kaplan-Meier analysis for TNS class objects. |
tnsPlotKM: | Kaplan-Meier plots for TNS class objects. |
tnsCox: | Cox regression analysis for TNS class objects. |
tnsPlotCox: | Cox plots for TNS class objects. |
tnsGet: | Get information from slots in a TNS object. |
tnsInteraction: | A generic call to 'tnsCoxInteraction' and 'tnsKmInteraction'. |
tnsKmInteraction: | Kaplan-Meier analysis for dual regulons. |
tnsPlotKmInteraction: | Plot results from Kaplan-Meier analysis for dual regulons. |
tnsCoxInteraction: | Cox regression analysis for dual regulons. |
tnsPlotCoxInteraction: | Plot results from Cox regression analysis for dual regulons. |
tnsPlotGSEA2: | Plot 2-tailed GSEA for a sample from a TNS. |
tnsAREA3: | compute regulon activity by calling 'aREA3' algorithm. |
Further information is available in the vignettes by typing vignette("RTNsurvival")
. Documented
topics are also available in HTML by typing help.start()
and selecting the RTNsurvival package
from the menu.
Clarice S. Groeneveld, Vinicius S. Chagas, Gordon Robertson, ..., Kerstin Meyer, Mauro A. A. Castro
Fletcher M.N.C. et al., Master regulators of FGFR2 signalling and breast cancer risk. Nature Communications, 4:2464, 2013.
Castro M.A.A. et al., Regulators of genetic risk of breast cancer identified by integrative network analysis. Nature Genetics, 48:12-21, 2016.
This function will run a semi-supervised hierarchical clustering, using prior knowledge to initialize clusters, and then unsupervised clustering on the unlabeled data.
hclust_semisupervised( data, groups, dist_method = "euclidean", hclust_method = "complete" )
hclust_semisupervised( data, groups, dist_method = "euclidean", hclust_method = "complete" )
data |
a data.frame to be clustered by rows |
groups |
a list of vectors. If we unlist(groups), all elements must be present in the rownames of data. Each vector in the list will be treated as a separate group for the hierarchical clustering, and rejoined in order at the end. |
dist_method |
a distance computation method. Must be one of "euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski", "pearson", "spearman" |
hclust_method |
an agglomeration method. Should be a method supported by hclust, one of: "ward.D", "ward.D2", "single", "complete", "average" (= UPGMA), "mcquitty" (= WPGMA), "median" (= WPGMC) or "centroid" (= UPGMC). |
hclust_semisupervised returns a list. The first element of the list is the data, reordered so that the merged hclust object will work. The second element is the result of the semi-supervised hierarchical clustering.
#--- add unique labels to 'iris' data rownames(iris) <- paste(iris$Species, formatC(1:nrow(iris), width=3, flag="0"), sep="_") #--- unsupervised clustering hc <- hclust(dist(iris[, -5])) plot(hc, hang=-1, cex=0.5) #--- semi-supervised clustering hc_ssuper <- hclust_semisupervised(data = iris[, -5], groups = split(rownames(iris), iris$Species)) plot(hc_ssuper, hang=-1, cex=0.5)
#--- add unique labels to 'iris' data rownames(iris) <- paste(iris$Species, formatC(1:nrow(iris), width=3, flag="0"), sep="_") #--- unsupervised clustering hc <- hclust(dist(iris[, -5])) plot(hc, hang=-1, cex=0.5) #--- semi-supervised clustering hc_ssuper <- hclust_semisupervised(data = iris[, -5], groups = split(rownames(iris), iris$Species)) plot(hc_ssuper, hang=-1, cex=0.5)
Creates TNS class onbjects for regulons an survival data.
## S4 method for signature 'TNI' tni2tnsPreprocess( tni, survivalData = NULL, regulatoryElements = NULL, time = 1, event = 2, endpoint = NULL, pAdjustMethod = "BH", keycovar = NULL, samples = NULL, excludeMid = FALSE, excludeAttribs = NULL )
## S4 method for signature 'TNI' tni2tnsPreprocess( tni, survivalData = NULL, regulatoryElements = NULL, time = 1, event = 2, endpoint = NULL, pAdjustMethod = "BH", keycovar = NULL, samples = NULL, excludeMid = FALSE, excludeAttribs = NULL )
tni |
A TNI class, already processed with the same samples listed in the survival data.frame. |
survivalData |
A named data.frame with samples in rows and survival data in the columns (this does not need to be provided if avaibale in the 'TNI' object). |
regulatoryElements |
A character vector specifying which 'TNI' regulatory elements should be evaluated. |
time |
A numeric or character value corresponding to the column of the data.frame where the time of last observation is given. |
event |
A numeric or character value, corresponding to the columm of the data.frame where the 'event' information is given. |
endpoint |
A numeric value. It represents the cut-off point for the 'time', if any. |
pAdjustMethod |
A single character value specifying the p-value adjustment method to be used (see 'p.adjust' function for details). |
keycovar |
A character vector of 'keycovars' listed in 'survivalData' columns. |
samples |
An optional character vector listing samples to be analyzed. |
excludeMid |
A logical value. If TRUE, inconclusive dES values is not consired in the survival analysis. |
excludeAttribs |
A character vector of attributes listed in the column names of the survivalData, indicating sample groups to be excluded from the survival analysis. All attributes should be binary encoded. Available attributes can be checked by running colnames(tnsGet(tns, "survivalData")) |
A preprocessed TNS class
tni.preprocess
for similar
preprocessing.
# load survival data data(survival.data) # load TNI-object data(stni, package = "RTN") # create a new TNS object stns <- tni2tnsPreprocess(stni, survivalData = survival.data, keycovar = c('Grade','Age'), time = 1, event = 2)
# load survival data data(survival.data) # load TNI-object data(stni, package = "RTN") # create a new TNS object stns <- tni2tnsPreprocess(stni, survivalData = survival.data, keycovar = c('Grade','Age'), time = 1, event = 2)
TNS: An S4 class for survival analysis using transcriptional networks inferred by the RTN package.
TNI
a previously computed TNI-class object.
survivalData
a data frame containing the survival data for all samples. Samples must be in the rows and the survival variables in the columns. Time of last update and event in last update (0 for alive, 1 for deceased).
para
a list with the parameters used to compute the GSEA2 analysis.
results
a list with results from TNS methods.
status
a vector containing the processing status of the TNS object.
see tni2tnsPreprocess
constructor.
A minimum dataset used to demonstrate RTNsurvival main features.
data(survival.data)
data(survival.data)
survival.data
A data.frame with a subset of samples in the Fletcher2013b package.
The dataset consists of data.frame with survival and clinical variables used in the RTNsurvival vignettes. It should be regarded as a toy example for demonstration purposes only, despite being extracted, pre-processed and size-reduced from Fletcher et al. (2013) and Curtis et al. (2012).
a data.frame.
Fletcher M.N.C. et al., Master regulators of FGFR2 signalling and breast cancer risk. Nature Communications, 4:2464, 2013.
Curtis C. et al., The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486, 7403. 2012.
data(survival.data)
data(survival.data)
Uses tni.area3
function to compute regulon activity
for TNS class objects.
## S4 method for signature 'TNS' tnsAREA3(tns, ...)
## S4 method for signature 'TNS' tnsAREA3(tns, ...)
tns |
A TNS class, which has been preprocessed |
... |
Additional parameters passed to |
A TNS class, with added regulon activity scores.
Alvarez et al. Functional characterization of somatic mutations in cancer using network-based inference of protein activity. Nature Genetics, 48(8):838-847, 2016.
tni.area3
for additional details.
# load survival data data(survival.data) # load TNI-object data(stni, package = "RTN") stns <- tni2tnsPreprocess(stni, survivalData = survival.data, keycovar = c('Grade','Age'), time = 1, event = 2) stns <- tnsAREA3(stns)
# load survival data data(survival.data) # load TNI-object data(stni, package = "RTN") stns <- tni2tnsPreprocess(stni, survivalData = survival.data, keycovar = c('Grade','Age'), time = 1, event = 2) stns <- tnsAREA3(stns)
Run Cox multivariate regression for regulons and other covariates.
## S4 method for signature 'TNS' tnsCox(tns, regs = NULL, qqkeycovar = FALSE, verbose = TRUE)
## S4 method for signature 'TNS' tnsCox(tns, regs = NULL, qqkeycovar = FALSE, verbose = TRUE)
tns |
A TNS object, which must have passed GSEA2 analysis. |
regs |
An optional string vector listing regulons to be tested. |
qqkeycovar |
A logical value. If TRUE, only the samples in the 2nd and
3rd quartils of 'keycovar' are used in the analysis. If FALSE, all samples
are used (see |
verbose |
A logical value specifying to display detailed messages (when verbose=TRUE) or not (when verbose=FALSE). |
Cox hazard models and statistics.
# load survival data data(survival.data) # load TNI-object data(stni, package = "RTN") stns <- tni2tnsPreprocess(stni, survivalData = survival.data, keycovar = c('Age','Grade'), time = 1, event = 2) stns <- tnsGSEA2(stns) stns <- tnsCox(stns, regs = c('PTTG1','E2F2','FOXM1')) tnsGet(stns, "coxTable")
# load survival data data(survival.data) # load TNI-object data(stni, package = "RTN") stns <- tni2tnsPreprocess(stni, survivalData = survival.data, keycovar = c('Age','Grade'), time = 1, event = 2) stns <- tnsGSEA2(stns) stns <- tnsCox(stns, regs = c('PTTG1','E2F2','FOXM1')) tnsGet(stns, "coxTable")
Cox regression analysis for dual regulons, including the interaction term.
## S4 method for signature 'TNS' tnsCoxInteraction(tns, stepFilter = TRUE, pValueCutoff = 0.05, verbose = TRUE)
## S4 method for signature 'TNS' tnsCoxInteraction(tns, stepFilter = TRUE, pValueCutoff = 0.05, verbose = TRUE)
tns |
A TNS object with regulons used to compute the dual regulons. |
stepFilter |
A single logical value specifying to use a step-filter algorithm, testing dual regulons that have at least one significant predictor in the 'tnsCox' method (when stepFilter=TRUE) or not (when stepFilter=FALSE). |
pValueCutoff |
An numeric value. The p-value cutoff applied to the results from the previous steps of the analysis pipeline (when stepFilter=TRUE). |
verbose |
A logical value specifying to display detailed messages (when verbose=TRUE) or not (when verbose=FALSE). |
Cox hazard models and statistics.
An updated TNS-class object containing Cox regression models for all given duals
# load survival data data(survival.data) # load TNI-object data(stni, package = "RTN") # perform survival analysis for regulons stns <- tni2tnsPreprocess(stni, survivalData = survival.data, time = 1, event = 2) stns <- tnsGSEA2(stns) # run Cox regression for dual regulons stns <- tnsCoxInteraction(stns, stepFilter = FALSE) tnsGet(stns, "coxInteractionTable")
# load survival data data(survival.data) # load TNI-object data(stni, package = "RTN") # perform survival analysis for regulons stns <- tni2tnsPreprocess(stni, survivalData = survival.data, time = 1, event = 2) stns <- tnsGSEA2(stns) # run Cox regression for dual regulons stns <- tnsCoxInteraction(stns, stepFilter = FALSE) tnsGet(stns, "coxInteractionTable")
Get information from individual slots in a TNS object and any available results from a previous analysis.
## S4 method for signature 'TNS' tnsGet(tns, what)
## S4 method for signature 'TNS' tnsGet(tns, what)
tns |
A TNS object. |
what |
A string specifying what should be retrieved from the object. Options: 'status','survivalData', 'regulonActivity', 'TNI', 'para', 'kmTable', 'kmFit', 'coxTable', 'coxFit', 'kmInteractionTable', 'kmInteractionFit', 'coxInteractionTable', 'coxInteractionFit', and 'regulatoryElements'. |
Content from slots in the TNS object.
# load survival data data(survival.data) # load TNI-object data(stni, package = "RTN") stns <- tni2tnsPreprocess(stni, survivalData = survival.data, keycovar = c('Grade','Age'), time = 1, event = 2) stns <- tnsGSEA2(stns) regulonActivity <- tnsGet(stns, 'regulonActivity')
# load survival data data(survival.data) # load TNI-object data(stni, package = "RTN") stns <- tni2tnsPreprocess(stni, survivalData = survival.data, keycovar = c('Grade','Age'), time = 1, event = 2) stns <- tnsGSEA2(stns) regulonActivity <- tnsGet(stns, 'regulonActivity')
Works as a wrapper for tni.gsea2
, performing a
2-tailed GSEA analysis on a TNI class object and integrating
the results into the TNS class object.
## S4 method for signature 'TNS' tnsGSEA2(tns, ...)
## S4 method for signature 'TNS' tnsGSEA2(tns, ...)
tns |
A TNS class, which has been preprocessed |
... |
Additional parameters passed to |
A TNS class, with added regulon activity scores.
tni.gsea2
for information on all
parameters.
# load survival data data(survival.data) # load TNI-object data(stni, package = "RTN") stns <- tni2tnsPreprocess(stni, survivalData = survival.data, keycovar = c('Grade','Age'), time = 1, event = 2) stns <- tnsGSEA2(stns) ## Not run: # parallel version with SNOW package! library(snow) options(cluster=snow::makeCluster(3, "SOCK")) stns <- tnsGSEA2(stns) stopCluster(getOption("cluster")) ## End(Not run)
# load survival data data(survival.data) # load TNI-object data(stni, package = "RTN") stns <- tni2tnsPreprocess(stni, survivalData = survival.data, keycovar = c('Grade','Age'), time = 1, event = 2) stns <- tnsGSEA2(stns) ## Not run: # parallel version with SNOW package! library(snow) options(cluster=snow::makeCluster(3, "SOCK")) stns <- tnsGSEA2(stns) stopCluster(getOption("cluster")) ## End(Not run)
A generic call to 'tnsCoxInteraction' and 'tnsKmInteraction' functions.
## S4 method for signature 'TNS' tnsInteraction(tns, ..., verbose = TRUE)
## S4 method for signature 'TNS' tnsInteraction(tns, ..., verbose = TRUE)
tns |
A TNS object, which must have passed GSEA2 analysis. |
... |
Parameters passed to |
verbose |
A logical value specifying to display detailed messages (when verbose=TRUE) or not (when verbose=FALSE). |
A TNS object evaluated by the 'tnsKmInteraction' and 'tnsCoxInteraction' functions.
# load survival data data(survival.data) # load TNI-object data(stni, package = "RTN") stns <- tni2tnsPreprocess(stni, survivalData = survival.data, keycovar = c('Grade','Age'), time = 1, event = 2) stns <- tnsGSEA2(stns) # survival analysis for dual regulons # stns <- tnsInteraction(stns, stepFilter = FALSE)
# load survival data data(survival.data) # load TNI-object data(stni, package = "RTN") stns <- tni2tnsPreprocess(stni, survivalData = survival.data, keycovar = c('Grade','Age'), time = 1, event = 2) stns <- tnsGSEA2(stns) # survival analysis for dual regulons # stns <- tnsInteraction(stns, stepFilter = FALSE)
Creates survival curves and tests if there is a difference between curves using 'survfit' and 'survdiff' functions, respectivelly.
## S4 method for signature 'TNS' tnsKM( tns, regs = NULL, sections = 1, undetermined.status = TRUE, verbose = TRUE )
## S4 method for signature 'TNS' tnsKM( tns, regs = NULL, sections = 1, undetermined.status = TRUE, verbose = TRUE )
tns |
A TNS object, which must have passed GSEA2 analysis. |
regs |
An optional string vector listing regulons to be tested. |
sections |
A numeric value for sample stratification. The larger the number, the more subdivisions will be created for the Kaplan-Meier analysis. |
undetermined.status |
a logical value. If TRUE, regulons assigned as 'undetermined' will form a group. |
verbose |
A logical value specifying to display detailed messages (when verbose=TRUE) or not (when verbose=FALSE). |
Results from 'survfit' and 'survdiff', including log-rank statistics.
# load survival data data(survival.data) # load TNI-object data(stni, package = "RTN") stns <- tni2tnsPreprocess(stni, survivalData = survival.data, keycovar = c('Grade','Age'), time = 1, event = 2) stns <- tnsGSEA2(stns) stns <- tnsKM(stns) tnsGet(stns, "kmTable")
# load survival data data(survival.data) # load TNI-object data(stni, package = "RTN") stns <- tni2tnsPreprocess(stni, survivalData = survival.data, keycovar = c('Grade','Age'), time = 1, event = 2) stns <- tnsGSEA2(stns) stns <- tnsKM(stns) tnsGet(stns, "kmTable")
Kaplan-Meier analysis for dual regulons, assessing the interaction between regulons.
## S4 method for signature 'TNS' tnsKmInteraction(tns, stepFilter = TRUE, pValueCutoff = 0.05, verbose = TRUE)
## S4 method for signature 'TNS' tnsKmInteraction(tns, stepFilter = TRUE, pValueCutoff = 0.05, verbose = TRUE)
tns |
A TNS object, which must have passed GSEA2 analysis. |
stepFilter |
A single logical value specifying to use a step-filter algorithm, testing dual regulons that have at least one significant predictor in the 'tnsKM' method (when stepFilter=TRUE) or not (when stepFilter=FALSE). |
pValueCutoff |
An numeric value. The p-value cutoff applied to the results from the previous steps of the analysis pipeline (when stepFilter=TRUE). |
verbose |
A logical value specifying to display detailed messages (when verbose=TRUE) or not (when verbose=FALSE). |
Results from 'survfit' and 'survdiff', including log-rank statistics.
# load survival data data(survival.data) # load TNI-object data(stni, package = "RTN") stns <- tni2tnsPreprocess(stni, survivalData = survival.data, keycovar = c('Grade','Age'), time = 1, event = 2) stns <- tnsGSEA2(stns) # KM analysis for dual regulons # stns <- tnsKmInteraction(stns, stepFilter = FALSE) # tnsGet(stns, "kmInteractionTable")
# load survival data data(survival.data) # load TNI-object data(stni, package = "RTN") stns <- tni2tnsPreprocess(stni, survivalData = survival.data, keycovar = c('Grade','Age'), time = 1, event = 2) stns <- tnsGSEA2(stns) # KM analysis for dual regulons # stns <- tnsKmInteraction(stns, stepFilter = FALSE) # tnsGet(stns, "kmInteractionTable")
This method plots regulon activity for a given regulon in all samples and adds covariate tracks to evaluate the regulon activity distribution. The samples are order by regulon activity for that particular regulon.
## S4 method for signature 'TNS' tnsPlotCovariates( tns, regs = NULL, attribs = NULL, fname = "covarplot", fpath = ".", ylab = "Regulon activity (dES)", xlab = "Samples", plotpdf = FALSE, plotbatch = FALSE, panelHeights = c(1, 1), width = 5.3, height = 4, dummyEncode = TRUE, divs = NULL )
## S4 method for signature 'TNS' tnsPlotCovariates( tns, regs = NULL, attribs = NULL, fname = "covarplot", fpath = ".", ylab = "Regulon activity (dES)", xlab = "Samples", plotpdf = FALSE, plotbatch = FALSE, panelHeights = c(1, 1), width = 5.3, height = 4, dummyEncode = TRUE, divs = NULL )
tns |
A A TNS object. |
regs |
An optional string vector specifying regulons to plot. |
attribs |
A character vector of attributes listed in the column names of the survivalData. All attributes should be either binary encoded or categorical variables for plotting. Available attributes can be checked by running colnames(tnsGet(tns, "survivalData")). Alternatively, attributes can be grouped when provided within a list. |
fname |
A string. The name of the file in which the plot will be saved |
fpath |
A string. The path to the directory where the plot will be saved |
ylab |
A string. The label of the y-axis, describing what is represented. |
xlab |
A string. The label of the x-axis. |
plotpdf |
A logical value. If TRUE, a pdf file is created instead of plotting to the graphics device. |
plotbatch |
A logical value. If TRUE, plots for all regulons are saved in the same file. If FALSE, each plot for each regulon is saved in a different file. |
panelHeights |
A numeric vector of length 2 specifying the relative heights of the panels (regulon activity plot, and covariate tracks) |
width |
A numeric value. Represents the width of the plot. |
height |
A numeric value. Represents the height of the plot. |
dummyEncode |
A logical value. If TRUE, all categorical variables are dummy encoded. If FALSE, categorical variables are represented as one track and a legend is added to the plot. |
divs |
A numeric vector of division positions in the covariate tracks. |
Automatic dummy encoding is available for categorical variables.
A plot of regulon activity and covariate tracks.
# load survival data data(survival.data) # load TNI-object data(stni, package = "RTN") # create TNS object stns <- tni2tnsPreprocess(stni, survivalData = survival.data, keycovar = c('Grade','Age'), time = 1, event = 2) stns <- tnsGSEA2(stns) # plot only binary covariates tnsPlotCovariates(stns, "MYB", attribs = c("ER+", "ER-", "PR+", "PR-", "LumA", "LumB", "Basal", "Her2", "Normal"), divs = c(2, 4)) # also dummy encode categorical variables (LN and Grade) tnsPlotCovariates(stns, "MYB", attribs = c("ER+", "ER-", "PR+", "PR-", "LumA", "LumB", "Basal", "Her2", "Normal", "LN", "Grade"), divs = c(2, 4, 9, 12)) # don't dummy encode categorical variables tnsPlotCovariates(stns, "MYB", attribs = c("ER+", "ER-", "PR+", "PR-", "LumA", "LumB", "Basal", "Her2", "Normal", "Grade"), divs = c(2, 4, 9), dummyEncode = FALSE)
# load survival data data(survival.data) # load TNI-object data(stni, package = "RTN") # create TNS object stns <- tni2tnsPreprocess(stni, survivalData = survival.data, keycovar = c('Grade','Age'), time = 1, event = 2) stns <- tnsGSEA2(stns) # plot only binary covariates tnsPlotCovariates(stns, "MYB", attribs = c("ER+", "ER-", "PR+", "PR-", "LumA", "LumB", "Basal", "Her2", "Normal"), divs = c(2, 4)) # also dummy encode categorical variables (LN and Grade) tnsPlotCovariates(stns, "MYB", attribs = c("ER+", "ER-", "PR+", "PR-", "LumA", "LumB", "Basal", "Her2", "Normal", "LN", "Grade"), divs = c(2, 4, 9, 12)) # don't dummy encode categorical variables tnsPlotCovariates(stns, "MYB", attribs = c("ER+", "ER-", "PR+", "PR-", "LumA", "LumB", "Basal", "Her2", "Normal", "Grade"), divs = c(2, 4, 9), dummyEncode = FALSE)
Plot results from the 'tnsCox' function.
## S4 method for signature 'TNS' tnsPlotCox( tns, regs = NULL, pValueCutoff = 1, fname = "coxplot", fpath = ".", ylab = "Regulons and other covariates", xlab = "Hazard Ratio (95% CI)", width = 5, height = 5, xlim = c(0.3, 3), sortregs = TRUE, plotpdf = FALSE )
## S4 method for signature 'TNS' tnsPlotCox( tns, regs = NULL, pValueCutoff = 1, fname = "coxplot", fpath = ".", ylab = "Regulons and other covariates", xlab = "Hazard Ratio (95% CI)", width = 5, height = 5, xlim = c(0.3, 3), sortregs = TRUE, plotpdf = FALSE )
tns |
A TNS object, which must have passed GSEA2 analysis. |
regs |
An optional string vector specifying regulons to make the plot. |
pValueCutoff |
An numeric value. The p-value cutoff applied to the results from the Cox analysis pipeline. |
fname |
A string. The name of the PDF file which will contain the plot. |
fpath |
A string. The directory where the file will be saved. |
ylab |
A string. The label of the y-axis, describing what is represented. |
xlab |
A string. The label of the x-axis. |
width |
A numeric value. The width of the plot. |
height |
A numeric value. The height of the plot. |
xlim |
A vector with 2 values indicating lowest and highest HR values. |
sortregs |
A logical value. If TRUE, regulons are sorted from most negatively associatedwith hazard to most positively associated with hazard. |
plotpdf |
A logical value. |
A Cox hazard model plot and statistics.
# load survival data data(survival.data) # load TNI-object data(stni, package = "RTN") stns <- tni2tnsPreprocess(stni, survivalData = survival.data, keycovar = c('Age','Grade'), time = 1, event = 2) stns <- tnsGSEA2(stns) stns <- tnsCox(stns, regs = c('PTTG1','E2F2','FOXM1')) tnsPlotCox(stns)
# load survival data data(survival.data) # load TNI-object data(stni, package = "RTN") stns <- tni2tnsPreprocess(stni, survivalData = survival.data, keycovar = c('Age','Grade'), time = 1, event = 2) stns <- tnsGSEA2(stns) stns <- tnsCox(stns, regs = c('PTTG1','E2F2','FOXM1')) tnsPlotCox(stns)
Plot results from Cox regression analysis for dual regulons
## S4 method for signature 'TNS' tnsPlotCoxInteraction( tns, dualreg, xlim = NULL, ylim = NULL, hlim = NULL, hcols = c("#008080ff", "#d45500ff"), showdata = TRUE, colorPalette = "bluered", fname = "coxInteraction", fpath = ".", width = 4.5, height = 4, plotype = "3D", plotpdf = FALSE )
## S4 method for signature 'TNS' tnsPlotCoxInteraction( tns, dualreg, xlim = NULL, ylim = NULL, hlim = NULL, hcols = c("#008080ff", "#d45500ff"), showdata = TRUE, colorPalette = "bluered", fname = "coxInteraction", fpath = ".", width = 4.5, height = 4, plotype = "3D", plotpdf = FALSE )
tns |
A 'TNS' object with regulons used to compute the dual regulon. |
dualreg |
A character string with the name of a dual regulon. |
xlim |
A numeric vector of length 2, i.e. xlim = c(x1, x2), indicating the limits of the plot for the first member of the dual regulon. If xlim = NULL, it will be derevided from the observed data ranges. Values must be in the range [-2,2]. |
ylim |
A numeric vector of length 2, i.e. ylim = c(y1, y2), indicating the limits of the plot for the second member of the dual regulon. If ylim = NULL, it will be derevided from the observed data ranges. Values must be in the range [-2,2]. If plotype='2D', ylim represents the two fixed values for the second member of the dual regulon. |
hlim |
A numeric vector of length 2, i.e. hlim = c(h1, h2), indicating the limits of the plot for the Hazard Ratio (HR). If hlim = NULL, it will be derevided from the observed data ranges. If plotype='2D', HR is represented in the y-axis. |
hcols |
A vector of length 2 indicating a diverging color scheme for the Hazard Ratio (HR). |
showdata |
A logical value indicating whether to show the original data used to fit linear model. |
colorPalette |
A string, which can be 'red', 'blue', 'redblue', or 'bluered'. Alternatively, it can be a vector of five colors or hex values. |
fname |
A string. The name of the PDF file (when plotpdf=TRUE). |
fpath |
A string. The directory where the file will be saved. |
width |
A numeric value. The width of the plot. |
height |
A numeric value. The height of the plot. |
plotype |
A string indicating '2D' of '3D' plot type. If plotype = '2D', the Hazard Ratio is represented in the y-axis. |
plotpdf |
A logical value. |
A Cox hazard model plot and statistics.
A 3D heatmap plot.
# load survival data data(survival.data) # load TNI-object data(stni, package = "RTN") # perform survival analysis for regulons stns <- tni2tnsPreprocess(stni, survivalData = survival.data, time = 1, event = 2) stns <- tnsGSEA2(stns, verbose=FALSE) # run Cox regression for dual regulons # stns <- tnsCoxInteraction(stns, stepFilter = FALSE) # tnsPlotCoxInteraction(stns, dualreg = "FOXM1~PTTG1")
# load survival data data(survival.data) # load TNI-object data(stni, package = "RTN") # perform survival analysis for regulons stns <- tni2tnsPreprocess(stni, survivalData = survival.data, time = 1, event = 2) stns <- tnsGSEA2(stns, verbose=FALSE) # run Cox regression for dual regulons # stns <- tnsCoxInteraction(stns, stepFilter = FALSE) # tnsPlotCoxInteraction(stns, dualreg = "FOXM1~PTTG1")
Makes a 2-tailed GSEA plot for a certain phenotype (sample)
present in a TNS. A wrapper of tna.plot.gsea2
## S4 method for signature 'TNS' tnsPlotGSEA2( tns, aSample, regs = NULL, refsamp = NULL, checklog = FALSE, ntop = NULL, pValueCutoff = 0.05, pAdjustMethod = "BH", verbose = TRUE, plotpdf = FALSE, ... )
## S4 method for signature 'TNS' tnsPlotGSEA2( tns, aSample, regs = NULL, refsamp = NULL, checklog = FALSE, ntop = NULL, pValueCutoff = 0.05, pAdjustMethod = "BH", verbose = TRUE, plotpdf = FALSE, ... )
tns |
A TNS object |
aSample |
A string specifying a given sample number present in the 'survivalData' table. |
regs |
An optional string vector specifying regulons to make the plot. |
refsamp |
A character vector. |
checklog |
A logical value. If TRUE, expression values are transformed into log space. |
ntop |
An optional integer value. The number of regulons for which the GSEA2 will be plotted. |
pValueCutoff |
An numeric value. The p-value cutoff for the analysis. |
pAdjustMethod |
A character. Specifies the adjustment method for the
pvalue.
See |
verbose |
A logical value specifying to display detailed messages (when verbose=TRUE) or not (when verbose=FALSE). |
plotpdf |
A single logical value. |
... |
parameters which will be passed to |
A plot containing the 2-tailed GSEA analysis for a phenotype.
tna.plot.gsea2
for all plot parameters
# load survival data data(survival.data) # load TNI-object data(stni, package = "RTN") stns <- tni2tnsPreprocess(stni, survivalData = survival.data, keycovar = c('Grade','Age'), time = 1, event = 2) stns <- tnsGSEA2(stns, verbose=FALSE) tnsPlotGSEA2(stns, 'MB-5115', regs = 'FOXM1', plotpdf = FALSE)
# load survival data data(survival.data) # load TNI-object data(stni, package = "RTN") stns <- tni2tnsPreprocess(stni, survivalData = survival.data, keycovar = c('Grade','Age'), time = 1, event = 2) stns <- tnsGSEA2(stns, verbose=FALSE) tnsPlotGSEA2(stns, 'MB-5115', regs = 'FOXM1', plotpdf = FALSE)
Plot results from the 'tnsKM' function. The 'tnsPlotKM' function makes a 2 or 3 panel plot for survival analysis. The first panel shows the differential Enrichment score (dES) for all samples, ranked by dES in their sections. The second (optional) panel shows the status of other attributes which may be present in the survival data frame for all samples. The third panel shows a Kaplan-Meier plot computed for the given survival data, with a curve for each section.
## S4 method for signature 'TNS' tnsPlotKM( tns, regs = NULL, attribs = NULL, pValueCutoff = 1, fname = "survplot", fpath = ".", xlab = "Months", ylab = "Survival probability", colorPalette = "bluered", plotpdf = FALSE, plotbatch = FALSE, width = 6.3, height = 3.6, panelWidths = c(3, 2, 4) )
## S4 method for signature 'TNS' tnsPlotKM( tns, regs = NULL, attribs = NULL, pValueCutoff = 1, fname = "survplot", fpath = ".", xlab = "Months", ylab = "Survival probability", colorPalette = "bluered", plotpdf = FALSE, plotbatch = FALSE, width = 6.3, height = 3.6, panelWidths = c(3, 2, 4) )
tns |
A TNS object, which must have passed GSEA2 analysis. |
regs |
An optional string vector specifying regulons to make the plot. |
attribs |
A character vector of attributes listed in the column names of the survivalData. All attributes should be binary encoded for plotting. Available attributes can be checked by running colnames(tnsGet(tns, "survivalData")). Alternatively, attributes can be grouped when provided within a list. |
pValueCutoff |
An numeric value. The p-value cutoff applied to the results from the KM analysis pipeline. |
fname |
A string. The name of the file in which the plot will be saved |
fpath |
A string. The path to the directory where the plot will be saved |
xlab |
A string. The label for the x axis on the third panel. This should be the measure of time shown in the survival data frame after the last check-up. |
ylab |
A string. The label for the y axis on the third panel |
colorPalette |
A string, which can be 'red', 'blue', 'redblue', or 'bluered'. Alternatively, it can be colors or hex values. |
plotpdf |
A logical value. If TRUE, the plot is saved as a pdf file. If false, it is plotted in the plotting area. |
plotbatch |
A logical value. If TRUE, plots for all regulons are saved in the same file. If FALSE, each plot for each regulon is saved in a different file. |
width |
A numeric value. Represents the width of the plot. |
height |
A numeric value. Represents the height of the plot. |
panelWidths |
A numeric vector of length=3 specifying the relative width of the internal panels. |
A plot, showing a graphical analysis for the 'tnsKM' function.
# load survival data data(survival.data) # load TNI-object data(stni, package = "RTN") stns <- tni2tnsPreprocess(stni, survivalData = survival.data, keycovar = c('Grade','Age'), time = 1, event = 2) stns <- tnsGSEA2(stns) stns <- tnsKM(stns) tnsPlotKM(stns)
# load survival data data(survival.data) # load TNI-object data(stni, package = "RTN") stns <- tni2tnsPreprocess(stni, survivalData = survival.data, keycovar = c('Grade','Age'), time = 1, event = 2) stns <- tnsGSEA2(stns) stns <- tnsKM(stns) tnsPlotKM(stns)
Plot results from Kaplan-Meier analysis for dual regulons
## S4 method for signature 'TNS' tnsPlotKmInteraction( tns, dualreg = NULL, fname = "kmInteraction", fpath = ".", xlab = "Months", ylab = "Survival probability", colorPalette = "bluered", width = 4, height = 4, plotpdf = FALSE )
## S4 method for signature 'TNS' tnsPlotKmInteraction( tns, dualreg = NULL, fname = "kmInteraction", fpath = ".", xlab = "Months", ylab = "Survival probability", colorPalette = "bluered", width = 4, height = 4, plotpdf = FALSE )
tns |
A TNS object, which must have passed GSEA2 analysis. |
dualreg |
A character string with the name of a dual regulon. |
fname |
A string. The name of the file in which the plot will be saved |
fpath |
A string. The path to the directory where the plot will be saved |
xlab |
A string. The label for the x axis on the third panel. This should be the measure of time shown in the survival data.frame after the last check-up. |
ylab |
A string. The label for the y axis on the third panel |
colorPalette |
A string, which can be 'red', 'blue', 'redblue', or 'bluered'. Alternatively, it can be a vector of five colors or hex values. |
width |
A numeric value. Represents the width of the plot. |
height |
A numeric value. Represents the height of the plot. |
plotpdf |
A logical value. If TRUE, the plot is saved as a pdf file. If false, it is plotted in the plotting area. |
A plot, showing a graphical analysis for the 'tnsKmInteraction' function.
# load survival data data(survival.data) # load TNI-object data(stni, package = "RTN") stns <- tni2tnsPreprocess(stni, survivalData = survival.data, keycovar = c('Grade','Age'), time = 1, event = 2) stns <- tnsGSEA2(stns) # KM analysis for dual regulons # stns <- tnsKmInteraction(stns, stepFilter=FALSE) # tnsPlotKmInteraction(stns, dualreg = "FOXM1~PTTG1")
# load survival data data(survival.data) # load TNI-object data(stni, package = "RTN") stns <- tni2tnsPreprocess(stni, survivalData = survival.data, keycovar = c('Grade','Age'), time = 1, event = 2) stns <- tnsGSEA2(stns) # KM analysis for dual regulons # stns <- tnsKmInteraction(stns, stepFilter=FALSE) # tnsPlotKmInteraction(stns, dualreg = "FOXM1~PTTG1")
This method plots the results of the subgroup regulon enrichment analysis in a heatmap. The rows of the heatmap represent enriched regulons, while the columns show the subgroups. The plotted values correspond to average regulon activity for a regulon in a subgroup. Enriched values can be marked.
## S4 method for signature 'TNS' tnsPlotSRE( tns, subgroup = NULL, by = "nGroups", nGroupsEnriched = 1, nTopEnriched = 10, breaks = seq(-1.5, 1.5, 0.1), markEnriched = FALSE, ... )
## S4 method for signature 'TNS' tnsPlotSRE( tns, subgroup = NULL, by = "nGroups", nGroupsEnriched = 1, nTopEnriched = 10, breaks = seq(-1.5, 1.5, 0.1), markEnriched = FALSE, ... )
tns |
A A TNS object. |
subgroup |
a character vector. It must be the name of a column in the survivalData featuring the grouping information as a categorical variable. |
by |
one of 'nGroups' or 'groupTop'. If by = 'nGroups', the nGroupsEnriched value will be used to select regulons. If by = 'groupTop', 'nTopEnriched' will be used to select regulons for plotting. |
nGroupsEnriched |
a single integer. It represents in how many subgroups a regulon has to be enriched for it to appear in the rows of the heatmap. |
nTopEnriched |
a single integer. If by = 'groupTop', this represents how regulons will be shown for each group (duplicates are removed. The top regulons are chosen by significance. |
breaks |
a numerical vector of breaks for the heatmap. |
markEnriched |
a single logical value. If TRUE, asterisks are added to cells of heatmap that were found to be significant by tnsSRE. |
... |
parameters passed to pheatmap::pheatmap for customization. |
A heatmap of the subgroup regulon enrichment results.
# load survival data data(survival.data) # load TNI-object data(stni, package = "RTN") # create TNS object stns <- tni2tnsPreprocess(stni, survivalData = survival.data, keycovar = c('Grade','Age'), time = 1, event = 2) stns <- tnsGSEA2(stns) # run subgroup regulon enrichment analysis stns <- tnsSRE(stns, "ER+") tnsPlotSRE(stns)
# load survival data data(survival.data) # load TNI-object data(stni, package = "RTN") # create TNS object stns <- tni2tnsPreprocess(stni, survivalData = survival.data, keycovar = c('Grade','Age'), time = 1, event = 2) stns <- tnsGSEA2(stns) # run subgroup regulon enrichment analysis stns <- tnsSRE(stns, "ER+") tnsPlotSRE(stns)
This regulon evaluates differences between regulon activity of subgroups of samples, given a grouping variable. It performs Wilcoxon-Mann-Whitney (2 subgroups) or Kruskal-Wallis (3+ subgroups) Rank Sum Tests to check whether the activity scores of a given regulon are different between subgroups of samples.
## S4 method for signature 'TNS' tnsSRD( tns, subgroup, pValueCutoff = 0.05, pAdjustMethod = "BH", regs = NULL, verbose = TRUE )
## S4 method for signature 'TNS' tnsSRD( tns, subgroup, pValueCutoff = 0.05, pAdjustMethod = "BH", regs = NULL, verbose = TRUE )
tns |
A A TNS object. |
subgroup |
a character vector. It must be the name of a column in the survivalData featuring the grouping information as a categorical variable. |
pValueCutoff |
a single numeric value specifying the cutoff for p-values considered significant. |
pAdjustMethod |
a single character value specifying the p-value adjustment method to be used (see 'p.adjust' for details). |
regs |
An optional string vector specifying regulons to use for the analysis. |
verbose |
a logical value specifying whether to display messages and progress bar. |
A TNS-class object with the results of the subgroup regulon difference added to the results slot. To recover the results, use tnsGet(tns, "regulonDifference")
# load survival data data(survival.data) # load TNI-object data(stni, package = "RTN") # create TNS object stns <- tni2tnsPreprocess(stni, survivalData = survival.data, keycovar = c('Grade','Age'), time = 1, event = 2) stns <- tnsGSEA2(stns) # run subgroup regulon enrichment analysis stns <- tnsSRD(stns, "ER+")
# load survival data data(survival.data) # load TNI-object data(stni, package = "RTN") # create TNS object stns <- tni2tnsPreprocess(stni, survivalData = survival.data, keycovar = c('Grade','Age'), time = 1, event = 2) stns <- tnsGSEA2(stns) # run subgroup regulon enrichment analysis stns <- tnsSRD(stns, "ER+")
This method evaluates which regulons are enriched in sample groups, given a grouping variable. It performs Fisher's Exact Test whether a regulon is positively or negatively enriched in a subgroup using regulon activity.
## S4 method for signature 'TNS' tnsSRE(tns, subgroup, regs = NULL, pValueCutoff = 0.05, pAdjustMethod = "BH")
## S4 method for signature 'TNS' tnsSRE(tns, subgroup, regs = NULL, pValueCutoff = 0.05, pAdjustMethod = "BH")
tns |
A A TNS object. |
subgroup |
a character vector. It must be the name of a column in the survivalData featuring the grouping information as a categorical variable. |
regs |
An optional string vector specifying regulons to use for the analysis. |
pValueCutoff |
a single numeric value specifying the cutoff for p-values considered significant. |
pAdjustMethod |
a single character value specifying the p-value adjustment method to be used (see 'p.adjust' for details). |
A TNS-class object with the results of the subgroup regulon enrichment added to the results slot. To recover the results, use tnsGet(tns, "regulonEnrichment")
# load survival data data(survival.data) # load TNI-object data(stni, package = "RTN") # create TNS object stns <- tni2tnsPreprocess(stni, survivalData = survival.data, keycovar = c('Grade','Age'), time = 1, event = 2) stns <- tnsGSEA2(stns) # run subgroup regulon enrichment analysis stns <- tnsSRE(stns, "ER+") # plot the result tnsPlotSRE(stns)
# load survival data data(survival.data) # load TNI-object data(stni, package = "RTN") # create TNS object stns <- tni2tnsPreprocess(stni, survivalData = survival.data, keycovar = c('Grade','Age'), time = 1, event = 2) stns <- tnsGSEA2(stns) # run subgroup regulon enrichment analysis stns <- tnsSRE(stns, "ER+") # plot the result tnsPlotSRE(stns)
Internal function, used for sample stratification.
tnsStratification( tns, sections = 1, center = FALSE, undetermined.status = TRUE )
tnsStratification( tns, sections = 1, center = FALSE, undetermined.status = TRUE )
tns |
a TNS object, which must have passed GSEA2 analysis. |
sections |
A numeric value for the stratification of the sample. The larger the number, the more subdivisions will be created for the Kaplan-Meier analysis. |
center |
a logical value. If TRUE, numbers assigned to each group is centralized on regulon activity scale. |
undetermined.status |
a logical value. If TRUE, regulons assigned as 'undetermined' will form a group. |
An updated TNS object.
# see tnsKM method.
# see tnsKM method.