Title: | Analysis of CAGE (Cap Analysis of Gene Expression) sequencing data for precise mapping of transcription start sites and promoterome mining |
---|---|
Description: | The _CAGEr_ package identifies transcription start sites (TSS) and their usage frequency from CAGE (Cap Analysis Gene Expression) sequencing data. It normalises raw CAGE tag count, clusters TSSs into tag clusters (TC) and aggregates them across multiple CAGE experiments to construct consensus clusters (CC) representing the promoterome. CAGEr provides functions to profile expression levels of these clusters by cumulative expression and rarefaction analysis, and outputs the plots in ggplot2 format for further facetting and customisation. After clustering, CAGEr performs analyses of promoter width and detects differential usage of TSSs (promoter shifting) between samples. CAGEr also exports its data as genome browser tracks, and as R objects for downsteam expression analysis by other Bioconductor packages such as DESeq2, CAGEfightR, or seqArchR. |
Authors: | Vanja Haberle [aut], Charles Plessy [cre], Damir Baranasic [ctb], Sarvesh Nikumbh [ctb] |
Maintainer: | Charles Plessy <[email protected]> |
License: | GPL-3 |
Version: | 2.13.0 |
Built: | 2024-12-29 04:42:37 UTC |
Source: | https://github.com/bioc/CAGEr |
.byCTSS
is a private function using data.table
objects
to preform grouping operations at a high performance. These functions use
non-standard evaluation in a context that raises warnings in R CMD check
.
By separating these functions from the rest of the code, I hope to make the workarounds
easier to manage.
.byCtss(ctssDT, colName, fun) ## S4 method for signature 'data.table' .byCtss(ctssDT, colName, fun)
.byCtss(ctssDT, colName, fun) ## S4 method for signature 'data.table' .byCtss(ctssDT, colName, fun)
ctssDT |
A |
colName |
The name of the column on which to apply the function. |
fun |
The function to apply. |
ctssDT <- data.table::data.table( chr = c("chr1", "chr1", "chr1", "chr2"), pos = c(1 , 1 , 2 , 1 ), strand = c("+" , "+" , "-" , "-" ), tag_count = c(1 , 1 , 1 , 1 )) ctssDT CAGEr:::.byCtss(ctssDT, "tag_count", sum)
ctssDT <- data.table::data.table( chr = c("chr1", "chr1", "chr1", "chr2"), pos = c(1 , 1 , 2 , 1 ), strand = c("+" , "+" , "-" , "-" ), tag_count = c(1 , 1 , 1 , 1 )) ctssDT CAGEr:::.byCtss(ctssDT, "tag_count", sum)
Summarise CTSSs included in clusters
.ctss_summary_for_clusters(ctss, clusters)
.ctss_summary_for_clusters(ctss, clusters)
ctss |
A |
clusters |
A |
The clusters
object with a new dominant_CTSS
metadata in CTSS
format reporting the genomic coordinate and expression score of most
highly expressed position in each cluster, plus a nr_ctss
metadata reporting
the number of expressed CTSSs in each cluster.
# See also benchmarks/dominant_ctss.md (ctss <- CTSS( 'chr1', IRanges(start = 1:10, end = 1:10) , '+', score = c(1, 0, 0, 1, 2, 0, 2, 1, 0, 1))) (clusters <- GRanges( 'chr1', IRanges(start = c(1,9) , end = c(8,10)), '+')) |> as("TagClusters") # The function assumes that all CTSSes have a score above zero .ctss_summary_for_clusters(ctss[score(ctss)>0], clusters) # If not the case, it will give incorrect nr_ctss and fail to remove singletons .ctss_summary_for_clusters(ctss, clusters) # The function needs its output to be sorted and is not going to check it. .ctss_summary_for_clusters(rev(ctss), clusters) .ctss_summary_for_clusters(ctss, rev(clusters)) # Ties are resolved with 5' preference for both plus and minus strands. # This may create a small bias. ctss_minus <- ctss strand(ctss_minus) <- '-' clusters_minus <- clusters strand(clusters_minus) <- '-' .ctss_summary_for_clusters(ctss_minus, clusters_minus)
# See also benchmarks/dominant_ctss.md (ctss <- CTSS( 'chr1', IRanges(start = 1:10, end = 1:10) , '+', score = c(1, 0, 0, 1, 2, 0, 2, 1, 0, 1))) (clusters <- GRanges( 'chr1', IRanges(start = c(1,9) , end = c(8,10)), '+')) |> as("TagClusters") # The function assumes that all CTSSes have a score above zero .ctss_summary_for_clusters(ctss[score(ctss)>0], clusters) # If not the case, it will give incorrect nr_ctss and fail to remove singletons .ctss_summary_for_clusters(ctss, clusters) # The function needs its output to be sorted and is not going to check it. .ctss_summary_for_clusters(rev(ctss), clusters) .ctss_summary_for_clusters(ctss, rev(clusters)) # Ties are resolved with 5' preference for both plus and minus strands. # This may create a small bias. ctss_minus <- ctss strand(ctss_minus) <- '-' clusters_minus <- clusters strand(clusters_minus) <- '-' .ctss_summary_for_clusters(ctss_minus, clusters_minus)
Private function that calculates position of quantiles for CTSS clusters based on distribution of tags within the clusters.
.get.quant.pos(cum.sums, clusters, q)
.get.quant.pos(cum.sums, clusters, q)
cum.sums |
Named list of vectors containing cumulative sum for each
cluster (returned by the |
clusters |
|
q |
desired quantiles - single value or a vector of values. |
Returns the clusters
object with one more metadata column per value
in q
, containing Rle
integers giving the relative distance of the
quantile boundaries to the start position.
cum.sums <- RleList(`1` = Rle(1), `2` = cumsum(Rle(c(1, 1, 1, 2, 4, 0, 1, 1)))) clusters <- GRanges(c("chr1:100-101", "chr1:120-127")) CAGEr:::.get.quant.pos(cum.sums, clusters, c(.2, .8))
cum.sums <- RleList(`1` = Rle(1), `2` = cumsum(Rle(c(1, 1, 1, 2, 4, 0, 1, 1)))) clusters <- GRanges(c("chr1:100-101", "chr1:120-127")) CAGEr:::.get.quant.pos(cum.sums, clusters, c(.2, .8))
Private funtion for normalizing CAGE tag count to a referent power-law distribution.
.powerLaw(tag.counts, fitInRange = c(10, 1000), alpha = 1.25, T = 10^6)
.powerLaw(tag.counts, fitInRange = c(10, 1000), alpha = 1.25, T = 10^6)
tag.counts |
Numerical values whose reverse cumulative distribution will be fitted to power-law (e.g. tag count or signal for regions, peaks, etc.) |
fitInRange |
Range in which the fitting is done (values outside of this range will not be considered for fitting) |
alpha |
Slope of the referent power-law distribution (the actual slope has negative sign and will be -1*alpha) |
T |
total number of tags (signal) in the referent power-law distribution. |
S4 Methods are provided for integer vectors, Rle objects, data.frame objects and DataFrame objects, so that the most complex objects can be deconstructed in simpler parts, normalized and reconstructed.
Normalized values (vector of the same length as input values); i.e. what would
be the value of input values in the referent distribution. Ouptut objects are numeric,
possibly Rle
-encoded or wrapped in data.frames
or DataFrames
according to the input.
Balwierz, P. J., Carninci, P., Daub, C. O., Kawai, J., Hayashizaki, Y., Van Belle, W., Beisel, C., et al. (2009). Methods for analyzing deep sequencing expression data: constructing the human and mouse promoterome with deepCAGE data. Genome Biology, 10(7), R79.
Aggregates tag clusters (TCs) across all CAGE datasets within the CAGEr object to create a referent set of consensus clusters.
aggregateTagClusters( object, tpmThreshold = 5, excludeSignalBelowThreshold = TRUE, qLow = NULL, qUp = NULL, maxDist = 100, useMulticore = FALSE, nrCores = NULL ) ## S4 method for signature 'CAGEr' aggregateTagClusters( object, tpmThreshold = 5, excludeSignalBelowThreshold = TRUE, qLow = NULL, qUp = NULL, maxDist = 100, useMulticore = FALSE, nrCores = NULL )
aggregateTagClusters( object, tpmThreshold = 5, excludeSignalBelowThreshold = TRUE, qLow = NULL, qUp = NULL, maxDist = 100, useMulticore = FALSE, nrCores = NULL ) ## S4 method for signature 'CAGEr' aggregateTagClusters( object, tpmThreshold = 5, excludeSignalBelowThreshold = TRUE, qLow = NULL, qUp = NULL, maxDist = 100, useMulticore = FALSE, nrCores = NULL )
object |
A |
tpmThreshold |
Ignore tag clusters with normalized signal |
excludeSignalBelowThreshold |
When |
qLow , qUp
|
Set which "lower" (or "upper") quantile should be used as 5'
(or 3') boundary of the tag cluster. If |
maxDist |
Maximal length of the gap (in base-pairs) between two tag clusters for them to be part of the same consensus clusters. |
useMulticore |
Logical, should multicore be used (supported only on Unix-like platforms). |
nrCores |
Number of cores to use when |
Since the tag clusters (TCs) returned by the CTSS clustering functions
function are constructed separately for every CAGE sample within the CAGEr
object, they can differ between samples in both their number, genomic
coordinates, position of dominant TSS and overall signal. To be able to
compare all samples at the level of clusters of TSSs, TCs from all CAGE
datasets are aggregated into a single set of consensus clusters. First, TCs
with signal >= tpmThreshold
from all CAGE datasets are selected, and their
5' and 3' boundaries are determined based on provided qLow
and qUp
parameter (or the start and end coordinates, if they are set to NULL
).
Finally, the defined set of TCs from all CAGE datasets is reduced to a
non-overlapping set of consensus clusters by merging overlapping TCs and TCs
<= maxDist
base-pairs apart. Consensus clusters represent a referent set
of promoters that can be further used for expression profiling or detecting
"shifting" (differentially used) promoters between different CAGE samples.
Returns the object in which the experiment consensusClusters
will
be occupied by a RangedSummarizedExperiment
containing the cluster
coordinates as row ranges, and their expression levels in the counts
and
normalized
assays. These genomic ranges are returned by the
consensusClustersGR
function and the whole object can be accessed with
the consensusClustersSE
function. The CTSS ranges of the
tagCountMatrix
experiment will gain a cluster
column indicating which
cluster they belong to. Lastly, the number of CTSS outside clusters will be
documented in the outOfClusters
column data.
Vanja Haberle
Charles Plessy
Other CAGEr object modifiers:
CTSStoGenes()
,
CustomConsensusClusters()
,
annotateCTSS()
,
cumulativeCTSSdistribution()
,
distclu()
,
getCTSS()
,
normalizeTagCount()
,
paraclu()
,
quantilePositions()
,
quickEnhancers()
,
resetCAGEexp()
,
summariseChrExpr()
Other CAGEr clusters functions:
CTSScumulativesTagClusters()
,
CustomConsensusClusters()
,
consensusClustersDESeq2()
,
consensusClustersGR()
,
cumulativeCTSSdistribution()
,
distclu()
,
paraclu()
,
plotInterquantileWidth()
,
quantilePositions()
,
tagClustersGR()
consensusClustersGR(exampleCAGEexp) ce <- aggregateTagClusters( exampleCAGEexp, tpmThreshold = 50 , excludeSignalBelowThreshold = FALSE, maxDist = 100) consensusClustersGR(ce) ce <- aggregateTagClusters( exampleCAGEexp, tpmThreshold = 50 , excludeSignalBelowThreshold = TRUE, maxDist = 100) consensusClustersGR(ce) ce <- aggregateTagClusters( exampleCAGEexp, tpmThreshold = 50 , excludeSignalBelowThreshold = TRUE, maxDist = 100 , qLow = 0.1, qUp = 0.9) consensusClustersGR(ce)
consensusClustersGR(exampleCAGEexp) ce <- aggregateTagClusters( exampleCAGEexp, tpmThreshold = 50 , excludeSignalBelowThreshold = FALSE, maxDist = 100) consensusClustersGR(ce) ce <- aggregateTagClusters( exampleCAGEexp, tpmThreshold = 50 , excludeSignalBelowThreshold = TRUE, maxDist = 100) consensusClustersGR(ce) ce <- aggregateTagClusters( exampleCAGEexp, tpmThreshold = 50 , excludeSignalBelowThreshold = TRUE, maxDist = 100 , qLow = 0.1, qUp = 0.9) consensusClustersGR(ce)
annotateCTSS
annotates the CTSS of a CAGEexp
object and computes
annotation statistics.
annotateConsensusClusters
annotates the consensus clusters
of a CAGEr object.
annotateCTSS(object, annot, upstream = 500, downstream = 500) ## S4 method for signature 'CAGEexp,GRanges' annotateCTSS(object, annot, upstream = 500, downstream = 500) ## S4 method for signature 'CAGEexp,TxDb' annotateCTSS(object, annot) annotateTagClusters(object, annot, upstream = 500, downstream = 500) ## S4 method for signature 'CAGEexp,GRanges' annotateTagClusters(object, annot, upstream = 500, downstream = 500) ## S4 method for signature 'CAGEexp,TxDb' annotateTagClusters(object, annot) annotateConsensusClusters(object, annot, upstream = 500, downstream = 500) ## S4 method for signature 'CAGEexp,GRanges' annotateConsensusClusters(object, annot, upstream = 500, downstream = 500) ## S4 method for signature 'CAGEexp,TxDb' annotateConsensusClusters(object, annot)
annotateCTSS(object, annot, upstream = 500, downstream = 500) ## S4 method for signature 'CAGEexp,GRanges' annotateCTSS(object, annot, upstream = 500, downstream = 500) ## S4 method for signature 'CAGEexp,TxDb' annotateCTSS(object, annot) annotateTagClusters(object, annot, upstream = 500, downstream = 500) ## S4 method for signature 'CAGEexp,GRanges' annotateTagClusters(object, annot, upstream = 500, downstream = 500) ## S4 method for signature 'CAGEexp,TxDb' annotateTagClusters(object, annot) annotateConsensusClusters(object, annot, upstream = 500, downstream = 500) ## S4 method for signature 'CAGEexp,GRanges' annotateConsensusClusters(object, annot, upstream = 500, downstream = 500) ## S4 method for signature 'CAGEexp,TxDb' annotateConsensusClusters(object, annot)
object |
|
annot |
A |
upstream |
Number of bases upstream the start of the transcript models to be considered as part of the promoter region. |
downstream |
Number of bases downstream the start of the transcript models to be considered as part of the promoter region. |
If the annotation is a GRanges
, gene names will be extracted from the
gene_name
metadata, the transcript_type
metadata will be used to filter
out entries that do not have promoters (such as immunogloblulin VDJ segments),
and the type
metadata is used to extract positions of introns and exons.
annotateCTSS
returns the input object with the following
modifications:
The Genomic Ranges of the tagCountMatrix
experiment gains an
annotation
metadata column, with levels such as promoter
,
exon
, intron
and unknown
. If the annotation has a gene_name
metadata, then a genes
column is also added, with gene symbols from
the annotation.
The sample metadata gets new columns, indicating total counts in each of
the annotation levels. If the annotation has a gene_name
metadata, then
a genes
column is added to indicate the number of different gene symbols
detected.
annotateTagClusters
returns the input object with the same
modifications as above.
annotateConsensusClusters
returns the input object with the same
modifications as above.
Charles Plessy
CTSStoGenes
, and the exampleZv9_annot
example data.
Other CAGEr object modifiers:
CTSStoGenes()
,
CustomConsensusClusters()
,
aggregateTagClusters()
,
cumulativeCTSSdistribution()
,
distclu()
,
getCTSS()
,
normalizeTagCount()
,
paraclu()
,
quantilePositions()
,
quickEnhancers()
,
resetCAGEexp()
,
summariseChrExpr()
Other CAGEr annotation functions:
plotAnnot()
,
ranges2annot()
,
ranges2genes()
,
ranges2names()
annotateCTSS(exampleCAGEexp, exampleZv9_annot) colData(exampleCAGEexp) exampleCAGEexp <- annotateTagClusters(exampleCAGEexp, exampleZv9_annot) tagClustersGR(exampleCAGEexp, 1) annotateConsensusClusters(exampleCAGEexp, exampleZv9_annot) consensusClustersGR(exampleCAGEexp)
annotateCTSS(exampleCAGEexp, exampleZv9_annot) colData(exampleCAGEexp) exampleCAGEexp <- annotateTagClusters(exampleCAGEexp, exampleZv9_annot) tagClustersGR(exampleCAGEexp, 1) annotateConsensusClusters(exampleCAGEexp, exampleZv9_annot) consensusClustersGR(exampleCAGEexp)
Converts from BAM to CTSS
bam2CTSS(gr, removeFirstG, correctSystematicG, genome)
bam2CTSS(gr, removeFirstG, correctSystematicG, genome)
gr |
A |
removeFirstG |
See getCTSS(). |
correctSystematicG |
See getCTSS(). |
genome |
See coerceInBSgenome(). |
Converts genomic ranges representing SAM/BAM alignments into a CTSS object.
Returns a CTSS
object.
Other loadFileIntoGPos:
import.CTSS()
,
import.bam()
,
import.bam.ctss()
,
import.bedCTSS()
,
import.bedScore()
,
import.bedmolecule()
,
loadFileIntoGPos()
,
moleculesGR2CTSS()
The CAGEr
class is a MultiAssayExperiment
object containing all data
and metadata about a set of CAGE libraries. It replaced the CAGEset class
in 2017. The main difference is that the expression data is stored
in DataFrame
objects of Rle
-encoded expression values, instead of plain
data.frame
s. With large datasets, this saves considerable amounts of memory.
If genomeName
is NULL
, checks of chromosome names will be
disabled and G-correction will not be possible. See
https://support.bioconductor.org/p/86437/ for an example on how to create a
BSgenome package.
Sample labels must be syntactically valid in the sense of the make.names()
function, because they will be used as column names in some tables.
metadata
A list that must at least contain a genomeName
member.
pathsToInputFiles <- list.files( system.file("extdata", package = "CAGEr") , "ctss$" , full.names = TRUE) sampleLabels <- sub( ".chr17.ctss", "", basename(pathsToInputFiles)) # The CAGEexp object can be created using specific constructor commands exampleCAGEexp <- CAGEexp( genomeName = "BSgenome.Drerio.UCSC.danRer7" , inputFiles = pathsToInputFiles , inputFilesType = "ctss" , sampleLabels = sub( ".chr17.ctss", "", basename(pathsToInputFiles))) # Alternatively, it can be created just like another MultiAssayExperiment. # This is useful when providing pre-existing colData with many columns. exampleCAGEexp <- CAGEexp( metadata = list(genomeName = "BSgenome.Drerio.UCSC.danRer7") , colData = DataFrame( inputFiles = pathsToInputFiles , sampleLabels = sampleLabels , inputFilesType = "ctss" , row.names = sampleLabels)) # Expression data is loaded by the getCTSS() function, that also calculates # library sizes and store them in the object's column data. exampleCAGEexp <- getCTSS(exampleCAGEexp) librarySizes(exampleCAGEexp) colData(exampleCAGEexp) # CTSS data is stored internally as a SummarizedExperiemnt that can be retreived # as a whole, or as GRanges, or as an expression DataFrame. CTSStagCountSE(exampleCAGEexp) CTSScoordinatesGR(exampleCAGEexp) CTSStagCountDF(exampleCAGEexp) # Columns of the "colData" table are accessible directly via the "$" operator. exampleCAGEexp$l1 <- CTSStagCountDF(exampleCAGEexp) |> sapply ( \(col) sum(col > 0) ) exampleCAGEexp$l1
pathsToInputFiles <- list.files( system.file("extdata", package = "CAGEr") , "ctss$" , full.names = TRUE) sampleLabels <- sub( ".chr17.ctss", "", basename(pathsToInputFiles)) # The CAGEexp object can be created using specific constructor commands exampleCAGEexp <- CAGEexp( genomeName = "BSgenome.Drerio.UCSC.danRer7" , inputFiles = pathsToInputFiles , inputFilesType = "ctss" , sampleLabels = sub( ".chr17.ctss", "", basename(pathsToInputFiles))) # Alternatively, it can be created just like another MultiAssayExperiment. # This is useful when providing pre-existing colData with many columns. exampleCAGEexp <- CAGEexp( metadata = list(genomeName = "BSgenome.Drerio.UCSC.danRer7") , colData = DataFrame( inputFiles = pathsToInputFiles , sampleLabels = sampleLabels , inputFilesType = "ctss" , row.names = sampleLabels)) # Expression data is loaded by the getCTSS() function, that also calculates # library sizes and store them in the object's column data. exampleCAGEexp <- getCTSS(exampleCAGEexp) librarySizes(exampleCAGEexp) colData(exampleCAGEexp) # CTSS data is stored internally as a SummarizedExperiemnt that can be retreived # as a whole, or as GRanges, or as an expression DataFrame. CTSStagCountSE(exampleCAGEexp) CTSScoordinatesGR(exampleCAGEexp) CTSStagCountDF(exampleCAGEexp) # Columns of the "colData" table are accessible directly via the "$" operator. exampleCAGEexp$l1 <- CTSStagCountDF(exampleCAGEexp) |> sapply ( \(col) sum(col > 0) ) exampleCAGEexp$l1
CAGEr is in the transition towards using the BiocParallel for multicore parallelisation. On Windows platforms, the multicore support is disabled transparently, that is, attempts to use multiple cores are silently ignored.
CAGEr_Multicore(useMulticore = FALSE, nrCores = NULL)
CAGEr_Multicore(useMulticore = FALSE, nrCores = NULL)
useMulticore |
TRUE or FALSE |
nrCores |
number of cores to use (leave |
Returns either a MulticoreParam
object or a
SerialParam
object.
Charles Plessy
CAGEr:::CAGEr_Multicore() CAGEr:::CAGEr_Multicore(TRUE,) CAGEr:::CAGEr_Multicore(TRUE, 2) CAGEr:::CAGEr_Multicore(FALSE, 2)
CAGEr:::CAGEr_Multicore() CAGEr:::CAGEr_Multicore(TRUE,) CAGEr:::CAGEr_Multicore(TRUE, 2) CAGEr:::CAGEr_Multicore(FALSE, 2)
The CAGEr package provides one class of objects to load, contain and
process CAGE data: the CAGEexp
class, introduced 2017, which is based on the
MultiAssayExperiment
class. In comparison with the original CAGEset
class (removed in 2021) CAGEexp
objects benefit from a a more efficient data storage, using
DataFrame
s of run-length-encoded (Rle
) integers, allowing for the
loading and use of much larger transcriptome datasets.
Haberle V, Forrest ARR, Hayashizaki Y, Carninci P and Lenhard B (2015). “CAGEr: precise TSS data retrieval and high-resolution promoterome mining for integrative analyses.” Nucleic Acids Research, 43, pp. e51., http://nar.oxfordjournals.org/content/43/8/e51
A private (non-exported) function to discard any range that is not compatible with the CAGEr object's BSgenome.
coerceInBSgenome(gr, genome)
coerceInBSgenome(gr, genome)
gr |
The genomic ranges to coerce. |
genome |
The name of a BSgenome package, which must me installed,
or |
A GRanges object in which every range is guaranteed to be compatible with the given BSgenome object. The sequnames of the GRanges are also set accordingly to the BSgenome.
The ConsensusClusters
class represents consensus clusters.
It is used internally by CAGEr for type safety.
Consensus clusters must not overlap, so that a single TSS in the genome can only be attributed to a single cluster.
Set the information on consensus clusters in a CAGEr
object.
consensusClustersSE(object) <- value ## S4 replacement method for signature 'CAGEexp,RangedSummarizedExperiment' consensusClustersSE(object) <- value consensusClustersGR(object) <- value ## S4 replacement method for signature 'CAGEexp' consensusClustersGR(object) <- value
consensusClustersSE(object) <- value ## S4 replacement method for signature 'CAGEexp,RangedSummarizedExperiment' consensusClustersSE(object) <- value consensusClustersGR(object) <- value ## S4 replacement method for signature 'CAGEexp' consensusClustersGR(object) <- value
object |
A |
value |
A |
These setter methods are mostly for internal use, but are exported in case they may be useful to advanced users.
Vanja Haberle
Charles Plessy
Creates a DESeqDataSet
using the consensus cluster expression
data in the experiment slot consensusClusters
and the sample metadata
of the CAGEexp
object. The formula must be built using factors
already present in the sample metadata.
consensusClustersDESeq2(object, design) ## S4 method for signature 'CAGEexp' consensusClustersDESeq2(object, design)
consensusClustersDESeq2(object, design) ## S4 method for signature 'CAGEexp' consensusClustersDESeq2(object, design)
object |
A CAGEexp object. |
design |
A formula for the DESeq2 analysis. |
Charles Plessy
DESeqDataSet
in the DESeq2
package.
Other CAGEr clusters functions:
CTSScumulativesTagClusters()
,
CustomConsensusClusters()
,
aggregateTagClusters()
,
consensusClustersGR()
,
cumulativeCTSSdistribution()
,
distclu()
,
paraclu()
,
plotInterquantileWidth()
,
quantilePositions()
,
tagClustersGR()
exampleCAGEexp$group <- c("a", "a", "b", "b", "a") consensusClustersDESeq2(exampleCAGEexp, ~group)
exampleCAGEexp$group <- c("a", "a", "b", "b", "a") consensusClustersDESeq2(exampleCAGEexp, ~group)
Extracts the information on consensus clusters from a CAGEr
object.
consensusClustersGR(object, sample = NULL, qLow = NULL, qUp = NULL) ## S4 method for signature 'CAGEexp' consensusClustersGR(object, sample = NULL, qLow = NULL, qUp = NULL) consensusClustersSE(object) ## S4 method for signature 'CAGEexp' consensusClustersSE(object)
consensusClustersGR(object, sample = NULL, qLow = NULL, qUp = NULL) ## S4 method for signature 'CAGEexp' consensusClustersGR(object, sample = NULL, qLow = NULL, qUp = NULL) consensusClustersSE(object) ## S4 method for signature 'CAGEexp' consensusClustersSE(object)
object |
A |
sample |
Optional. Label of the CAGE dataset (experiment, sample) for which to extract sample-specific information on consensus clusters. |
qLow , qUp
|
Lower and upper quantiles to compute interquantile width. |
consensusClustersGR
returns a ConsensusClusters
object, which
wraps the GRanges
class. The score
columns indicates the
normalised expression value of each cluster, either across all samples
(sample = NULL
), or for the selected sample. The legacy tpm
column may
be removed in the future. When sample
argument is
NOT specified, total CAGE signal across all CAGE datasets (samples) is
returned in the tpm
column. When sample
argument is specified, the tpm
column contains CAGE signal of consensus clusters in that specific sample.
In addition, sample-specific information is returned, including position of
the dominant TSS, and (if applicable) interquantile width of the consensus
clusters in the specified sample or otherwise, sample-agnostic information is
returned.
consensusClustersSE
returns the SummarizedExperiment
stored
in the consensusClusters
experiment slot of the CAGEexp object.
Vanja Haberle
Charles Plessy
Other CAGEr accessor methods:
CTSScoordinatesGR()
,
CTSScumulativesTagClusters()
,
CTSSnormalizedTpmDF()
,
CTSStagCountDF()
,
GeneExpDESeq2()
,
GeneExpSE()
,
expressionClasses()
,
filteredCTSSidx()
,
genomeName()
,
inputFiles()
,
inputFilesType()
,
librarySizes()
,
sampleLabels()
,
seqNameTotalsSE()
,
tagClustersGR()
Other CAGEr clusters functions:
CTSScumulativesTagClusters()
,
CustomConsensusClusters()
,
aggregateTagClusters()
,
consensusClustersDESeq2()
,
cumulativeCTSSdistribution()
,
distclu()
,
paraclu()
,
plotInterquantileWidth()
,
quantilePositions()
,
tagClustersGR()
consensusClustersGR( exampleCAGEexp, sample = 2 , qLow = 0.1, qUp = 0.9)
consensusClustersGR( exampleCAGEexp, sample = 2 , qLow = 0.1, qUp = 0.9)
Accessors for consensus cluster quantile data in CAGEr objects.
consensusClustersQuantileLow(object, samples = NULL) ## S4 method for signature 'CAGEexp' consensusClustersQuantileLow(object, samples = NULL) consensusClustersQuantileUp(object, samples = NULL) ## S4 method for signature 'CAGEexp' consensusClustersQuantileUp(object, samples = NULL) consensusClustersQuantile(object, sample = NULL, q) ## S4 method for signature 'CAGEexp' consensusClustersQuantile(object, sample = NULL, q) consensusClustersQuantileLow(object, samples = NULL) <- value consensusClustersQuantileUp(object, samples = NULL) <- value
consensusClustersQuantileLow(object, samples = NULL) ## S4 method for signature 'CAGEexp' consensusClustersQuantileLow(object, samples = NULL) consensusClustersQuantileUp(object, samples = NULL) ## S4 method for signature 'CAGEexp' consensusClustersQuantileUp(object, samples = NULL) consensusClustersQuantile(object, sample = NULL, q) ## S4 method for signature 'CAGEexp' consensusClustersQuantile(object, sample = NULL, q) consensusClustersQuantileLow(object, samples = NULL) <- value consensusClustersQuantileUp(object, samples = NULL) <- value
object |
A |
samples |
Sample name(s), number(s) or |
sample |
A single sample name or number, or |
q |
A quantile. |
value |
A list (one entry per sample) of data frames with multiple columns:
|
Extracts a table with normalized CAGE tag values for consensus
clusters across all samples from a CAGEr
object.
consensusClustersTpm(object) ## S4 method for signature 'CAGEexp' consensusClustersTpm(object)
consensusClustersTpm(object) ## S4 method for signature 'CAGEexp' consensusClustersTpm(object)
object |
A CAGEr object. |
Returns the matrix
of normalized expression values of CAGE clusters
across all samples.
Vanja Haberle
Other CAGEr clustering methods:
distclu()
,
paraclu()
head(consensusClustersTpm(exampleCAGEexp))
head(consensusClustersTpm(exampleCAGEexp))
The CTSS
class represents CAGE transcription start sites (CTSS) at
single-nucleotide resolution, using GenomicRanges::UnstitchedGPos
as base
class. It is used by CAGEr for type safety.
The CTSS
constructor takes the same arguments as GenomicRanges::GPos
,
plus bsgenomeName
, and minus stitch
, which is hardcoded to FALSE
.
## S4 method for signature 'CTSS' show(object) ## S4 method for signature 'CTSS' initialize(.Object, ..., bsgenomeName = NULL) CTSS( seqnames = NULL, pos = NULL, strand = NULL, ..., seqinfo = NULL, seqlengths = NULL, bsgenomeName = NULL ) ## S4 method for signature 'CTSS,GRanges' coerce(from, to = "GRanges", strict = TRUE) ## S4 method for signature 'GRanges,CTSS' coerce(from, to = "CTSS", strict = TRUE)
## S4 method for signature 'CTSS' show(object) ## S4 method for signature 'CTSS' initialize(.Object, ..., bsgenomeName = NULL) CTSS( seqnames = NULL, pos = NULL, strand = NULL, ..., seqinfo = NULL, seqlengths = NULL, bsgenomeName = NULL ) ## S4 method for signature 'CTSS,GRanges' coerce(from, to = "GRanges", strict = TRUE) ## S4 method for signature 'GRanges,CTSS' coerce(from, to = "CTSS", strict = TRUE)
object |
See |
.Object |
See |
bsgenomeName |
String containing the name of a BSgenome package. |
seqnames , pos , strand , seqinfo , seqlengths , ...
|
See the documentation
of |
from , to , strict
|
See |
The genomeName
element of the metadata
slot is used to store the
name of the BSgenome package used when constructing the CAGEr
object.
Coercion from GRanges
to CTSS
loses information, but it seems
to be fine, since other coercions like as(1.2, "integer")
do the same.
Charles Plessy
# Convert an UnstitchedGPos object using the new() constructor. gp <- GPos("chr1:2:-", stitch = FALSE) ctss <- new("CTSS", gp, bsgenomeName = "BSgenome.Drerio.UCSC.danRer7") genomeName(ctss) # Create a new object using the CTSS() constructor. CTSS("chr1", 2, "-", bsgenomeName = "BSgenome.Drerio.UCSC.danRer7") # Coerce CTSS to GRanges as(ctss, "GRanges") # Coerce a GRanges object to CTSS using the as() method. gr <- GRanges("chr1:1-10:-") gr$seq <- "AAAAAAAAAA" seqlengths(gr) <- 100 genome(gr) <- "foo" as(gr, "CTSS") identical(seqinfo(gr), seqinfo(as(gr, "CTSS"))) as(as(gr, "CTSS"), "CTSS") # Make sure it works twice in a row
# Convert an UnstitchedGPos object using the new() constructor. gp <- GPos("chr1:2:-", stitch = FALSE) ctss <- new("CTSS", gp, bsgenomeName = "BSgenome.Drerio.UCSC.danRer7") genomeName(ctss) # Create a new object using the CTSS() constructor. CTSS("chr1", 2, "-", bsgenomeName = "BSgenome.Drerio.UCSC.danRer7") # Coerce CTSS to GRanges as(ctss, "GRanges") # Coerce a GRanges object to CTSS using the as() method. gr <- GRanges("chr1:1-10:-") gr$seq <- "AAAAAAAAAA" seqlengths(gr) <- 100 genome(gr) <- "foo" as(gr, "CTSS") identical(seqinfo(gr), seqinfo(as(gr, "CTSS"))) as(as(gr, "CTSS"), "CTSS") # Make sure it works twice in a row
CAGEr
objectExtracts the genomic coordinates of all detected TSSs from CAGEexp objects.
CTSScoordinatesGR(object) ## S4 method for signature 'CAGEexp' CTSScoordinatesGR(object) CTSScoordinatesGR(object) <- value ## S4 replacement method for signature 'CAGEexp' CTSScoordinatesGR(object) <- value CTSStagCountSE(object) <- value ## S4 replacement method for signature 'CAGEexp' CTSStagCountSE(object) <- value
CTSScoordinatesGR(object) ## S4 method for signature 'CAGEexp' CTSScoordinatesGR(object) CTSScoordinatesGR(object) <- value ## S4 replacement method for signature 'CAGEexp' CTSScoordinatesGR(object) <- value CTSStagCountSE(object) <- value ## S4 replacement method for signature 'CAGEexp' CTSStagCountSE(object) <- value
object |
A |
value |
Coordinates to update, in a format according to the function name. |
CTSScoordinatesGR
returns the coordinates as a CTSS()
object
wrapping genomic ranges. A filteredCTSSidx
column metadata will be present
if filterLowExpCTSS
was ran earlier.
Vanja Haberle
Charles Plessy
Other CAGEr accessor methods:
CTSScumulativesTagClusters()
,
CTSSnormalizedTpmDF()
,
CTSStagCountDF()
,
GeneExpDESeq2()
,
GeneExpSE()
,
consensusClustersGR()
,
expressionClasses()
,
filteredCTSSidx()
,
genomeName()
,
inputFiles()
,
inputFilesType()
,
librarySizes()
,
sampleLabels()
,
seqNameTotalsSE()
,
tagClustersGR()
CTSScoordinatesGR(exampleCAGEexp) CTSScoordinatesGR(exampleCAGEexp)
CTSScoordinatesGR(exampleCAGEexp) CTSScoordinatesGR(exampleCAGEexp)
Accessor function.
CTSScumulativesTagClusters(object, samples = NULL) ## S4 method for signature 'CAGEexp' CTSScumulativesTagClusters(object, samples = NULL) CTSScumulativesCC(object, samples = NULL) ## S4 method for signature 'CAGEexp' CTSScumulativesCC(object, samples = NULL) CTSScumulativesTagClusters(object) <- value ## S4 replacement method for signature 'CAGEexp' CTSScumulativesTagClusters(object) <- value
CTSScumulativesTagClusters(object, samples = NULL) ## S4 method for signature 'CAGEexp' CTSScumulativesTagClusters(object, samples = NULL) CTSScumulativesCC(object, samples = NULL) ## S4 method for signature 'CAGEexp' CTSScumulativesCC(object, samples = NULL) CTSScumulativesTagClusters(object) <- value ## S4 replacement method for signature 'CAGEexp' CTSScumulativesTagClusters(object) <- value
object |
A |
samples |
One or more valid sample names. |
value |
CTSScumulativesTagClusters data |
List of numeric Rle.
Other CAGEr clusters functions:
CustomConsensusClusters()
,
aggregateTagClusters()
,
consensusClustersDESeq2()
,
consensusClustersGR()
,
cumulativeCTSSdistribution()
,
distclu()
,
paraclu()
,
plotInterquantileWidth()
,
quantilePositions()
,
tagClustersGR()
Other CAGEr accessor methods:
CTSScoordinatesGR()
,
CTSSnormalizedTpmDF()
,
CTSStagCountDF()
,
GeneExpDESeq2()
,
GeneExpSE()
,
consensusClustersGR()
,
expressionClasses()
,
filteredCTSSidx()
,
genomeName()
,
inputFiles()
,
inputFilesType()
,
librarySizes()
,
sampleLabels()
,
seqNameTotalsSE()
,
tagClustersGR()
Extracts the normalized CAGE signal for all detected TSSs
in all CAGE datasets from CAGEexp
objects.
CTSSnormalizedTpmDF(object) ## S4 method for signature 'CAGEexp' CTSSnormalizedTpmDF(object) CTSSnormalizedTpmGR(object, samples) ## S4 method for signature 'CAGEexp' CTSSnormalizedTpmGR(object, samples)
CTSSnormalizedTpmDF(object) ## S4 method for signature 'CAGEexp' CTSSnormalizedTpmDF(object) CTSSnormalizedTpmGR(object, samples) ## S4 method for signature 'CAGEexp' CTSSnormalizedTpmGR(object, samples)
object |
A |
samples |
The name of sample(s) as reported by |
CTSSnormalizedTpmDF
returns a DataFrame
of normalised expression values.
Vanja Haberle
Charles Plessy
Other CAGEr accessor methods:
CTSScoordinatesGR()
,
CTSScumulativesTagClusters()
,
CTSStagCountDF()
,
GeneExpDESeq2()
,
GeneExpSE()
,
consensusClustersGR()
,
expressionClasses()
,
filteredCTSSidx()
,
genomeName()
,
inputFiles()
,
inputFilesType()
,
librarySizes()
,
sampleLabels()
,
seqNameTotalsSE()
,
tagClustersGR()
CTSSnormalizedTpmDF(exampleCAGEexp) CTSSnormalizedTpmGR(exampleCAGEexp, 1) exampleCAGEexp |> CTSSnormalizedTpmGR("all")
CTSSnormalizedTpmDF(exampleCAGEexp) CTSSnormalizedTpmGR(exampleCAGEexp, 1) exampleCAGEexp |> CTSSnormalizedTpmGR("all")
Extracts the tag count for all detected TSSs in all CAGE datasets
from CAGEexp
objects.
CTSStagCountDF(object) ## S4 method for signature 'CAGEexp' CTSStagCountDF(object) CTSStagCountGR(object, samples) ## S4 method for signature 'CAGEexp' CTSStagCountGR(object, samples) CTSStagCountSE(object) ## S4 method for signature 'CAGEexp' CTSStagCountSE(object)
CTSStagCountDF(object) ## S4 method for signature 'CAGEexp' CTSStagCountDF(object) CTSStagCountGR(object, samples) ## S4 method for signature 'CAGEexp' CTSStagCountGR(object, samples) CTSStagCountSE(object) ## S4 method for signature 'CAGEexp' CTSStagCountSE(object)
object |
A |
samples |
For |
Returns an object with number of CAGE tags supporting each TSS (rows) in every CAGE dataset (columns). The class of the object depends on the function being called:
CTSStagCountSE
: A RangedSummarizedExperiment
containing a
DataFrameof
Rle' integers.
CTSStagCountGR
: A CTSS
object (wrapping GRanges
) containing a score
column indicating expression values for a given sample, or a
GRangesList
of CTSS
objects.
Vanja Haberle
Charles Plessy
Other CAGEr accessor methods:
CTSScoordinatesGR()
,
CTSScumulativesTagClusters()
,
CTSSnormalizedTpmDF()
,
GeneExpDESeq2()
,
GeneExpSE()
,
consensusClustersGR()
,
expressionClasses()
,
filteredCTSSidx()
,
genomeName()
,
inputFiles()
,
inputFilesType()
,
librarySizes()
,
sampleLabels()
,
seqNameTotalsSE()
,
tagClustersGR()
CTSStagCountDF(exampleCAGEexp) CTSStagCountGR(exampleCAGEexp, 1) CTSStagCountGR(exampleCAGEexp, "all") CTSStagCountSE(exampleCAGEexp)
CTSStagCountDF(exampleCAGEexp) CTSStagCountGR(exampleCAGEexp, 1) CTSStagCountGR(exampleCAGEexp, "all") CTSStagCountSE(exampleCAGEexp)
Add a gene expression table in the GeneExpSE
experiment slot of an
annotated CAGEexp
object.
CTSStoGenes(object) ## S4 method for signature 'CAGEexp' CTSStoGenes(object)
CTSStoGenes(object) ## S4 method for signature 'CAGEexp' CTSStoGenes(object)
object |
A |
The input object with the following modifications:
A new geneExpMatrix
experiment containing gene expression levels as
a SummarizedExperiment
object with one assay called counts
, which
is plain matrix
of integers. (This plays better than Rle DataFrames
when interfacing with downstream packages like DESeq2, and since the number of
genes is limited, a matrix
will not cause problems of performance.)
New genes
column data added, indicating total number of gene symbols
detected per library.
New unannotated
column data added, indicating for each sample the
number of counts that did not overlap with a known gene.
Charles Plessy
Other CAGEr object modifiers:
CustomConsensusClusters()
,
aggregateTagClusters()
,
annotateCTSS()
,
cumulativeCTSSdistribution()
,
distclu()
,
getCTSS()
,
normalizeTagCount()
,
paraclu()
,
quantilePositions()
,
quickEnhancers()
,
resetCAGEexp()
,
summariseChrExpr()
Other CAGEr gene expression analysis functions:
GeneExpDESeq2()
,
ranges2genes()
CTSStoGenes(exampleCAGEexp) all( librarySizes(exampleCAGEexp) - colSums(SummarizedExperiment::assay(GeneExpSE(exampleCAGEexp))) == exampleCAGEexp$unannotated)
CTSStoGenes(exampleCAGEexp) all( librarySizes(exampleCAGEexp) - colSums(SummarizedExperiment::assay(GeneExpSE(exampleCAGEexp))) == exampleCAGEexp$unannotated)
Calculates the cumulative sum of normalised CAGE counts along each tag cluster or consensus cluster in every sample within a CAGEr object.
cumulativeCTSSdistribution( object, clusters = c("tagClusters", "consensusClusters"), useMulticore = FALSE, nrCores = NULL ) ## S4 method for signature 'CAGEexp' cumulativeCTSSdistribution( object, clusters = c("tagClusters", "consensusClusters"), useMulticore = FALSE, nrCores = NULL )
cumulativeCTSSdistribution( object, clusters = c("tagClusters", "consensusClusters"), useMulticore = FALSE, nrCores = NULL ) ## S4 method for signature 'CAGEexp' cumulativeCTSSdistribution( object, clusters = c("tagClusters", "consensusClusters"), useMulticore = FALSE, nrCores = NULL )
object |
A |
clusters |
|
useMulticore |
Logical, should multicore be used.
|
nrCores |
Number of cores to use when |
In CAGEexp
objects, cumulative sums for the tag clusters are
stored in the metadata slot using the RleList
class. For consensus
clusters, they are stored in assays of the consensusClusters
experiment
slot of the CAGEexp
object.
Vanja Haberle
Charles Plessy
Other CAGEr object modifiers:
CTSStoGenes()
,
CustomConsensusClusters()
,
aggregateTagClusters()
,
annotateCTSS()
,
distclu()
,
getCTSS()
,
normalizeTagCount()
,
paraclu()
,
quantilePositions()
,
quickEnhancers()
,
resetCAGEexp()
,
summariseChrExpr()
Other CAGEr clusters functions:
CTSScumulativesTagClusters()
,
CustomConsensusClusters()
,
aggregateTagClusters()
,
consensusClustersDESeq2()
,
consensusClustersGR()
,
distclu()
,
paraclu()
,
plotInterquantileWidth()
,
quantilePositions()
,
tagClustersGR()
cumulativeCTSSdistribution(exampleCAGEexp, clusters = "tagClusters") CTSScumulativesTagClusters(exampleCAGEexp)[[1]][1:6] cumulativeCTSSdistribution(exampleCAGEexp, clusters = "consensusClusters") CTSScumulativesCC(exampleCAGEexp)[[1]][1:6]
cumulativeCTSSdistribution(exampleCAGEexp, clusters = "tagClusters") CTSScumulativesTagClusters(exampleCAGEexp)[[1]][1:6] cumulativeCTSSdistribution(exampleCAGEexp, clusters = "consensusClusters") CTSScumulativesCC(exampleCAGEexp)[[1]][1:6]
Intersects custom consensus clusters with the CTSS data in a
CAGEexp
object, and stores the result as a expression matrices
(raw and normalised tag counts).
CustomConsensusClusters( object, clusters, threshold = 0, nrPassThreshold = 1, thresholdIsTpm = TRUE ) ## S4 method for signature 'CAGEexp,GRanges' CustomConsensusClusters( object, clusters, threshold = 0, nrPassThreshold = 1, thresholdIsTpm = TRUE )
CustomConsensusClusters( object, clusters, threshold = 0, nrPassThreshold = 1, thresholdIsTpm = TRUE ) ## S4 method for signature 'CAGEexp,GRanges' CustomConsensusClusters( object, clusters, threshold = 0, nrPassThreshold = 1, thresholdIsTpm = TRUE )
object |
A |
clusters |
Consensus clusters in |
threshold , nrPassThreshold
|
Only CTSSs with signal |
thresholdIsTpm |
Logical, is threshold raw tag count value (FALSE) or normalized signal (TRUE). |
Consensus clusters must not overlap, so that a single base of the
genome can only be attributed to a single cluster. This is enforced by the
.ConsensusClusters
constructor.
stores the result as a new RangedSummarizedExperiment
in the
experiment
slot of the object. The assays of the new experiment are called
counts
and normalized
. An outOfClusters
column is added
to the sample metadata to reflect the number of molecules that do not have
their TSS in a consensus cluster.
Charles Plessy
Other CAGEr object modifiers:
CTSStoGenes()
,
aggregateTagClusters()
,
annotateCTSS()
,
cumulativeCTSSdistribution()
,
distclu()
,
getCTSS()
,
normalizeTagCount()
,
paraclu()
,
quantilePositions()
,
quickEnhancers()
,
resetCAGEexp()
,
summariseChrExpr()
Other CAGEr clusters functions:
CTSScumulativesTagClusters()
,
aggregateTagClusters()
,
consensusClustersDESeq2()
,
consensusClustersGR()
,
cumulativeCTSSdistribution()
,
distclu()
,
paraclu()
,
plotInterquantileWidth()
,
quantilePositions()
,
tagClustersGR()
cc <- consensusClustersGR(exampleCAGEexp) CustomConsensusClusters(exampleCAGEexp, cc)
cc <- consensusClustersGR(exampleCAGEexp) CustomConsensusClusters(exampleCAGEexp, cc)
The "distclu"
method is an implementation of simple distance-based
clustering of data attached to sequences, where two neighbouring TSSs are
joined together if they are closer than some specified distance (see
GenomicRanges::reduce
for implementation details.
distclu(object, maxDist = 20, keepSingletonsAbove = 0) ## S4 method for signature 'SummarizedExperiment' distclu(object, maxDist = 20, keepSingletonsAbove = 0) ## S4 method for signature 'CTSS' distclu(object, maxDist = 20, keepSingletonsAbove = 0) ## S4 method for signature 'CAGEexp' distclu(object, maxDist = 20, keepSingletonsAbove = 0)
distclu(object, maxDist = 20, keepSingletonsAbove = 0) ## S4 method for signature 'SummarizedExperiment' distclu(object, maxDist = 20, keepSingletonsAbove = 0) ## S4 method for signature 'CTSS' distclu(object, maxDist = 20, keepSingletonsAbove = 0) ## S4 method for signature 'CAGEexp' distclu(object, maxDist = 20, keepSingletonsAbove = 0)
object |
The |
maxDist |
Maximal distance between two neighbouring CTSSs for them to be part of the same cluster. |
keepSingletonsAbove |
Remove "singleton" tag clusters of width 1 with
signal |
Clustering is done for every CAGE dataset within the CAGEr object separately,
resulting in a different set of tag clusters for every CAGE dataset. TCs from
different datasets can further be aggregated into a single referent set of
consensus clusters by calling the aggregateTagClusters
function.
For CTSS
input, a TagClusters
object, for
SummarizedExperiment
input, a GRangesList
of TagClusters
objects,
and for CAGEexp
input, a modified object containing the tag clusters
stored as a GRangesList
of TagClusters
objects in its metadata slot
tagClusters
.
Vanja Haberle
Charles Plessy
Other CAGEr clustering methods:
consensusClustersTpm()
,
paraclu()
Other CAGEr object modifiers:
CTSStoGenes()
,
CustomConsensusClusters()
,
aggregateTagClusters()
,
annotateCTSS()
,
cumulativeCTSSdistribution()
,
getCTSS()
,
normalizeTagCount()
,
paraclu()
,
quantilePositions()
,
quickEnhancers()
,
resetCAGEexp()
,
summariseChrExpr()
Other CAGEr clusters functions:
CTSScumulativesTagClusters()
,
CustomConsensusClusters()
,
aggregateTagClusters()
,
consensusClustersDESeq2()
,
consensusClustersGR()
,
cumulativeCTSSdistribution()
,
paraclu()
,
plotInterquantileWidth()
,
quantilePositions()
,
tagClustersGR()
distclu(CTSSnormalizedTpmGR(exampleCAGEexp, 1)[1:10]) distclu(CTSStagCountSE(exampleCAGEexp)[1:25,]) ce <- distclu(exampleCAGEexp, maxDist = 20, keepSingletonsAbove = 100) tagClustersGR(ce, "Zf.30p.dome")
distclu(CTSSnormalizedTpmGR(exampleCAGEexp, 1)[1:10]) distclu(CTSStagCountSE(exampleCAGEexp)[1:25,]) ce <- distclu(exampleCAGEexp, maxDist = 20, keepSingletonsAbove = 100) tagClustersGR(ce, "Zf.30p.dome")
Lazy-loaded example CAGEexp object, containing most of the CAGEr data structures created with the CAGEr modifier functions.
exampleCAGEexp
exampleCAGEexp
A CAGEexp object.
## Not run: pathsToInputFiles <- list.files( system.file("extdata", package = "CAGEr") , "ctss$" , full.names = TRUE) sampleLabels <- sub( ".chr17.ctss", "", basename(pathsToInputFiles)) exampleCAGEexp <- CAGEexp( genomeName = "BSgenome.Drerio.UCSC.danRer7" , inputFiles = pathsToInputFiles , inputFilesType = "ctss" , sampleLabels = sub( ".chr17.ctss", "", basename(pathsToInputFiles))) exampleCAGEexp <- getCTSS(exampleCAGEexp) librarySizes(exampleCAGEexp) colData(exampleCAGEexp) exampleCAGEexp$l1 <- NULL exampleCAGEexp <- exampleCAGEexp[,c(5, 2, 1, 3, 4)] # Non-aplhabetic order may help catch bugs CTSStagCountSE(exampleCAGEexp) <- CTSStagCountSE(exampleCAGEexp)[1:5000,] # Slim the object exampleCAGEexp$librarySizes <- sapply(CTSStagCountDF(exampleCAGEexp), sum) # Repair metadata exampleCAGEexp <- summariseChrExpr(exampleCAGEexp) |> annotateCTSS(exampleZv9_annot) |> CTSStoGenes() |> normalizeTagCount() |> getExpressionProfiles("CTSS") |> filterLowExpCTSS() |> distclu() |> annotateTagClusters(exampleZv9_annot) |> cumulativeCTSSdistribution("tagClusters") |> quantilePositions("tagClusters") |> aggregateTagClusters() |> annotateConsensusClusters(exampleZv9_annot) |> cumulativeCTSSdistribution("consensusClusters") |> quantilePositions("consensusClusters") |> getExpressionProfiles("consensusClusters") |> scoreShift( groupX = c("Zf.unfertilized.egg") , groupY = "Zf.30p.dome" , testKS = TRUE, useTpmKS = FALSE) save(exampleCAGEexp, file = "data/exampleCAGEexp.RData", compress = "xz") ## End(Not run)
## Not run: pathsToInputFiles <- list.files( system.file("extdata", package = "CAGEr") , "ctss$" , full.names = TRUE) sampleLabels <- sub( ".chr17.ctss", "", basename(pathsToInputFiles)) exampleCAGEexp <- CAGEexp( genomeName = "BSgenome.Drerio.UCSC.danRer7" , inputFiles = pathsToInputFiles , inputFilesType = "ctss" , sampleLabels = sub( ".chr17.ctss", "", basename(pathsToInputFiles))) exampleCAGEexp <- getCTSS(exampleCAGEexp) librarySizes(exampleCAGEexp) colData(exampleCAGEexp) exampleCAGEexp$l1 <- NULL exampleCAGEexp <- exampleCAGEexp[,c(5, 2, 1, 3, 4)] # Non-aplhabetic order may help catch bugs CTSStagCountSE(exampleCAGEexp) <- CTSStagCountSE(exampleCAGEexp)[1:5000,] # Slim the object exampleCAGEexp$librarySizes <- sapply(CTSStagCountDF(exampleCAGEexp), sum) # Repair metadata exampleCAGEexp <- summariseChrExpr(exampleCAGEexp) |> annotateCTSS(exampleZv9_annot) |> CTSStoGenes() |> normalizeTagCount() |> getExpressionProfiles("CTSS") |> filterLowExpCTSS() |> distclu() |> annotateTagClusters(exampleZv9_annot) |> cumulativeCTSSdistribution("tagClusters") |> quantilePositions("tagClusters") |> aggregateTagClusters() |> annotateConsensusClusters(exampleZv9_annot) |> cumulativeCTSSdistribution("consensusClusters") |> quantilePositions("consensusClusters") |> getExpressionProfiles("consensusClusters") |> scoreShift( groupX = c("Zf.unfertilized.egg") , groupY = "Zf.30p.dome" , testKS = TRUE, useTpmKS = FALSE) save(exampleCAGEexp, file = "data/exampleCAGEexp.RData", compress = "xz") ## End(Not run)
Annotation data for zebrafish's chromosome 17's interval 26000000-54000000 (Zv9/danRer7 genome), to be used in documentation examples.
exampleZv9_annot
exampleZv9_annot
An object of class GRanges
of length 7467.
Data was retreived from ENSEMBL's Biomart server using a query to extract gene, transcripts and exon coordinates. For the record, here it is as URL (long, possibly overflowing).
http://mar2015.archive.ensembl.org/biomart/martview/78d86c1d6b4ef51568ba6d46f7d8b254?VIRTUALSCHEMANAME=default&ATTRIBUTES=drerio_gene_ensembl.default.structure.ensembl_gene_id|drerio_gene_ensembl.default.structure.ensembl_transcript_id|drerio_gene_ensembl.default.structure.start_position|drerio_gene_ensembl.default.structure.end_position|drerio_gene_ensembl.default.structure.transcript_start|drerio_gene_ensembl.default.structure.transcript_end|drerio_gene_ensembl.default.structure.strand|drerio_gene_ensembl.default.structure.chromosome_name|drerio_gene_ensembl.default.structure.external_gene_name|drerio_gene_ensembl.default.structure.gene_biotype|drerio_gene_ensembl.default.structure.exon_chrom_start|drerio_gene_ensembl.default.structure.exon_chrom_end|drerio_gene_ensembl.default.structure.is_constitutive|drerio_gene_ensembl.default.structure.rank&FILTERS=&VISIBLEPANEL=resultspanel
And here it is as XML.
<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE Query> <Query virtualSchemaName = "default" formatter = "TSV" header = "0" uniqueRows = "0" count = "" datasetConfigVersion = "0.6" > <Dataset name = "drerio_gene_ensembl" interface = "default" > <Attribute name = "ensembl_gene_id" /> <Attribute name = "ensembl_transcript_id" /> <Attribute name = "start_position" /> <Attribute name = "end_position" /> <Attribute name = "transcript_start" /> <Attribute name = "transcript_end" /> <Attribute name = "strand" /> <Attribute name = "chromosome_name" /> <Attribute name = "external_gene_name" /> <Attribute name = "gene_biotype" /> <Attribute name = "exon_chrom_start" /> <Attribute name = "exon_chrom_end" /> <Attribute name = "is_constitutive" /> <Attribute name = "rank" /> </Dataset> </Query>
The downloaded file was then transformed as follows.
x <- read.delim("~/Downloads/mart_export.txt", stringsAsFactors = FALSE) e <- GRanges(paste0("chr", x$Chromosome.Name), IRanges(x$Exon.Chr.Start..bp., x$Exon.Chr.End..bp.), ifelse(x$Strand + 1, "+", "-")) e$gene_name <- Rle(x$Associated.Gene.Name) e$transcript_type <- Rle(x$Gene.type) e$type <- "exon" e$type <- Rle(e$type) e <- GRanges(paste0("chr", x$Chromosome.Name), IRanges(x$Exon.Chr.Start..bp., x$Exon.Chr.End..bp.), ifelse(x$Strand + 1, "+", "-")) e$gene_name <- Rle(x$Associated.Gene.Name) e$transcript_type <- Rle(x$Gene.type) e$type <- "exon" e$type <- Rle(e$type) e <- sort(unique(e)) g <- GRanges( paste0("chr", x$Chromosome.Name) , IRanges(x$Gene.Start..bp., x$Gene.End..bp.) , ifelse( x$Strand + 1, "+", "-")) g$gene_name <- Rle(x$Associated.Gene.Name) g$transcript_type <- Rle(x$Gene.type) g$type <- "gene" g$type <- Rle(g$type) g <- sort(unique(g)) t <- GRanges( paste0("chr", x$Chromosome.Name) , IRanges(x$Transcript.Start..bp., x$Transcript.End..bp.) , ifelse( x$Strand + 1, "+", "-")) t$gene_name <- Rle(x$Associated.Gene.Name) t$transcript_type <- Rle(x$Gene.type) t$type <- "transcript" t$type <- Rle(t$type) t <- sort(unique(t)) gff <- sort(c(g, t, e)) gff <- gff[seqnames(gff) == "chr17"] gff <- gff[start(gff) > 26000000 & end(gff) < 54000000] seqlevels(gff) <- seqlevelsInUse(gff) save(gff, "data/exampleZv9_annot.RData", compress = "xz")
Prepared by Charles Plessy [email protected] using archive ENSEMBL data.
http://mar2015.archive.ensembl.org/biomart/
Converts CTSS, tag clusters or consensus clusters to the
UCSCData
format of the rtracklayer
package, that can be exported to BED
file(s) with track information for genome browsers. CTSSes and
consensus clusters are optionally colored by their expression class.
Tag clusters and consensus clusters can be displayed in a
whiskerplot-like representation with a line showing full span on the cluster,
filled block showing interquantile range and a thick box denoting position of
the dominant (most frequently) used TSS.
exportToTrack( object, what = c("CTSS", "tagClusters", "consensusClusters"), qLow = NULL, qUp = NULL, colorByExpressionProfile = FALSE, oneTrack = TRUE ) ## S4 method for signature 'CAGEexp' exportToTrack( object, what = c("CTSS", "tagClusters", "consensusClusters"), qLow = NULL, qUp = NULL, colorByExpressionProfile = FALSE, oneTrack = TRUE ) ## S4 method for signature 'GRangesList' exportToTrack( object, what = c("CTSS", "tagClusters", "consensusClusters"), qLow = NULL, qUp = NULL, colorByExpressionProfile = FALSE, oneTrack = TRUE ) ## S4 method for signature 'GRanges' exportToTrack( object, what = c("CTSS", "tagClusters", "consensusClusters"), qLow = NULL, qUp = NULL, colorByExpressionProfile = FALSE, oneTrack = TRUE ) ## S4 method for signature 'CTSS' exportToTrack( object, what = c("CTSS", "tagClusters", "consensusClusters"), qLow = NULL, qUp = NULL, colorByExpressionProfile = FALSE, oneTrack = TRUE ) ## S4 method for signature 'TagClusters' exportToTrack( object, what = c("CTSS", "tagClusters", "consensusClusters"), qLow = NULL, qUp = NULL, colorByExpressionProfile = FALSE, oneTrack = TRUE ) ## S4 method for signature 'ConsensusClusters' exportToTrack( object, what = c("CTSS", "tagClusters", "consensusClusters"), qLow = NULL, qUp = NULL, colorByExpressionProfile = FALSE, oneTrack = TRUE )
exportToTrack( object, what = c("CTSS", "tagClusters", "consensusClusters"), qLow = NULL, qUp = NULL, colorByExpressionProfile = FALSE, oneTrack = TRUE ) ## S4 method for signature 'CAGEexp' exportToTrack( object, what = c("CTSS", "tagClusters", "consensusClusters"), qLow = NULL, qUp = NULL, colorByExpressionProfile = FALSE, oneTrack = TRUE ) ## S4 method for signature 'GRangesList' exportToTrack( object, what = c("CTSS", "tagClusters", "consensusClusters"), qLow = NULL, qUp = NULL, colorByExpressionProfile = FALSE, oneTrack = TRUE ) ## S4 method for signature 'GRanges' exportToTrack( object, what = c("CTSS", "tagClusters", "consensusClusters"), qLow = NULL, qUp = NULL, colorByExpressionProfile = FALSE, oneTrack = TRUE ) ## S4 method for signature 'CTSS' exportToTrack( object, what = c("CTSS", "tagClusters", "consensusClusters"), qLow = NULL, qUp = NULL, colorByExpressionProfile = FALSE, oneTrack = TRUE ) ## S4 method for signature 'TagClusters' exportToTrack( object, what = c("CTSS", "tagClusters", "consensusClusters"), qLow = NULL, qUp = NULL, colorByExpressionProfile = FALSE, oneTrack = TRUE ) ## S4 method for signature 'ConsensusClusters' exportToTrack( object, what = c("CTSS", "tagClusters", "consensusClusters"), qLow = NULL, qUp = NULL, colorByExpressionProfile = FALSE, oneTrack = TRUE )
object |
A |
what |
Which elements should be exported: |
qLow , qUp
|
Position of which "lower" (resp. "upper") quantile should be
used as 5' (resp. 3') boundary of the filled block in whiskerplot-like
representation of the cluster. Default: |
colorByExpressionProfile |
Logical, should blocks be colored in the
color of their corresponding expression class. Ignored when
|
oneTrack |
Logical, should the data be converted in an individual object or a list of objects? |
The BED representations of CTSSs, tag cluster and consensus clusters can be directly visualised in the ZENBU or UCSC Genome Browsers.
When what = "CTSS"
, one UCSCData
object with single track of 1 bp blocks
representing all detected CTSSs (in all CAGE samples) is created. CTSSs can
be colored according to their expression class (see
getExpressionProfiles
and plotExpressionProfiles
). For
colorByExpressionProfile = FALSE
, CTSSs included in the clusters are
shown in black and CTSSs that were filtered out in gray.
When what = "tagClusters"
, one track per CAGE dataset is created, which can
be exported to a single UCSCData
object (by setting oneFile = TRUE
) or separate
ones (FALSE
). If no quantile boundaries were provided (qLow
and
qUp
are NULL
, TCs are represented as simple blocks showing the full
span of TC fromthe start to the end. Setting qLow
and/or qUp
parameters
to a value of the desired quantile creates a gene-like representation with a
line showing full span of the TC, filled block showing specified
interquantile range and a thick 1 bp block denoting position of the dominant
(most frequently used) TSS. All TCs in one track (one CAGE dataset) are
shown in the same color.
When what = "consensusClusters"
consensus clusters are exported.
Since there is only one set of consensus clusters common to all CAGE
datasets, only one track is created in case of a simple representation. This
means that when qLow = NULL
and qUp = NULL
one track with blocks showing
the full span of consensus cluster from the start to the end is created.
However, the distribution of the CAGE signal within consensus cluster can be
different in different CAGE samples, resulting in different positions of
quantiles and dominant TSS. Thus, when qLow
and/or qUp
parameters
are set to a value of the desired quantile, a separate track with a gene-like
representation is created for every CAGE dataset. These tracks can be
exported to a single UCSCData
object (by setting oneFile = TRUE
) or separate
ones (by setting oneFile = FALSE
). The gene-like representation is
analogous to the one described above for the TCs. In all cases consensus
clusters can be colored according to their expression class (provided the
expression profiling of consensus clusters was done by calling
getExpressionProfiles
function). Colors of expression classes match the
colors in which they are shown in the plot returned by the
plotExpressionProfiles
function. For colorByExpressionProfile = FALSE
all consensus clusters are shown in black.
Returns either a rtracklayer
UCSCData
object, or a GRangesList
of them.
Vanja Haberle
Charles Plessy
# You can export from a CAGEexp object or from a cluster object directly: exportToTrack(exampleCAGEexp, what = "CTSS") # Is same as: exportToTrack(CTSScoordinatesGR(exampleCAGEexp)) # Or: exampleCAGEexp |> CTSScoordinatesGR() |> exportToTrack() # Export a single sample, exampleCAGEexp |> CTSStagCountGR(2) |> exportToTrack() exampleCAGEexp |> CTSSnormalizedTpmGR(2) |> exportToTrack() # Exporting multiple samples results in a GRangesList of UCSCData objects. exportToTrack(exampleCAGEexp, what = "CTSS", oneTrack = FALSE) exampleCAGEexp |> CTSStagCountGR("all") |> exportToTrack() exampleCAGEexp |> CTSSnormalizedTpmGR("all") |> exportToTrack() ### exporting CTSSs colored by expression class # Temporarly disabled # exportToTrack(exampleCAGEexp, what = "CTSS", colorByExpressionProfile = TRUE) ### exporting tag clusters in gene-like representation exportToTrack(exampleCAGEexp, what = "tagClusters", qLow = 0.1, qUp = 0.9) tagClustersGR(exampleCAGEexp, 1) |> exportToTrack(qLow = 0.1, qUp = 0.9) ### exporting consensus clusters exportToTrack( exampleCAGEexp, what = "consensusClusters") exampleCAGEexp |> consensusClustersGR("Zf.high", qLow = .1, qUp = .9) |> exportToTrack(qLow = .1, qUp = .9) exportToTrack( exampleCAGEexp, what = "consensusClusters" , qLow = 0.1, qUp = 0.9, oneTrack = FALSE)
# You can export from a CAGEexp object or from a cluster object directly: exportToTrack(exampleCAGEexp, what = "CTSS") # Is same as: exportToTrack(CTSScoordinatesGR(exampleCAGEexp)) # Or: exampleCAGEexp |> CTSScoordinatesGR() |> exportToTrack() # Export a single sample, exampleCAGEexp |> CTSStagCountGR(2) |> exportToTrack() exampleCAGEexp |> CTSSnormalizedTpmGR(2) |> exportToTrack() # Exporting multiple samples results in a GRangesList of UCSCData objects. exportToTrack(exampleCAGEexp, what = "CTSS", oneTrack = FALSE) exampleCAGEexp |> CTSStagCountGR("all") |> exportToTrack() exampleCAGEexp |> CTSSnormalizedTpmGR("all") |> exportToTrack() ### exporting CTSSs colored by expression class # Temporarly disabled # exportToTrack(exampleCAGEexp, what = "CTSS", colorByExpressionProfile = TRUE) ### exporting tag clusters in gene-like representation exportToTrack(exampleCAGEexp, what = "tagClusters", qLow = 0.1, qUp = 0.9) tagClustersGR(exampleCAGEexp, 1) |> exportToTrack(qLow = 0.1, qUp = 0.9) ### exporting consensus clusters exportToTrack( exampleCAGEexp, what = "consensusClusters") exampleCAGEexp |> consensusClustersGR("Zf.high", qLow = .1, qUp = .9) |> exportToTrack(qLow = .1, qUp = .9) exportToTrack( exampleCAGEexp, what = "consensusClusters" , qLow = 0.1, qUp = 0.9, oneTrack = FALSE)
Retrieves labels of expression classes of individual CTSSs
or consensus clusters from a CAGEr
object.
expressionClasses(object) ## S4 method for signature 'CTSS' expressionClasses(object) ## S4 method for signature 'ConsensusClusters' expressionClasses(object)
expressionClasses(object) ## S4 method for signature 'CTSS' expressionClasses(object) ## S4 method for signature 'ConsensusClusters' expressionClasses(object)
object |
A |
Returns a Rle
-encoded vector of labels of expression classes.
The number of labels matches the number of expression clusters returned by
getExpressionProfiles
function.
Other CAGEr expression clustering functions:
getExpressionProfiles()
,
plotExpressionProfiles()
Other CAGEr accessor methods:
CTSScoordinatesGR()
,
CTSScumulativesTagClusters()
,
CTSSnormalizedTpmDF()
,
CTSStagCountDF()
,
GeneExpDESeq2()
,
GeneExpSE()
,
consensusClustersGR()
,
filteredCTSSidx()
,
genomeName()
,
inputFiles()
,
inputFilesType()
,
librarySizes()
,
sampleLabels()
,
seqNameTotalsSE()
,
tagClustersGR()
expressionClasses(CTSScoordinatesGR(exampleCAGEexp)) exampleCAGEexp |> consensusClustersGR() |> expressionClasses()
expressionClasses(CTSScoordinatesGR(exampleCAGEexp)) exampleCAGEexp |> consensusClustersGR() |> expressionClasses()
Lazy-loaded data.frame
object, containing information about FANTOM5
libraries. Its use is described in more details in the vignette
“Use of CAGE resources with CAGEr”.
FANTOM5humanSamples
FANTOM5humanSamples
A data.frame
with sample
, type
, description
, library_id
and data_url
columns.
Other FANTOM data:
FANTOM5mouseSamples
,
importPublicData()
Lazy-loaded data.frame
object, containing information about FANTOM5
libraries. Its use is described in more details in the vignette
“Use of CAGE resources with CAGEr”.
FANTOM5mouseSamples
FANTOM5mouseSamples
A data.frame
with sample
, type
, description
, library_id
and data_url
columns.
Other FANTOM data:
FANTOM5humanSamples
,
importPublicData()
filteredCTSSidx()
function is in CAGEr functions to retrieve the
result of the flagLowExpCTSS()
function in a safe way.The filteredCTSSidx()
function is in CAGEr functions to retrieve the
result of the flagLowExpCTSS()
function in a safe way.
filteredCTSSidx(object) ## S4 method for signature 'CAGEexp' filteredCTSSidx(object)
filteredCTSSidx(object) ## S4 method for signature 'CAGEexp' filteredCTSSidx(object)
object |
A |
Returns the value of filteredCTSSidx
in the row ranges of the
tag count matrix experiment of the CAGEexp
object, or Rle(TRUE)
if it
was NULL
Other CAGEr filter functions:
flagByUpstreamSequences()
,
flagLowExpCTSS()
Other CAGEr accessor methods:
CTSScoordinatesGR()
,
CTSScumulativesTagClusters()
,
CTSSnormalizedTpmDF()
,
CTSStagCountDF()
,
GeneExpDESeq2()
,
GeneExpSE()
,
consensusClustersGR()
,
expressionClasses()
,
genomeName()
,
inputFiles()
,
inputFilesType()
,
librarySizes()
,
sampleLabels()
,
seqNameTotalsSE()
,
tagClustersGR()
filteredCTSSidx(exampleCAGEexp)
filteredCTSSidx(exampleCAGEexp)
Looks up the bases directly upstream provided genomic ranges and searches for a gapless match with a target seqence within a given edit distance.
flagByUpstreamSequences(object, target, distance = 0) ## S4 method for signature 'CTSS' flagByUpstreamSequences(object, target, distance = 0) ## S4 method for signature 'TagClusters' flagByUpstreamSequences(object, target, distance = 0) ## S4 method for signature 'ConsensusClusters' flagByUpstreamSequences(object, target, distance = 0) ## S4 method for signature 'GRanges' flagByUpstreamSequences(object, target, distance = 0)
flagByUpstreamSequences(object, target, distance = 0) ## S4 method for signature 'CTSS' flagByUpstreamSequences(object, target, distance = 0) ## S4 method for signature 'TagClusters' flagByUpstreamSequences(object, target, distance = 0) ## S4 method for signature 'ConsensusClusters' flagByUpstreamSequences(object, target, distance = 0) ## S4 method for signature 'GRanges' flagByUpstreamSequences(object, target, distance = 0)
object |
A |
target |
A target sequence. |
distance |
The maximal edit distance between the genome and the target sequence (default: 0). |
If the provided object
represents tag clusters or consensus clusters,
the search will be done upstream its dominant peak. Convert the object
to the GRanges
class if this is not the behaviour you want.
A logical-RLe
vector indicating if ranges matched the target.
Charles Plessy
Other CAGEr filter functions:
filteredCTSSidx()
,
flagLowExpCTSS()
Flag CTSSes for that do not pass an expression threshold in at least a given number of samples. This is typically used to ignore CTSSes that have been seen only once in a single sample, as they can be considered to not be reproduced.
flagLowExpCTSS( object, threshold = 1, nrPassThreshold = 1, thresholdIsTpm = TRUE ) ## S4 method for signature 'CAGEr' flagLowExpCTSS( object, threshold = 1, nrPassThreshold = 1, thresholdIsTpm = TRUE ) ## S4 method for signature 'RangedSummarizedExperiment' flagLowExpCTSS( object, threshold = 1, nrPassThreshold = 1, thresholdIsTpm = TRUE ) ## S4 method for signature 'DataFrame' flagLowExpCTSS( object, threshold = 1, nrPassThreshold = 1, thresholdIsTpm = TRUE ) ## S4 method for signature 'matrix' flagLowExpCTSS( object, threshold = 1, nrPassThreshold = 1, thresholdIsTpm = TRUE ) filterLowExpCTSS( object, threshold = 1, nrPassThreshold = 1, thresholdIsTpm = TRUE ) ## S4 method for signature 'CAGEr' filterLowExpCTSS( object, threshold = 1, nrPassThreshold = 1, thresholdIsTpm = TRUE )
flagLowExpCTSS( object, threshold = 1, nrPassThreshold = 1, thresholdIsTpm = TRUE ) ## S4 method for signature 'CAGEr' flagLowExpCTSS( object, threshold = 1, nrPassThreshold = 1, thresholdIsTpm = TRUE ) ## S4 method for signature 'RangedSummarizedExperiment' flagLowExpCTSS( object, threshold = 1, nrPassThreshold = 1, thresholdIsTpm = TRUE ) ## S4 method for signature 'DataFrame' flagLowExpCTSS( object, threshold = 1, nrPassThreshold = 1, thresholdIsTpm = TRUE ) ## S4 method for signature 'matrix' flagLowExpCTSS( object, threshold = 1, nrPassThreshold = 1, thresholdIsTpm = TRUE ) filterLowExpCTSS( object, threshold = 1, nrPassThreshold = 1, thresholdIsTpm = TRUE ) ## S4 method for signature 'CAGEr' filterLowExpCTSS( object, threshold = 1, nrPassThreshold = 1, thresholdIsTpm = TRUE )
object |
An object from the CAGEr package that contains expression values for multiple samples. |
threshold |
Flag CTSSs with signal |
nrPassThreshold |
Only flag CTSSs when signal is below threshold in at
least |
thresholdIsTpm |
Logical, is threshold raw tag count value ( |
flagLowExpCTSS
returns a Rle
vector where TRUE
indicates the
index of a CTSS that passes the filter.
filterLowExpCTSS
returns the CAGEr
object where the output of
flagLowExpCTSS
was stored internally.
Other CAGEr filter functions:
filteredCTSSidx()
,
flagByUpstreamSequences()
flagLowExpCTSS(exampleCAGEexp, threshold = 100, nrPassThreshold = 2)
flagLowExpCTSS(exampleCAGEexp, threshold = 100, nrPassThreshold = 2)
Creates a DESeqDataSet
using the gene expression
data in the experiment slot geneExpMatrix
and the sample metadata
of the CAGEexp
object. The formula must be built using factors
already present in the sample metadata.
GeneExpDESeq2(object, design) ## S4 method for signature 'CAGEexp' GeneExpDESeq2(object, design)
GeneExpDESeq2(object, design) ## S4 method for signature 'CAGEexp' GeneExpDESeq2(object, design)
object |
A |
design |
A formula for the DESeq2 analysis. |
Charles Plessy
DESeqDataSet
in the DESeq2
package.
Other CAGEr gene expression analysis functions:
CTSStoGenes()
,
ranges2genes()
Other CAGEr accessor methods:
CTSScoordinatesGR()
,
CTSScumulativesTagClusters()
,
CTSSnormalizedTpmDF()
,
CTSStagCountDF()
,
GeneExpSE()
,
consensusClustersGR()
,
expressionClasses()
,
filteredCTSSidx()
,
genomeName()
,
inputFiles()
,
inputFilesType()
,
librarySizes()
,
sampleLabels()
,
seqNameTotalsSE()
,
tagClustersGR()
exampleCAGEexp$group <- factor(c("a", "a", "b", "b", "a")) GeneExpDESeq2(exampleCAGEexp, ~group)
exampleCAGEexp$group <- factor(c("a", "a", "b", "b", "a")) GeneExpDESeq2(exampleCAGEexp, ~group)
Get or set a SummarizedExperiment
using the gene expression
data in the experiment slot geneExpMatrix
and the sample metadata
of the CAGEexp
object.
GeneExpSE(object) ## S4 method for signature 'CAGEexp' GeneExpSE(object)
GeneExpSE(object) ## S4 method for signature 'CAGEexp' GeneExpSE(object)
object |
A |
Charles Plessy
Other CAGEr accessor methods:
CTSScoordinatesGR()
,
CTSScumulativesTagClusters()
,
CTSSnormalizedTpmDF()
,
CTSStagCountDF()
,
GeneExpDESeq2()
,
consensusClustersGR()
,
expressionClasses()
,
filteredCTSSidx()
,
genomeName()
,
inputFiles()
,
inputFilesType()
,
librarySizes()
,
sampleLabels()
,
seqNameTotalsSE()
,
tagClustersGR()
GeneExpSE(exampleCAGEexp)
GeneExpSE(exampleCAGEexp)
Extracts the name of a referent genome from a
CAGEexp
or a CTSS
object.
genomeName(object) ## S4 method for signature 'CAGEexp' genomeName(object) ## S4 method for signature 'CTSS' genomeName(object) genomeName(object) <- value ## S4 replacement method for signature 'CAGEexp' genomeName(object) <- value ## S4 replacement method for signature 'CTSS' genomeName(object) <- value
genomeName(object) ## S4 method for signature 'CAGEexp' genomeName(object) ## S4 method for signature 'CTSS' genomeName(object) genomeName(object) <- value ## S4 replacement method for signature 'CAGEexp' genomeName(object) <- value ## S4 replacement method for signature 'CTSS' genomeName(object) <- value
object |
A CAGEexp or a CTSS object. |
value |
The name of a |
CAGEexp
objects constructed with NULL
in place
of the genome name can not run some commands that need access to genomic data,
such as BigWig export or G-correction.
Returns a name of a BSgenome package used as a referent genome.
Vanja Haberle
Charles Plessy
Other CAGEr accessor methods:
CTSScoordinatesGR()
,
CTSScumulativesTagClusters()
,
CTSSnormalizedTpmDF()
,
CTSStagCountDF()
,
GeneExpDESeq2()
,
GeneExpSE()
,
consensusClustersGR()
,
expressionClasses()
,
filteredCTSSidx()
,
inputFiles()
,
inputFilesType()
,
librarySizes()
,
sampleLabels()
,
seqNameTotalsSE()
,
tagClustersGR()
Other CAGEr setter methods:
inputFiles()
,
inputFilesType()
,
sampleLabels()
,
setColors()
genomeName(exampleCAGEexp)
genomeName(exampleCAGEexp)
Reads input CAGE datasets into CAGEr object, constructs CAGE
transcriptions start sites (CTSSs) and counts number of CAGE tags supporting every
CTSS in each input experiment. See inputFilesType
for details on
the supported input formats. Preprocessing and quality filtering of input CAGE
tags, as well as correction of CAGE-specific 'G' nucleotide addition bias can be
also performed before constructing TSSs.
getCTSS( object, sequencingQualityThreshold = 10, mappingQualityThreshold = 20, removeFirstG = TRUE, correctSystematicG = TRUE, useMulticore = FALSE, nrCores = NULL ) ## S4 method for signature 'CAGEexp' getCTSS( object, sequencingQualityThreshold = 10, mappingQualityThreshold = 20, removeFirstG = TRUE, correctSystematicG = TRUE, useMulticore = FALSE, nrCores = NULL )
getCTSS( object, sequencingQualityThreshold = 10, mappingQualityThreshold = 20, removeFirstG = TRUE, correctSystematicG = TRUE, useMulticore = FALSE, nrCores = NULL ) ## S4 method for signature 'CAGEexp' getCTSS( object, sequencingQualityThreshold = 10, mappingQualityThreshold = 20, removeFirstG = TRUE, correctSystematicG = TRUE, useMulticore = FALSE, nrCores = NULL )
object |
A |
sequencingQualityThreshold |
Only CAGE tags with average sequencing quality
|
mappingQualityThreshold |
See sequencingQualityThreshold. |
removeFirstG |
Logical, should the first nucleotide of the CAGE tag be removed
in case it is a G and it does not map to the referent genome (i.e. it is a
mismatch). Used only if |
correctSystematicG |
Logical, should the systematic correction of the first G
nucleotide be performed for the positions where there is a G in the CAGE tag and G
in the genome. This step is performed in addition to removing the first G of the
CAGE tags when it is a mismatch, i.e. this option can only be used when
|
useMulticore |
Logical, should multicore be used.
|
nrCores |
Number of cores to use when |
In the CAGE experimental protocol an additional G nucleotide is often attached
to the 5' end of the tag by the template-free activity of the reverse transcriptase used
to prepare cDNA (Harbers and Carninci, Nature Methods 2005). In cases where there is a
G at the 5' end of the CAGE tag that does not map to the corresponding genome sequence,
it can confidently be considered spurious and should be removed from the tag to avoid
misannotating actual TSS. Thus, setting removeFirstG = TRUE
is highly recommended.
However, when there is a G both at the beginning of the CAGE tag and in the genome, it is
not clear whether the original CAGE tag really starts at this position or the G nucleotide
was added later in the experimental protocol. To systematically correct CAGE tags mapping
at such positions, a general frequency of adding a G to CAGE tags can be calculated from
mismatch cases and applied to estimate the number of CAGE tags that have G added and
should actually start at the next nucleotide/position. The option correctSystematicG
is an implementation of the correction algorithm described in Carninci et al.,
Nature Genetics 2006, Supplementary Information section 3-e.
Returns the object, in which the tagCountMatrix
experiment will be
occupied by a RangedSummarizedExperiment
containing the expression data
as a DataFrame
of Rle
integers, and the CTSS coordinates as genomic
ranges in a CTSS
object. The expression data can be retrieved with
the CTSStagCountDF
function. In addition, the library sizes are
calculated and stored in the object's sample data (see librarySizes
).
Vanja Haberle
Harbers and Carninci (2005) Tag-based approaches for transcriptome research and genome annotation, Nature Methods 2(7):495-502.
Carninci et al. (2006) Genome-wide analysis of mammalian promoter architecture and evolution, Nature Genetics 38(7):626-635.
Other CAGEr object modifiers:
CTSStoGenes()
,
CustomConsensusClusters()
,
aggregateTagClusters()
,
annotateCTSS()
,
cumulativeCTSSdistribution()
,
distclu()
,
normalizeTagCount()
,
paraclu()
,
quantilePositions()
,
quickEnhancers()
,
resetCAGEexp()
,
summariseChrExpr()
library(BSgenome.Drerio.UCSC.danRer7) pathsToInputFiles <- system.file("extdata", c("Zf.unfertilized.egg.chr17.ctss", "Zf.30p.dome.chr17.ctss", "Zf.prim6.rep1.chr17.ctss"), package="CAGEr") labels <- paste("sample", seq(1,3,1), sep = "") myCAGEexp <- new("CAGEexp", genomeName = "BSgenome.Drerio.UCSC.danRer7", inputFiles = pathsToInputFiles, inputFilesType = "ctss", sampleLabels = labels) myCAGEexp <- getCTSS(myCAGEexp)
library(BSgenome.Drerio.UCSC.danRer7) pathsToInputFiles <- system.file("extdata", c("Zf.unfertilized.egg.chr17.ctss", "Zf.30p.dome.chr17.ctss", "Zf.prim6.rep1.chr17.ctss"), package="CAGEr") labels <- paste("sample", seq(1,3,1), sep = "") myCAGEexp <- new("CAGEexp", genomeName = "BSgenome.Drerio.UCSC.danRer7", inputFiles = pathsToInputFiles, inputFilesType = "ctss", sampleLabels = labels) myCAGEexp <- getCTSS(myCAGEexp)
Clusters CAGE expression across multiple experiments, both at level of individual TSSs or entire clusters of TSSs.
getExpressionProfiles( object, what = c("CTSS", "consensusClusters"), tpmThreshold = 5, nrPassThreshold = 1, method = c("som", "kmeans"), xDim = 5, yDim = 5 ) ## S4 method for signature 'CAGEexp' getExpressionProfiles( object, what = c("CTSS", "consensusClusters"), tpmThreshold = 5, nrPassThreshold = 1, method = c("som", "kmeans"), xDim = 5, yDim = 5 ) ## S4 method for signature 'matrix' getExpressionProfiles( object, what = c("CTSS", "consensusClusters"), tpmThreshold = 5, nrPassThreshold = 1, method = c("som", "kmeans"), xDim = 5, yDim = 5 )
getExpressionProfiles( object, what = c("CTSS", "consensusClusters"), tpmThreshold = 5, nrPassThreshold = 1, method = c("som", "kmeans"), xDim = 5, yDim = 5 ) ## S4 method for signature 'CAGEexp' getExpressionProfiles( object, what = c("CTSS", "consensusClusters"), tpmThreshold = 5, nrPassThreshold = 1, method = c("som", "kmeans"), xDim = 5, yDim = 5 ) ## S4 method for signature 'matrix' getExpressionProfiles( object, what = c("CTSS", "consensusClusters"), tpmThreshold = 5, nrPassThreshold = 1, method = c("som", "kmeans"), xDim = 5, yDim = 5 )
object |
A |
what |
At which level the expression clustering is done ( |
tpmThreshold , nrPassThreshold
|
Ignore clusters when their normalized
CAGE signal is lower than |
method |
Method to be used for expression clustering. |
xDim , yDim
|
With |
Expression clustering can be done at level of individual CTSSs, in
which case the feature vector used as input for clustering algorithm contains
log-transformed and scaled (divided by standard deviation) normalized CAGE
signal at individual TSS across multiple experiments. Only TSSs with
normalized CAGE signal >= tpmThreshold
in at least nrPassThreshold
CAGE
experiments are used for expression clustering. However, CTSSs along the
genome can be spatially clustered into tag clusters for each experiment
separately using a CTSS clustering function, and then aggregated across
experiments into consensus clusters using aggregateTagClusters
function.
Once the consensus clusters have been created, expression clustering at the
level of these wider genomic regions (representing entire promoters rather
than individual TSSs) can be performed. In that case the feature vector
used as input for clustering algorithm contains normalized CAGE signal
within entire consensus cluster across multiple experiments, and threshold
values in tpmThreshold
and nrPassThreshold
are applied to entire
consensus clusters.
Returns a modified CAGEexp
object. If what = "CTSS"
the
objects's metadata elements CTSSexpressionClusteringMethod
and
CTSSexpressionClasses
will be set accordingly, and if
what = "consensusClusters"
the elements consensusClustersExpressionClusteringMethod
and consensusClustersExpressionClasses
will be set. Labels of expression
classes (clusters) can be retrieved using expressionClasses
function.
Vanja Haberle
Charles Plessy
Toronen et al. (1999) Analysis of gene expression data using self-organizing maps, FEBS Letters 451:142-146.
Other CAGEr expression clustering functions:
expressionClasses()
,
plotExpressionProfiles()
getExpressionProfiles( exampleCAGEexp, "CTSS" , tpmThreshold = 50, nrPassThreshold = 1 , method = "som", xDim = 3, yDim = 3) getExpressionProfiles( exampleCAGEexp, "CTSS" , tpmThreshold = 50, nrPassThreshold = 1 , method = "kmeans", xDim = 3) getExpressionProfiles(exampleCAGEexp, "consensusClusters")
getExpressionProfiles( exampleCAGEexp, "CTSS" , tpmThreshold = 50, nrPassThreshold = 1 , method = "som", xDim = 3, yDim = 3) getExpressionProfiles( exampleCAGEexp, "CTSS" , tpmThreshold = 50, nrPassThreshold = 1 , method = "kmeans", xDim = 3) getExpressionProfiles(exampleCAGEexp, "consensusClusters")
Extracts consensus clusters with shifting score and/or FDR (adjusted P-value from
Kolmogorov-Smirnov test) above specified threshold. Returns their genomic coordinates,
total CAGE signal and the position of dominant TSS in the two compared groups of CAGE
samples, along with the value of the shifting score, P-value and FDR. Scores and
P-values/FDR have to be calculated beforehand by calling scoreShift
function.
getShiftingPromoters( object, groupX, groupY, tpmThreshold = 0, scoreThreshold = -Inf, fdrThreshold = 1 ) ## S4 method for signature 'CAGEexp' getShiftingPromoters( object, groupX, groupY, tpmThreshold = 0, scoreThreshold = -Inf, fdrThreshold = 1 )
getShiftingPromoters( object, groupX, groupY, tpmThreshold = 0, scoreThreshold = -Inf, fdrThreshold = 1 ) ## S4 method for signature 'CAGEexp' getShiftingPromoters( object, groupX, groupY, tpmThreshold = 0, scoreThreshold = -Inf, fdrThreshold = 1 )
object |
A |
groupX , groupY
|
Character vector of the one or more CAGE dataset labels in the first
( |
tpmThreshold |
Consensus clusters with total CAGE signal |
scoreThreshold |
Consensus clusters with shifting score |
fdrThreshold |
Consensus clusters with adjusted P-value (FDR) from
Kolmogorov-Smirnov test |
Returns a data.frame
of shifting promoters with genomic coordinates and
positions of dominant TSS and CAGE signal in the two compared (groups of) samples, along
with shifting score and adjusted P-value (FDR).
Vanja Haberle
Sarvesh Nikumbh
Other CAGEr promoter shift functions:
scoreShift()
getShiftingPromoters( exampleCAGEexp , groupX = "Zf.unfertilized.egg" , groupY = "Zf.30p.dome") |> head()
getShiftingPromoters( exampleCAGEexp , groupX = "Zf.unfertilized.egg" , groupY = "Zf.30p.dome") |> head()
Rarefy data at multiple sample sizes using the
vegan
package and return a ‘hanabi’ object that can be passed
to plot functions.
The computation can be long, so the steps of rarefaction and plotting are kept separate.
hanabi( x, n = 20, step = 0.75, from = NULL, useMulticore = FALSE, nrCores = NULL ) ## S4 method for signature 'Rle' hanabi( x, n = 20, step = 0.75, from = NULL, useMulticore = FALSE, nrCores = NULL ) ## S4 method for signature 'numeric' hanabi( x, n = 20, step = 0.75, from = NULL, useMulticore = FALSE, nrCores = NULL ) ## S4 method for signature 'integer' hanabi( x, n = 20, step = 0.75, from = NULL, useMulticore = FALSE, nrCores = NULL ) ## S4 method for signature 'GRanges' hanabi( x, n = 20, step = 0.75, from = NULL, useMulticore = FALSE, nrCores = NULL ) ## S4 method for signature 'List' hanabi( x, n = 20, step = 0.75, from = NULL, useMulticore = FALSE, nrCores = NULL ) ## S4 method for signature 'list' hanabi( x, n = 20, step = 0.75, from = NULL, useMulticore = FALSE, nrCores = NULL ) ## S4 method for signature 'matrix' hanabi( x, n = 20, step = 0.75, from = NULL, useMulticore = FALSE, nrCores = NULL )
hanabi( x, n = 20, step = 0.75, from = NULL, useMulticore = FALSE, nrCores = NULL ) ## S4 method for signature 'Rle' hanabi( x, n = 20, step = 0.75, from = NULL, useMulticore = FALSE, nrCores = NULL ) ## S4 method for signature 'numeric' hanabi( x, n = 20, step = 0.75, from = NULL, useMulticore = FALSE, nrCores = NULL ) ## S4 method for signature 'integer' hanabi( x, n = 20, step = 0.75, from = NULL, useMulticore = FALSE, nrCores = NULL ) ## S4 method for signature 'GRanges' hanabi( x, n = 20, step = 0.75, from = NULL, useMulticore = FALSE, nrCores = NULL ) ## S4 method for signature 'List' hanabi( x, n = 20, step = 0.75, from = NULL, useMulticore = FALSE, nrCores = NULL ) ## S4 method for signature 'list' hanabi( x, n = 20, step = 0.75, from = NULL, useMulticore = FALSE, nrCores = NULL ) ## S4 method for signature 'matrix' hanabi( x, n = 20, step = 0.75, from = NULL, useMulticore = FALSE, nrCores = NULL )
x |
An object contained expression counts on which richness scores can
be calculated. For example an expression table in |
n |
The maximum number of rarefactions per sample. |
step |
Subsample sizes are calculated by taking the largest sample and multiplying it by the step "n" times. |
from |
Add one sample size (typically "0") in order to extend the plot on the left-hand side. |
useMulticore |
Logical, should multicore be used.
|
nrCores |
Number of cores to use when |
This function does not take directly CAGEr objects as input, because hanabi plots can be made from CTSS, clustered or gene-level data, therefore it is not possible to guess which one to use.
A list-based object of class "hanabi".
Charles Plessy
vegan::rarecurve
.
Other CAGEr richness functions:
hanabiPlot()
,
plot.hanabi()
h <- hanabi(CTSStagCountDF(exampleCAGEexp)) h plot(h) hanabi(CTSStagCountGR(exampleCAGEexp, 2))
h <- hanabi(CTSStagCountDF(exampleCAGEexp)) h plot(h) hanabi(CTSStagCountGR(exampleCAGEexp, 2))
Plot feature discovery curves
hanabiPlot(x, group, col = NULL, legend.pos = "topleft", pch = 1, ...)
hanabiPlot(x, group, col = NULL, legend.pos = "topleft", pch = 1, ...)
x |
A hanabi object. |
group |
A character vector or a factor grouping the samples. |
col |
A character vector colors (at most one per group). |
legend.pos |
Position of the legend, passed to the |
pch |
Plot character at the tip of the lines and in the legend. |
... |
Further arguments to be passed to the |
Plots the number of features (genes, transcripts, ...) detected for a given number of counts (reads, unique molecules, ...). Each library is sub-sampled by rarefaction at various sample sizes, picked to provide enough points so that the curves look smooth. The final point is plotted as an open circle, hence the name "hanabi", which means fireworks in Japanese.
The rarefactions take time to do, so this step is done by a separate function, so that the result is easily cached.
Charles Plessy
Other CAGEr richness functions:
hanabi
,
plot.hanabi()
Other CAGEr richness functions:
hanabi
,
plot.hanabi()
Other CAGEr plot functions:
TSSlogo()
,
plotAnnot()
,
plotCorrelation()
,
plotExpressionProfiles()
,
plotInterquantileWidth()
,
plotReverseCumulatives()
h <- hanabi(CTSStagCountDF(exampleCAGEexp)) hanabiPlot(h, group = 1:5) hanabiPlot(hanabi(CTSStagCountDF(exampleCAGEexp), n = 20, step = 0.8, from = 25000), group = 1:5) hanabiPlot(hanabi(CTSStagCountDF(exampleCAGEexp), n = 10, step = 0.98), group = 1:5) hanabiPlot(h, group=c("A", "A", "B", "C", "B"), col=c("red", "green", "blue")) hanabiPlot(h, group = 1:5, pch=1:5, col="purple")
h <- hanabi(CTSStagCountDF(exampleCAGEexp)) hanabiPlot(h, group = 1:5) hanabiPlot(hanabi(CTSStagCountDF(exampleCAGEexp), n = 20, step = 0.8, from = 25000), group = 1:5) hanabiPlot(hanabi(CTSStagCountDF(exampleCAGEexp), n = 10, step = 0.98), group = 1:5) hanabiPlot(h, group=c("A", "A", "B", "C", "B"), col=c("red", "green", "blue")) hanabiPlot(h, group = 1:5, pch=1:5, col="purple")
Imports CTSS data from a BAM file.
import.bam( filepath, filetype, sequencingQualityThreshold = 10, mappingQualityThreshold = 20 )
import.bam( filepath, filetype, sequencingQualityThreshold = 10, mappingQualityThreshold = 20 )
filepath |
The path to the BAM file. |
filetype |
bam or bamPairedEnd. |
sequencingQualityThreshold |
See getCTSS(). |
mappingQualityThreshold |
See getCTSS(). |
Other loadFileIntoGPos:
bam2CTSS()
,
import.CTSS()
,
import.bam.ctss()
,
import.bedCTSS()
,
import.bedScore()
,
import.bedmolecule()
,
loadFileIntoGPos()
,
moleculesGR2CTSS()
# TODO: add exmaple file # import.bam(system.file("extdata", "example.bam", package = "CAGEr"))
# TODO: add exmaple file # import.bam(system.file("extdata", "example.bam", package = "CAGEr"))
Imports CTSS data from a BAM file.
import.bam.ctss( filepath, filetype, sequencingQualityThreshold, mappingQualityThreshold, removeFirstG, correctSystematicG, genome )
import.bam.ctss( filepath, filetype, sequencingQualityThreshold, mappingQualityThreshold, removeFirstG, correctSystematicG, genome )
filepath |
The path to the BAM file. |
filetype |
bam or bamPairedEnd. |
sequencingQualityThreshold |
See getCTSS(). |
mappingQualityThreshold |
See getCTSS(). |
removeFirstG |
See getCTSS(). |
correctSystematicG |
See getCTSS(). |
genome |
See coerceInBSgenome(). |
Returns a CTSS object.
Other loadFileIntoGPos:
bam2CTSS()
,
import.CTSS()
,
import.bam()
,
import.bedCTSS()
,
import.bedScore()
,
import.bedmolecule()
,
loadFileIntoGPos()
,
moleculesGR2CTSS()
Imports a BED file where each line represents a single base, with a score counting the number of CAGE transcription start sites (CTSS).
import.bedCTSS(filepath)
import.bedCTSS(filepath)
filepath |
The path to the BED file. |
A GRanges object where each line represents one nucleotide.
Other loadFileIntoGPos:
bam2CTSS()
,
import.CTSS()
,
import.bam()
,
import.bam.ctss()
,
import.bedScore()
,
import.bedmolecule()
,
loadFileIntoGPos()
,
moleculesGR2CTSS()
# TODO: add exmaple file # import.BED(system.file("extdata", "example.bed", package = "CAGEr"))
# TODO: add exmaple file # import.BED(system.file("extdata", "example.bed", package = "CAGEr"))
Imports a BED file where each line counts for one molecule in a GRanges object where each line represents one nucleotide.
import.bedmolecule(filepath)
import.bedmolecule(filepath)
filepath |
The path to the BED file. |
Returns a CTSS
object.
Other loadFileIntoGPos:
bam2CTSS()
,
import.CTSS()
,
import.bam()
,
import.bam.ctss()
,
import.bedCTSS()
,
import.bedScore()
,
loadFileIntoGPos()
,
moleculesGR2CTSS()
# TODO: add exmaple file # import.BED(system.file("extdata", "example.bed", package = "CAGEr"))
# TODO: add exmaple file # import.BED(system.file("extdata", "example.bed", package = "CAGEr"))
Imports a BED file where the score indicates a number of counts for a given alignment.
import.bedScore(filepath)
import.bedScore(filepath)
filepath |
The path to the BED file. |
A GRanges object where each line represents one nucleotide.
Other loadFileIntoGPos:
bam2CTSS()
,
import.CTSS()
,
import.bam()
,
import.bam.ctss()
,
import.bedCTSS()
,
import.bedmolecule()
,
loadFileIntoGPos()
,
moleculesGR2CTSS()
# TODO: add exmaple file # import.bedScore(system.file("extdata", "example.bed", package = "CAGEr"))
# TODO: add exmaple file # import.bedScore(system.file("extdata", "example.bed", package = "CAGEr"))
Imports a CAGEscan “molecule” file in a GRanges
object
import.CAGEscanMolecule(filepath)
import.CAGEscanMolecule(filepath)
filepath |
The path to the “molecule” file. |
parseCAGEscanBlocksToGrangeTSS
# TODO import.CAGEscanMolecule(system.file("extdata", "example.molecule.txt", package = "CAGEr"))
# TODO import.CAGEscanMolecule(system.file("extdata", "example.molecule.txt", package = "CAGEr"))
Imports a "CTSS" file in a GPos object
import.CTSS(filepath)
import.CTSS(filepath)
filepath |
The path to the "CTSS" file. Note that the format of the "CTSS" files handled in this function is not the same as the FANTOM5 "CTSS" files (which are plain BED). |
Other loadFileIntoGPos:
bam2CTSS()
,
import.bam()
,
import.bam.ctss()
,
import.bedCTSS()
,
import.bedScore()
,
import.bedmolecule()
,
loadFileIntoGPos()
,
moleculesGR2CTSS()
CAGEr:::import.CTSS(system.file("extdata", "Zf.high.chr17.ctss", package = "CAGEr"))
CAGEr:::import.CTSS(system.file("extdata", "Zf.high.chr17.ctss", package = "CAGEr"))
Imports CAGE data from different sources into a CAGEexp
object. After
the object has been created the data can be further manipulated and
visualized using other functions available in the CAGEr package and
integrated with other analyses in R. Available resources include:
importPublicData( origin = c("FANTOM5", "FANTOM3and4", "ENCODE", "ZebrafishDevelopment"), dataset, group, sample ) ## S4 method for signature 'character,character,ANY,character' importPublicData( origin = c("FANTOM5", "FANTOM3and4", "ENCODE", "ZebrafishDevelopment"), dataset, group, sample )
importPublicData( origin = c("FANTOM5", "FANTOM3and4", "ENCODE", "ZebrafishDevelopment"), dataset, group, sample ) ## S4 method for signature 'character,character,ANY,character' importPublicData( origin = c("FANTOM5", "FANTOM3and4", "ENCODE", "ZebrafishDevelopment"), dataset, group, sample )
origin |
Character vector specifying one of the available resources for
CAGE data ( |
dataset |
Character vector specifying one or more of the datasets
available in the selected resource. For FANTOM5 it can be either
|
group |
Character string specifying one or more groups within specified
dataset(s), from which the samples should be selected. The |
sample |
Character string specifying one or more CAGE samples. Check
the corresponding data package for available samples within each group
and their labels. For FANTOM5 resource, list of all human (~1000) and
mouse (~) samples can be obtained in CAGEr by loading
|
FANTOM5 datasets (Forrest et al., Nature 2014) for numerous human and mouse samples (primary cells, cell lines and tissues), which are fetched directly from FANTOM5 online resource at https://fantom.gsc.riken.jp/5/data.
FANTOM3 and 4 datasets (Carninci _et al., _ Science 2005, Faulkner et al., Nature Genetics 2009, Suzuki et al. Nature Genetics 2009) from FANTOM3and4CAGE data package available from Bioconductor.
ENCODE datasets (Djebali et al. Nature 2012) for numerous human cell lines from ENCODEprojectCAGE data package, which is available for download from http://promshift.genereg.net/CAGEr/.
Zebrafish (Danio rerio) developmental timecourse datasets (Nepal et al. Genome Research 2013) from ZebrafishDevelopmentalCAGE data package, which is available for download from http://promshift.genereg.net/CAGEr/.
A CAGEexp
object is returned, containing information on library
size, CTSS coordinates and tag count matrix. The object is ready for CAGEr
analysis (normalisation, tag clustering, …).
Vanja Haberle
Charles Plessy
Carninci et al., (2005). The Transcriptional Landscape of the Mammalian Genome. Science 309(5740):1559-1563.
Djebali et al., (2012). Landscape of transcription in human cells. Nature 488(7414):101-108.
Faulkner et al., (2009). The regulated retrotransposon transcriptome of mammalian cells., Nature Genetics 41:563-571.
Forrest et al., (2014). A promoter-level mammalian expression atlas. Nature 507(7493):462-470.
Nepal et al., (2013). Dynamic regulation of the transcription initiation landscape at single nucleotide resolution during vertebrate embryogenesis. Genome Research 23(11):1938-1950.
Suzuki_et al.,_ (2009). The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line_. Nature Genetics 41:553-562.
Other FANTOM data:
FANTOM5humanSamples
,
FANTOM5mouseSamples
## Not run: ### importing FANTOM5 data # list of FANTOM5 human tissue samples data(FANTOM5humanSamples) head(subset(FANTOM5humanSamples, type == "tissue")) # import selected samples f5 <- importPublicData( origin="FANTOM5", dataset = "human", sample = c("adipose_tissue__adult__pool1", "adrenal_gland__adult__pool1", "aorta__adult__pool1")) CTSScoordinatesGR(f5) ### importing FANTOM3/4 data from a data package library(FANTOM3and4CAGE) # list of mouse datasets available in this package data(FANTOMmouseSamples) unique(FANTOMmouseSamples$dataset) head(subset(FANTOMmouseSamples, dataset == "FANTOMtissueCAGEmouse")) head(subset(FANTOMmouseSamples, dataset == "FANTOMtimecourseCAGEmouse")) # import selected samples from two different mouse datasets f34 <- importPublicData( origin="FANTOM3and4", dataset = c("FANTOMtissueCAGEmouse", "FANTOMtimecourseCAGEmouse"), group = c("brain", "adipogenic_induction"), sample = c("CCL-131_Neuro-2a_treatment_for_6hr_with_MPP+", "DFAT-D1_preadipocytes_2days")) f34 <- importPublicData( origin="FANTOM3and4", dataset = c("FANTOMtissueCAGEmouse"), group = c("brain"), sample = c("CCL-131_Neuro-2a_treatment_for_6hr_with_MPP+")) CTSScoordinatesGR(f34) ## End(Not run)
## Not run: ### importing FANTOM5 data # list of FANTOM5 human tissue samples data(FANTOM5humanSamples) head(subset(FANTOM5humanSamples, type == "tissue")) # import selected samples f5 <- importPublicData( origin="FANTOM5", dataset = "human", sample = c("adipose_tissue__adult__pool1", "adrenal_gland__adult__pool1", "aorta__adult__pool1")) CTSScoordinatesGR(f5) ### importing FANTOM3/4 data from a data package library(FANTOM3and4CAGE) # list of mouse datasets available in this package data(FANTOMmouseSamples) unique(FANTOMmouseSamples$dataset) head(subset(FANTOMmouseSamples, dataset == "FANTOMtissueCAGEmouse")) head(subset(FANTOMmouseSamples, dataset == "FANTOMtimecourseCAGEmouse")) # import selected samples from two different mouse datasets f34 <- importPublicData( origin="FANTOM3and4", dataset = c("FANTOMtissueCAGEmouse", "FANTOMtimecourseCAGEmouse"), group = c("brain", "adipogenic_induction"), sample = c("CCL-131_Neuro-2a_treatment_for_6hr_with_MPP+", "DFAT-D1_preadipocytes_2days")) f34 <- importPublicData( origin="FANTOM3and4", dataset = c("FANTOMtissueCAGEmouse"), group = c("brain"), sample = c("CCL-131_Neuro-2a_treatment_for_6hr_with_MPP+")) CTSScoordinatesGR(f34) ## End(Not run)
Extracts the paths to CAGE data input files from
CAGEexp
objects.
inputFiles(object) ## S4 method for signature 'CAGEexp' inputFiles(object) inputFiles(object) <- value ## S4 replacement method for signature 'CAGEexp' inputFiles(object) <- value
inputFiles(object) ## S4 method for signature 'CAGEexp' inputFiles(object) inputFiles(object) <- value ## S4 replacement method for signature 'CAGEexp' inputFiles(object) <- value
object |
A CAGEexp object. |
value |
A character vector with one file path per sample. |
Returns a character vector of paths to CAGE data input files.
Vanja Haberle
Charles Plessy
Other CAGEr accessor methods:
CTSScoordinatesGR()
,
CTSScumulativesTagClusters()
,
CTSSnormalizedTpmDF()
,
CTSStagCountDF()
,
GeneExpDESeq2()
,
GeneExpSE()
,
consensusClustersGR()
,
expressionClasses()
,
filteredCTSSidx()
,
genomeName()
,
inputFilesType()
,
librarySizes()
,
sampleLabels()
,
seqNameTotalsSE()
,
tagClustersGR()
Other CAGEr setter methods:
genomeName()
,
inputFilesType()
,
sampleLabels()
,
setColors()
inputFiles(exampleCAGEexp)
inputFiles(exampleCAGEexp)
Get or set the information on the type of CAGE data input
files from CAGEexp
objects.
inputFilesType(object) ## S4 method for signature 'CAGEexp' inputFilesType(object) inputFilesType(object) <- value ## S4 replacement method for signature 'CAGEexp' inputFilesType(object) <- value
inputFilesType(object) ## S4 method for signature 'CAGEexp' inputFilesType(object) inputFilesType(object) <- value ## S4 replacement method for signature 'CAGEexp' inputFilesType(object) <- value
object |
A CAGEexp object. |
value |
A character vector with one file type per sample. |
The following input file types are supported:
bam
: A single-ended BAM file.
bamPairedEnd
: A paired-ended BAM file.
bed
: A BED file where each line counts for one molecule.
bedScore
: A BED file where the score indicates a number of
counts for a given alignment.
CAGEscanMolecule
: Experimental. For the CAGEscan 3.0 pipeline.
ctss
: A tabulation-delimited file describing CAGE Transcription
Start Sites (CTSS) with four columns indicating chromosome,
1-based coordinate, strand and score respectively.
CTSStable
FANTOM5
ENCODE
FANTOM3and4
ZebrafishDevelopment
Returns the type of the file format of CAGE data input files,
e.g. "bam"
or "ctss"
. In the case of CAGEexp
objects, the return value is character vector with one member per sample.
Vanja Haberle
Charles Plessy
Other CAGEr accessor methods:
CTSScoordinatesGR()
,
CTSScumulativesTagClusters()
,
CTSSnormalizedTpmDF()
,
CTSStagCountDF()
,
GeneExpDESeq2()
,
GeneExpSE()
,
consensusClustersGR()
,
expressionClasses()
,
filteredCTSSidx()
,
genomeName()
,
inputFiles()
,
librarySizes()
,
sampleLabels()
,
seqNameTotalsSE()
,
tagClustersGR()
Other CAGEr setter methods:
genomeName()
,
inputFiles()
,
sampleLabels()
,
setColors()
inputFilesType(exampleCAGEexp)
inputFilesType(exampleCAGEexp)
Extracts the library sizes (total number of CAGE tags) for all CAGE datasets
from CAGEexp
objects.
librarySizes(object) ## S4 method for signature 'CAGEexp' librarySizes(object)
librarySizes(object) ## S4 method for signature 'CAGEexp' librarySizes(object)
object |
A CAGEexp object. |
Library sizes are calculated when loading data with the getCTSS
function and stored in the librarySizes
column of the colData
of
CAGEexp
objects.
Returns an integer vector of total number of CAGE tags (library size) for all CAGE datasets in the CAGEr object.
Vanja Haberle
Other CAGEr accessor methods:
CTSScoordinatesGR()
,
CTSScumulativesTagClusters()
,
CTSSnormalizedTpmDF()
,
CTSStagCountDF()
,
GeneExpDESeq2()
,
GeneExpSE()
,
consensusClustersGR()
,
expressionClasses()
,
filteredCTSSidx()
,
genomeName()
,
inputFiles()
,
inputFilesType()
,
sampleLabels()
,
seqNameTotalsSE()
,
tagClustersGR()
librarySizes(exampleCAGEexp)
librarySizes(exampleCAGEexp)
A private (non-exported) function to load from each file format supported by CAGEr
loadFileIntoGPos( filepath, filetype = c("bam", "bamPairedEnd", "bed", "bedctss", "bedScore", "CAGEscanMolecule", "ctss"), sequencingQualityThreshold, mappingQualityThreshold, removeFirstG, correctSystematicG, genome )
loadFileIntoGPos( filepath, filetype = c("bam", "bamPairedEnd", "bed", "bedctss", "bedScore", "CAGEscanMolecule", "ctss"), sequencingQualityThreshold, mappingQualityThreshold, removeFirstG, correctSystematicG, genome )
filepath |
The path to the file to load. |
filetype |
The type of the file |
sequencingQualityThreshold |
See getCTSS(). |
mappingQualityThreshold |
See getCTSS(). |
removeFirstG |
See getCTSS(). |
correctSystematicG |
See getCTSS(). |
genome |
See coerceInBSgenome(). |
A GPos()
object where the score represents the number of CAGE tags
starting on that nucleotide.
import.CTSS
Other loadFileIntoGPos:
bam2CTSS()
,
import.CTSS()
,
import.bam()
,
import.bam.ctss()
,
import.bedCTSS()
,
import.bedScore()
,
import.bedmolecule()
,
moleculesGR2CTSS()
Using a data frame containing mapping statistics in counts, transform the data in percentages that can be used for stacked barplots.
mapStats(libs, scope, group = "sampleLabels", facet = NULL, normalise = TRUE)
mapStats(libs, scope, group = "sampleLabels", facet = NULL, normalise = TRUE)
libs |
A data frame with containing columns required by the |
scope |
The name of a “scope”, that defines which data is plotted
and how it is normalised, or a function that implements a custom scope.
See |
group |
A vector of factors defining groups in the data. By default, the sample labels (which means no grouping). |
facet |
A vector of factors defining facets in the data (in the sense
of |
normalise |
Whether to normalise or not. Default: |
See the plotAnnot vignette and the mapStatsScopes()
help page for details on what the scopes are.
See http://stackoverflow.com/questions/10417003/stacked-barplot-with-errorbars-using-ggplot2 about stacked barplot.
Returns a data frame with mean and standard deviation of normalised
mapping statistics, plus absolute positions for the error bars. The first
column, group
, is a vector of factors sorted with the gtools::mixedorder()
function. The facet column, if any, is always called facet
.
Charles Plessy
CAGEr:::mapStats(as.data.frame(colData(exampleCAGEexp)), "counts", sampleLabels(exampleCAGEexp)) CAGEr:::mapStats(as.data.frame(colData(exampleCAGEexp)), "counts", c("A", "A", "B", "B", "C"))
CAGEr:::mapStats(as.data.frame(colData(exampleCAGEexp)), "counts", sampleLabels(exampleCAGEexp)) CAGEr:::mapStats(as.data.frame(colData(exampleCAGEexp)), "counts", c("A", "A", "B", "B", "C"))
Functions implementing the scope
parameter of the
\link{mapStats}
function.
msScope_counts(libs) msScope_mapped(libs) msScope_qc(libs) msScope_steps(libs) msScope_all(libs) msScope_annotation(libs)
msScope_counts(libs) msScope_mapped(libs) msScope_qc(libs) msScope_steps(libs) msScope_all(libs) msScope_annotation(libs)
libs |
A data frame containing metadata describing samples in sequence libraries. |
The counts
scope reports the number of molecules aligning in
promoter, exon, intron and otherwise intergenic.
regions.
The mapped
scope reports the number of molecules aligning in
promoter, exon, intron and otherwise intergenic,
plus the number of PCR duplicates (mapped tags minus molecule counts), plus
the number of non-properly paired mapped tags.
The qc
scope reports the number of tags removed as
tag dust, rRNA, spikes, plus the unmapped tags,
plus the number of non-properly paired mapped tags, plus the number of PCR
duplicates (mapped tags minus molecule counts), plus the number of unique
molecule counts.
The steps
scope reports the number of tags removed by
cleaning, mapping, and deduplication, plus the number
of unique molecule counts.
The legacy all
scope reports the number of tags in
promoters, exons, introns, or mapped elswhere, or removed because
they match rRNA or are likely primer artefacts, normalised by the total
nubmer of extracted tags.
The legacy annotation
scope reports the number of tags in
promoters, exons, introns, or mapped elswhere, or removed because
they match rRNA or are likely primer artefacts, normalised by the total
nubmer of mapped tags.
Returns a list with three elements: libs
contains a modified
version of the input data frame where columns have been reorganised as needed,
colums
contains the names of the columns to use for plotting and
provides the order of the stacked bars of the plotAnnot
function,
total
indicates the total counts used for normalising the data.
Merges two CAGEr
objects into one by combining the CTSS genomic
coordinates and raw tag counts. The resulting object will contain a union
of TSS positions present in the two input objects and raw tag counts for
those TSSs in all samples from both input objects.
mergeCAGEsets(cs1, cs2) ## S4 method for signature 'CAGEexp,CAGEexp' mergeCAGEsets(cs1, cs2)
mergeCAGEsets(cs1, cs2) ## S4 method for signature 'CAGEexp,CAGEexp' mergeCAGEsets(cs1, cs2)
cs1 |
A |
cs2 |
A |
Note that merging discards all other information present in the
two CAGEr
objects, that is, the merged object will not contain any
normalised tag counts, CTSS clusters, quantile positions, etc., so these
have to be calculated again by calling the appropriate functions on the
merged object. Also, it is only possible to merge two objects that contain
TSS information for the same reference genome and do not share any sample
names.
Returns a CAGEexp
object, which contains a union of
TSS positions present in the two input objects and raw tag counts for those
TSSs in all samples from both input objects.
Vanja Haberle
Charles Plessy
library(BSgenome.Drerio.UCSC.danRer7) pathsToInputFiles <- system.file("extdata", c("Zf.unfertilized.egg.chr17.ctss", "Zf.30p.dome.chr17.ctss", "Zf.prim6.rep1.chr17.ctss"), package="CAGEr") ce1 <- CAGEexp(genomeName = "BSgenome.Drerio.UCSC.danRer7", inputFiles = pathsToInputFiles[1:2], inputFilesType = "ctss", sampleLabels = c("sample1", "sample2")) ce1 <- getCTSS(ce1) ce2 <- CAGEexp(genomeName = "BSgenome.Drerio.UCSC.danRer7", inputFiles = pathsToInputFiles[3], inputFilesType = "ctss", sampleLabels = "sample3") ce2 <- getCTSS(ce2) ce <- mergeCAGEsets(ce1, ce2)
library(BSgenome.Drerio.UCSC.danRer7) pathsToInputFiles <- system.file("extdata", c("Zf.unfertilized.egg.chr17.ctss", "Zf.30p.dome.chr17.ctss", "Zf.prim6.rep1.chr17.ctss"), package="CAGEr") ce1 <- CAGEexp(genomeName = "BSgenome.Drerio.UCSC.danRer7", inputFiles = pathsToInputFiles[1:2], inputFilesType = "ctss", sampleLabels = c("sample1", "sample2")) ce1 <- getCTSS(ce1) ce2 <- CAGEexp(genomeName = "BSgenome.Drerio.UCSC.danRer7", inputFiles = pathsToInputFiles[3], inputFilesType = "ctss", sampleLabels = "sample3") ce2 <- getCTSS(ce2) ce <- mergeCAGEsets(ce1, ce2)
Merges individual CAGE samples (datasets, experiments) within the CAGEr object into specified groups.
mergeSamples(object, mergeIndex, mergedSampleLabels) ## S4 method for signature 'CAGEexp' mergeSamples(object, mergeIndex, mergedSampleLabels)
mergeSamples(object, mergeIndex, mergedSampleLabels) ## S4 method for signature 'CAGEexp' mergeSamples(object, mergeIndex, mergedSampleLabels)
object |
A |
mergeIndex |
Integer vector specifying which experiments should be merged. (one value per sample, see Details). |
mergedSampleLabels |
Labels for the merged datasets (same length as the
number of unique values in |
The samples within the CAGEr object are merged by adding the raw tag counts of individual CTSS that belong tho the same group. After merging, all other slots in the CAGEr object will be reset and any previous data for individual experiments will be removed.
mergeIndex
controls which samples will be merged. It is an integer
vector that assigns a group identifier to each sample, in the same order as
they are returned by sampleLabels(object)
. For example, if there are
8 CAGE samples in the CAGEr object and mergeIndex = c(1,1,2,2,3,2,4,4)
,
this will merge a) samples 1 and 2, b) samples 3, 4 and 6, c) samples 7 and
8, and d) it will leave sample 5 as it is, resulting in 4 final merged datasets.
Labels provided in mergedSampleLabels
will be assigned to merged datasets in the ascending
order of mergeIndex
values, i.e. first label will be assigned to a dataset created
by merging datasets labeled with lowest mergeIndex
value (in this case 1
),
etc.
The slots sampleLabels
, librarySizes
and tagCountMatrix
of the
provided CAGEr
object will be updated with the information on merged CAGE datasets
and will replace the previous information on individual CAGE datasets. All further slots with
downstream information will be reset.
Vanja Haberle
Charles Plessy
mergeSamples( exampleCAGEexp , mergeIndex = c(3,2,4,4,1) , mergedSampleLabels = c("zf_unfertilized", "zf_high", "zf_30p_dome", "zf_prim6")) exampleCAGEexp
mergeSamples( exampleCAGEexp , mergeIndex = c(3,2,4,4,1) , mergedSampleLabels = c("zf_unfertilized", "zf_high", "zf_30p_dome", "zf_prim6")) exampleCAGEexp
Calculates CTSS positions from a GenomicRanges object where each element represents a single molecule.
moleculesGR2CTSS(gr)
moleculesGR2CTSS(gr)
gr |
A GRanges object. |
Returns a GRanges object.
Other loadFileIntoGPos:
bam2CTSS()
,
import.CTSS()
,
import.bam()
,
import.bam.ctss()
,
import.bedCTSS()
,
import.bedScore()
,
import.bedmolecule()
,
loadFileIntoGPos()
gr <- GenomicRanges::GRanges("chr1", IRanges::IRanges(1, 10), c("+", "-", "+")) CAGEr:::moleculesGR2CTSS(gr)
gr <- GenomicRanges::GRanges("chr1", IRanges::IRanges(1, 10), c("+", "-", "+")) CAGEr:::moleculesGR2CTSS(gr)
Normalizes raw CAGE tag count per CTSS in all experiments to a same referent distribution. A simple tag per million normalization or normalization to a referent power-law distribution (Balwierz et al., Genome Biology 2009) can be specified.
normalizeTagCount( object, method = c("powerLaw", "simpleTpm", "none"), fitInRange = c(10, 1000), alpha = 1.25, T = 10^6 ) ## S4 method for signature 'CAGEexp' normalizeTagCount( object, method = c("powerLaw", "simpleTpm", "none"), fitInRange = c(10, 1000), alpha = 1.25, T = 10^6 )
normalizeTagCount( object, method = c("powerLaw", "simpleTpm", "none"), fitInRange = c(10, 1000), alpha = 1.25, T = 10^6 ) ## S4 method for signature 'CAGEexp' normalizeTagCount( object, method = c("powerLaw", "simpleTpm", "none"), fitInRange = c(10, 1000), alpha = 1.25, T = 10^6 )
object |
A |
method |
Method to be used for normalization. Can be either |
fitInRange |
An integer vector with two values specifying a range of tag count
values to be used for fitting a power-law distribution to reverse cumulatives.
Used only when |
alpha |
|
T |
Total number of CAGE tags in the referent power-law distribution. Setting
|
It has been shown that many CAGE datasets follow a power-law distribution
(Balwierz et al., Genome Biology 2009). Plotting the number of CAGE tags
(X-axis) against the number of TSSs that are supported by >= of that number of tags
(Y-axis) results in a distribution that can be approximated by a power-law. On a
log-log scale this theoretical referent distribution can be described by a
monotonically decreasing linear function y = -1 * alpha * x + beta
, which is
fully determined by the slope alpha
and total number of tags T
(which
together with alpha
determines the value of beta
). Thus, by specifying
parameters alpha
and T
a desired referent power-law distribution can be
selected. However, real CAGE datasets deviate from the power-law in the areas of very
low and very high number of tags, so it is advisable to discard these areas before
fitting a power-law distribution. fitInRange
parameter allows to specify a
range of values (lower and upper limit of the number of CAGE tags) that will be used to
fit a power-law. Plotting reverse cumulatives using plotReverseCumulatives
function can help in choosing the best range of values. After fitting a power-law
distribution to each CAGE dataset individually, all datasets are normalized to a
referent distribution specified by alpha
and T
. When T = 10^6
,
normalized values are expressed as tags per million (tpm).
The slot normalizedTpmMatrix
of the provided CAGEexp
object
will be occupied by normalized CAGE signal values per CTSS across all
experiments, or with the raw tag counts (in case method = "none"
).
Vanja Haberle
Balwierz et al. (2009) Methods for analyzing deep sequencing expression data: constructing the human and mouse promoterome with deepCAGE data, Genome Biology 10(7):R79.
plotReverseCumulatives
, CTSSnormalizedTpmDF
Other CAGEr object modifiers:
CTSStoGenes()
,
CustomConsensusClusters()
,
aggregateTagClusters()
,
annotateCTSS()
,
cumulativeCTSSdistribution()
,
distclu()
,
getCTSS()
,
paraclu()
,
quantilePositions()
,
quickEnhancers()
,
resetCAGEexp()
,
summariseChrExpr()
Other CAGEr normalised data functions:
plotReverseCumulatives()
ce1 <- normalizeTagCount(exampleCAGEexp, method = "simpleTpm") ce2 <- normalizeTagCount(exampleCAGEexp, method = "powerLaw")
ce1 <- normalizeTagCount(exampleCAGEexp, method = "simpleTpm") ce2 <- normalizeTagCount(exampleCAGEexp, method = "powerLaw")
"paraclu"
is an implementation of Paraclu algorithm for parametric
clustering of data attached to sequences (Frith et al., Genome Research,
2007). Since Paraclu finds clusters within clusters (unlike distclu
),
additional parameters (minStability
, maxLength
and reduceToNonoverlapping
)
can be specified to simplify the output by discarding too big clusters,
and to reduce the clusters to a final set of non-overlapping clusters.
paraclu( object, minStability = 1, maxLength = 500, keepSingletonsAbove = 0, reduceToNonoverlapping = TRUE, useMulticore = FALSE, nrCores = NULL ) ## S4 method for signature 'Pairs' paraclu( object, minStability = 1, maxLength = 500, keepSingletonsAbove = 0, reduceToNonoverlapping = TRUE, useMulticore = FALSE, nrCores = NULL ) ## S4 method for signature 'CTSS' paraclu( object, minStability = 1, maxLength = 500, keepSingletonsAbove = 0, reduceToNonoverlapping = TRUE, useMulticore = FALSE, nrCores = NULL ) ## S4 method for signature 'GRanges' paraclu( object, minStability = 1, maxLength = 500, keepSingletonsAbove = 0, reduceToNonoverlapping = TRUE, useMulticore = FALSE, nrCores = NULL ) ## S4 method for signature 'SummarizedExperiment' paraclu( object, minStability = 1, maxLength = 500, keepSingletonsAbove = 0, reduceToNonoverlapping = TRUE, useMulticore = FALSE, nrCores = NULL ) ## S4 method for signature 'CAGEexp' paraclu( object, minStability = 1, maxLength = 500, keepSingletonsAbove = 0, reduceToNonoverlapping = TRUE, useMulticore = FALSE, nrCores = NULL )
paraclu( object, minStability = 1, maxLength = 500, keepSingletonsAbove = 0, reduceToNonoverlapping = TRUE, useMulticore = FALSE, nrCores = NULL ) ## S4 method for signature 'Pairs' paraclu( object, minStability = 1, maxLength = 500, keepSingletonsAbove = 0, reduceToNonoverlapping = TRUE, useMulticore = FALSE, nrCores = NULL ) ## S4 method for signature 'CTSS' paraclu( object, minStability = 1, maxLength = 500, keepSingletonsAbove = 0, reduceToNonoverlapping = TRUE, useMulticore = FALSE, nrCores = NULL ) ## S4 method for signature 'GRanges' paraclu( object, minStability = 1, maxLength = 500, keepSingletonsAbove = 0, reduceToNonoverlapping = TRUE, useMulticore = FALSE, nrCores = NULL ) ## S4 method for signature 'SummarizedExperiment' paraclu( object, minStability = 1, maxLength = 500, keepSingletonsAbove = 0, reduceToNonoverlapping = TRUE, useMulticore = FALSE, nrCores = NULL ) ## S4 method for signature 'CAGEexp' paraclu( object, minStability = 1, maxLength = 500, keepSingletonsAbove = 0, reduceToNonoverlapping = TRUE, useMulticore = FALSE, nrCores = NULL )
object |
A |
minStability |
Minimal stability of the cluster, where stability is
defined as ratio between maximal and minimal density value for which
this cluster is maximal scoring. For definition of stability refer to
Frith et al., Genome Research, 2007. Clusters with stability
|
maxLength |
Maximal length of cluster in base-pairs. Clusters with length
|
keepSingletonsAbove |
Remove "singleton" tag clusters of width 1 with
signal |
reduceToNonoverlapping |
Logical, should smaller clusters contained within bigger cluster be removed to make a final set of tag clusters non-overlapping. |
useMulticore |
Logical, should multicore be used. |
nrCores |
Number of cores to use when |
Clustering is done for every CAGE dataset within the CAGEr object separately,
resulting in a different set of tag clusters for every CAGE dataset. TCs from
different datasets can further be aggregated into a single referent set of
consensus clusters by calling the aggregateTagClusters
function.
Running Paraclu on a Pairs
object containing positions and scores
returns an IRanges
object containing the start and end positions of the
clusters, as well as the minimum and maximum density in min_d
and max_d
metadata columns.
Running Paraclu on a CTSS
object dispatches the computation on each strand
of each sequence level of the object, collects the IRanges
and assemble
them back in a TagClusters
object after filtering them by size and by
expression following the minStability
, maxLength
, keepSingletonsAbove
and reduceToNonoverlapping
parameters.
Running Paraclu on a RangedSummarizedExperiment
object will loop on each
sample, and return the results as a GRangesList
of TagClusters
.
Running Paraclu on a CAGEexp
returnts is with the clusters stored as a
GRangesList
of TagClusters
objects in its metadata slot tagClusters
.
Vanja Haberle
Charles Plessy
MC Frith, E Valen, A Krogh, Y Hayashizaki, P Carninci, A Sandelin. A code for transcription initiation in mammalian genomes. Genome Research 2008 18(1):1-12)
Other CAGEr clustering methods:
consensusClustersTpm()
,
distclu()
Other CAGEr object modifiers:
CTSStoGenes()
,
CustomConsensusClusters()
,
aggregateTagClusters()
,
annotateCTSS()
,
cumulativeCTSSdistribution()
,
distclu()
,
getCTSS()
,
normalizeTagCount()
,
quantilePositions()
,
quickEnhancers()
,
resetCAGEexp()
,
summariseChrExpr()
Other CAGEr clusters functions:
CTSScumulativesTagClusters()
,
CustomConsensusClusters()
,
aggregateTagClusters()
,
consensusClustersDESeq2()
,
consensusClustersGR()
,
cumulativeCTSSdistribution()
,
distclu()
,
plotInterquantileWidth()
,
quantilePositions()
,
tagClustersGR()
(ctss <- CTSSnormalizedTpmGR(exampleCAGEexp,1)) (pair <- Pairs(pos(ctss), score(ctss))) CAGEr:::.paraclu_params(first(pair), second(pair)) CAGEr:::.paraclu(first(pair)[1:10], second(pair)[1:10]) paraclu(pair[1:10]) paraclu(ctss[1:10]) paraclu(CTSStagCountSE(exampleCAGEexp)[1:25,]) ce <- paraclu( exampleCAGEexp, , keepSingletonsAbove = 100 , maxLength = 500, minStability = 1 , reduceToNonoverlapping = TRUE) tagClustersGR(ce, "Zf.30p.dome")
(ctss <- CTSSnormalizedTpmGR(exampleCAGEexp,1)) (pair <- Pairs(pos(ctss), score(ctss))) CAGEr:::.paraclu_params(first(pair), second(pair)) CAGEr:::.paraclu(first(pair)[1:10], second(pair)[1:10]) paraclu(pair[1:10]) paraclu(ctss[1:10]) paraclu(CTSStagCountSE(exampleCAGEexp)[1:25,]) ce <- paraclu( exampleCAGEexp, , keepSingletonsAbove = 100 , maxLength = 500, minStability = 1 , reduceToNonoverlapping = TRUE) tagClustersGR(ce, "Zf.30p.dome")
Parse a string describing a block in a CAGEscan molecule, as output by the "CAGEscan 3.0" pipeline.
parseCAGEscanBlocksToGrangeTSS(blocks)
parseCAGEscanBlocksToGrangeTSS(blocks)
blocks |
A character string representing a block in a CAGEscan molecule. |
A GRanges object representing a TSS.
In CAGEscan molecules, blocks are separated by ‘|’, ‘,’ or ‘;’ for gap of coverage, splice junction (confident) and splice junction (maybe) respectively. Strand is "+" if first coordinate is lower than the second one, and "-" otherwise.
import.CAGEscanMolecule
myMolecule <- paste0( "chr11:66268633-66268693," , "chr11:66271796-66271869;" , "chr11:66272156-66272252|" , "chr11:66272364-66272460") myFirstBlock <- sub("[,;|].*", "", myMolecule) CAGEr:::parseCAGEscanBlocksToGrangeTSS(myFirstBlock)
myMolecule <- paste0( "chr11:66268633-66268693," , "chr11:66271796-66271869;" , "chr11:66272156-66272252|" , "chr11:66272364-66272460") myFirstBlock <- sub("[,;|].*", "", myMolecule) CAGEr:::parseCAGEscanBlocksToGrangeTSS(myFirstBlock)
S3 method to plot hanabi objects. Used by the
hanabiPlot
function.
## S3 method for class 'hanabi' plot( x, alpha = 0.5, col = "black", xlab = "Total counts", ylab = "Unique features", main = "Hanabi plot", pch = 1, ... ) ## S3 method for class 'hanabi' points(x, ...) ## S3 method for class 'hanabi' lines(x, ...)
## S3 method for class 'hanabi' plot( x, alpha = 0.5, col = "black", xlab = "Total counts", ylab = "Unique features", main = "Hanabi plot", pch = 1, ... ) ## S3 method for class 'hanabi' points(x, ...) ## S3 method for class 'hanabi' lines(x, ...)
x |
The hanabi object to plot. |
alpha |
The alpha transparency of the plot lines. |
col |
A vector indicating a color per sample (or a vector that can be recycled that way). |
xlab |
Horizontal axis label. |
ylab |
Vertical axis label. |
main |
Plot title. |
pch |
Plot character at the tip of the lines. |
... |
Other parameters passed to the generic plot, points or lines functions. |
Charles Plessy
Other CAGEr richness functions:
hanabi
,
hanabiPlot()
Extracts processing and alignment statistics from a CAGEr object and plots them as counts or percentages in stacked barplots.
plotAnnot( x, scope, title, group = "sampleLabels", facet = NULL, normalise = TRUE ) ## S4 method for signature 'data.frame' plotAnnot( x, scope, title, group = "sampleLabels", facet = NULL, normalise = TRUE ) ## S4 method for signature 'DataFrame' plotAnnot( x, scope, title, group = "sampleLabels", facet = NULL, normalise = TRUE ) ## S4 method for signature 'CAGEexp' plotAnnot( x, scope, title, group = "sampleLabels", facet = NULL, normalise = TRUE ) ## S4 method for signature 'GRangesList' plotAnnot( x, scope, title, group = "sampleLabels", facet = NULL, normalise = TRUE )
plotAnnot( x, scope, title, group = "sampleLabels", facet = NULL, normalise = TRUE ) ## S4 method for signature 'data.frame' plotAnnot( x, scope, title, group = "sampleLabels", facet = NULL, normalise = TRUE ) ## S4 method for signature 'DataFrame' plotAnnot( x, scope, title, group = "sampleLabels", facet = NULL, normalise = TRUE ) ## S4 method for signature 'CAGEexp' plotAnnot( x, scope, title, group = "sampleLabels", facet = NULL, normalise = TRUE ) ## S4 method for signature 'GRangesList' plotAnnot( x, scope, title, group = "sampleLabels", facet = NULL, normalise = TRUE )
x |
An object from which can be extracted a table with columns named
|
scope |
The name of a scope, that defines which data is plotted
and how it is normalised, or a function implementing that scope.
See |
title |
The title of the plot. |
group |
A factor to group the samples, or the name of a |
facet |
A factor or the name of a |
normalise |
Whether to normalise or not. Default: |
When given a CAGEexp
object or its column data, what will be counted is
the number of CAGE tags. When given cluster objects (CTSS
,
TagClusters
or ConsensusClusters
) wrapped as
a GenomicRanges::GRangesList
, what will be counted is the number of
clusters.
Stacked barplots with error bars inspired from http://stackoverflow.com/questions/10417003/stacked-barplot-with-errorbars-using-ggplot2. See http://www.biomedcentral.com/1471-2164/14/665/figure/F1 for example.
Returns a ggplot2::ggplot
object.
Charles Plessy
mapStats
for a list of scopes.
Other CAGEr annotation functions:
annotateCTSS()
,
ranges2annot()
,
ranges2genes()
,
ranges2names()
Other CAGEr plot functions:
TSSlogo()
,
hanabiPlot()
,
plotCorrelation()
,
plotExpressionProfiles()
,
plotInterquantileWidth()
,
plotReverseCumulatives()
p <- plotAnnot(exampleCAGEexp, 'counts', 'Here is the title') print(p) p + ggplot2::theme_bw() ggplot2::theme_set(ggplot2::theme_bw()) ; p plotAnnot(exampleCAGEexp, 'counts', 'Same, non-normalised', normalise = FALSE) exampleCAGEexp$myGroups <- factor(c("A", "A", "B", "B", "C")) plotAnnot(exampleCAGEexp, 'counts', group = "myGroups") plotAnnot(exampleCAGEexp, 'counts', group = ~myGroups) plotAnnot(exampleCAGEexp, 'counts', group = ~sampleLabels + myGroups) plotAnnot(exampleCAGEexp, CAGEr:::msScope_counts , group = "myGroups")
p <- plotAnnot(exampleCAGEexp, 'counts', 'Here is the title') print(p) p + ggplot2::theme_bw() ggplot2::theme_set(ggplot2::theme_bw()) ; p plotAnnot(exampleCAGEexp, 'counts', 'Same, non-normalised', normalise = FALSE) exampleCAGEexp$myGroups <- factor(c("A", "A", "B", "B", "C")) plotAnnot(exampleCAGEexp, 'counts', group = "myGroups") plotAnnot(exampleCAGEexp, 'counts', group = ~myGroups) plotAnnot(exampleCAGEexp, 'counts', group = ~sampleLabels + myGroups) plotAnnot(exampleCAGEexp, CAGEr:::msScope_counts , group = "myGroups")
Calculates the pairwise correlation between samples and creates a plot matrix showing the correlation coeficients in the upper triangle, the sample names in the diagonal, and the catter plots in the lower triangle.
plotCorrelation( object, what = c("CTSS", "consensusClusters"), values = c("raw", "normalized"), samples = "all", method = "pearson", tagCountThreshold = 1, applyThresholdBoth = FALSE, plotSize = 800 ) ## S4 method for signature 'CAGEr' plotCorrelation( object, what = c("CTSS", "consensusClusters"), values = c("raw", "normalized"), samples = "all", method = "pearson", tagCountThreshold = 1, applyThresholdBoth = FALSE, plotSize = 800 ) plotCorrelation2( object, what = c("CTSS", "consensusClusters"), values = c("raw", "normalized"), samples = "all", method = "pearson", tagCountThreshold = 1, applyThresholdBoth = FALSE, digits = 3 ) ## S4 method for signature 'CAGEexp' plotCorrelation2( object, what = c("CTSS", "consensusClusters"), values = c("raw", "normalized"), samples = "all", method = "pearson", tagCountThreshold = 1, applyThresholdBoth = FALSE, digits = 3 ) ## S4 method for signature 'SummarizedExperiment' plotCorrelation2( object, what = c("CTSS", "consensusClusters"), values = c("raw", "normalized"), samples = "all", method = "pearson", tagCountThreshold = 1, applyThresholdBoth = FALSE, digits = 3 ) ## S4 method for signature 'DataFrame' plotCorrelation2( object, what = c("CTSS", "consensusClusters"), values = c("raw", "normalized"), samples = "all", method = "pearson", tagCountThreshold = 1, applyThresholdBoth = FALSE, digits = 3 ) ## S4 method for signature 'data.frame' plotCorrelation2( object, what = c("CTSS", "consensusClusters"), values = c("raw", "normalized"), samples = "all", method = "pearson", tagCountThreshold = 1, applyThresholdBoth = FALSE, digits = 3 ) ## S4 method for signature 'matrix' plotCorrelation2( object, what = c("CTSS", "consensusClusters"), values = c("raw", "normalized"), samples = "all", method = "pearson", tagCountThreshold = 1, applyThresholdBoth = FALSE, digits = 3 )
plotCorrelation( object, what = c("CTSS", "consensusClusters"), values = c("raw", "normalized"), samples = "all", method = "pearson", tagCountThreshold = 1, applyThresholdBoth = FALSE, plotSize = 800 ) ## S4 method for signature 'CAGEr' plotCorrelation( object, what = c("CTSS", "consensusClusters"), values = c("raw", "normalized"), samples = "all", method = "pearson", tagCountThreshold = 1, applyThresholdBoth = FALSE, plotSize = 800 ) plotCorrelation2( object, what = c("CTSS", "consensusClusters"), values = c("raw", "normalized"), samples = "all", method = "pearson", tagCountThreshold = 1, applyThresholdBoth = FALSE, digits = 3 ) ## S4 method for signature 'CAGEexp' plotCorrelation2( object, what = c("CTSS", "consensusClusters"), values = c("raw", "normalized"), samples = "all", method = "pearson", tagCountThreshold = 1, applyThresholdBoth = FALSE, digits = 3 ) ## S4 method for signature 'SummarizedExperiment' plotCorrelation2( object, what = c("CTSS", "consensusClusters"), values = c("raw", "normalized"), samples = "all", method = "pearson", tagCountThreshold = 1, applyThresholdBoth = FALSE, digits = 3 ) ## S4 method for signature 'DataFrame' plotCorrelation2( object, what = c("CTSS", "consensusClusters"), values = c("raw", "normalized"), samples = "all", method = "pearson", tagCountThreshold = 1, applyThresholdBoth = FALSE, digits = 3 ) ## S4 method for signature 'data.frame' plotCorrelation2( object, what = c("CTSS", "consensusClusters"), values = c("raw", "normalized"), samples = "all", method = "pearson", tagCountThreshold = 1, applyThresholdBoth = FALSE, digits = 3 ) ## S4 method for signature 'matrix' plotCorrelation2( object, what = c("CTSS", "consensusClusters"), values = c("raw", "normalized"), samples = "all", method = "pearson", tagCountThreshold = 1, applyThresholdBoth = FALSE, digits = 3 )
object |
A |
what |
The clustering level to be used for plotting and calculating
correlations. Can be either |
values |
Use either |
samples |
Character vector indicating which samples to use. Can be
either |
method |
A character string indicating which correlation coefficient
should be computed. Passed to |
tagCountThreshold |
Only TSSs with tag count |
applyThresholdBoth |
See |
plotSize |
Size of the individual comparison plot in pixels - the
total size of the resulting png will be |
digits |
The number of significant digits for the data to be kept in log
scale. Ignored in |
In the scatter plots, a pseudo-count equal to half the lowest score is added to the null values so that they can appear despite logarithmic scale.
SummarizedExperiment
objects are expected to contain raw tag counts
in a “counts” assay and the normalized expression scores in a
“normalized” assay.
Avoid using large matrix
objects as they are coerced to
DataFrame
class without special care for efficiency.
plotCorrelation2
speeds up the plotting by a) deduplicating
that data: no point is plot twice at the same coordinates, b) rounding the
data so that indistinguishable positions are plotted only once, c) using a
black square glyph for the points, d) caching some calculations that are
made repeatedly (to determine where to plot the correlation coefficients),
and e) preventing coercion of DataFrames
to data.frames
.
Displays the plot and returns a matrix
of pairwise
correlations between selected samples. The scatterplots of
plotCorrelation
are colored according to the density of points, and
in plotCorrelation2
they are just black and white, which is much
faster to plot. Note that while the scatterplots are on a logarithmic scale
with pseudocount added to the zero values, the correlation coefficients are
calculated on untransformed (but thresholded) data.
Vanja Haberle
Charles Plessy
Other CAGEr plot functions:
TSSlogo()
,
hanabiPlot()
,
plotAnnot()
,
plotExpressionProfiles()
,
plotInterquantileWidth()
,
plotReverseCumulatives()
plotCorrelation2(exampleCAGEexp, what = "consensusClusters", value = "normalized")
plotCorrelation2(exampleCAGEexp, what = "consensusClusters", value = "normalized")
Beanplot of distribution of normalized expression across CAGE experiments for individual expression classes, colored and labeled according to the information set when expression clustering was performed.
plotExpressionProfiles(object, what) ## S4 method for signature 'CAGEexp' plotExpressionProfiles(object, what = c("CTSS", "consensusClusters"))
plotExpressionProfiles(object, what) ## S4 method for signature 'CAGEexp' plotExpressionProfiles(object, what = c("CTSS", "consensusClusters"))
object |
A |
what |
|
The beanplots are shown in one labeled box per expression class. Each beanplot represents one CAGE experiment. The vertical axis represents scaled normalized expression. The color of each class is determined by the labels returned by expression clustering.
Vanja Haberle
Charles Plessy
Other CAGEr plot functions:
TSSlogo()
,
hanabiPlot()
,
plotAnnot()
,
plotCorrelation()
,
plotInterquantileWidth()
,
plotReverseCumulatives()
Other CAGEr expression clustering functions:
expressionClasses()
,
getExpressionProfiles()
plotExpressionProfiles(exampleCAGEexp, what = "CTSS") exampleCAGEexp |> plotExpressionProfiles("consensusClusters")
plotExpressionProfiles(exampleCAGEexp, what = "CTSS") exampleCAGEexp |> plotExpressionProfiles("consensusClusters")
Histograms of the interquantile width of tag clusters or consensus clusters in each CAGE experiment.
plotInterquantileWidth( object, clusters = c("tagClusters", "consensusClusters"), tpmThreshold = 5, qLow = 0.1, qUp = 0.9, xlim = c(0, 150) ) ## S4 method for signature 'CAGEexp' plotInterquantileWidth( object, clusters = c("tagClusters", "consensusClusters"), tpmThreshold = 5, qLow = 0.1, qUp = 0.9, xlim = c(0, 150) )
plotInterquantileWidth( object, clusters = c("tagClusters", "consensusClusters"), tpmThreshold = 5, qLow = 0.1, qUp = 0.9, xlim = c(0, 150) ) ## S4 method for signature 'CAGEexp' plotInterquantileWidth( object, clusters = c("tagClusters", "consensusClusters"), tpmThreshold = 5, qLow = 0.1, qUp = 0.9, xlim = c(0, 150) )
object |
A |
clusters |
|
tpmThreshold |
Exclude clusters with normalized signal lower than |
qLow , qUp
|
Quantile defining the 5' ("lower") and 3' ("upper") boundaries of the clusters. |
xlim |
Range of width to be plotted. |
Interquantile width is a more robust measure of the promoter width
than the total span of the region, because it takes into account the
magnitude of the expression in the region. Positions of specified quantiles
within each cluster have to be calculated beforehand by calling
quantilePositions
.
Plots the histograms with the ggplot2
engine and returns the plot
object invisibly.
Vanja Haberle
Charles Plessy
Other CAGEr plot functions:
TSSlogo()
,
hanabiPlot()
,
plotAnnot()
,
plotCorrelation()
,
plotExpressionProfiles()
,
plotReverseCumulatives()
Other CAGEr clusters functions:
CTSScumulativesTagClusters()
,
CustomConsensusClusters()
,
aggregateTagClusters()
,
consensusClustersDESeq2()
,
consensusClustersGR()
,
cumulativeCTSSdistribution()
,
distclu()
,
paraclu()
,
quantilePositions()
,
tagClustersGR()
plotInterquantileWidth( exampleCAGEexp, clusters = "tagClusters" , tpmThreshold = 50, qLow = 0.1, qUp = 0.9 , xlim = c(2,200)) plotInterquantileWidth( exampleCAGEexp, clusters = "consensusClusters" , tpmThreshold = 50, qLow = 0.1, qUp = 0.9 , xlim = c(2,200))
plotInterquantileWidth( exampleCAGEexp, clusters = "tagClusters" , tpmThreshold = 50, qLow = 0.1, qUp = 0.9 , xlim = c(2,200)) plotInterquantileWidth( exampleCAGEexp, clusters = "consensusClusters" , tpmThreshold = 50, qLow = 0.1, qUp = 0.9 , xlim = c(2,200))
Plots the reverse cumulative distribution of the expression values of the
CTSS for all CAGE datasets present in the CAGEexp
object. The horizontal
axis represents an expression value and the vertical axis represents the
number of CTSS positions supported by >= of that value. The plot uses a
log-log scale. Use these plots as help in choosing the parameters range of
values and the referent slope for power-law normalization
(Balwierz et al., 2009).
plotReverseCumulatives( object, values = c("raw", "normalized"), fitInRange = c(10, 1000), group = NULL ) ## S4 method for signature 'CAGEexp' plotReverseCumulatives( object, values = c("raw", "normalized"), fitInRange = c(10, 1000), group = NULL ) ## S4 method for signature 'GRangesList' plotReverseCumulatives( object, values = c("raw", "normalized"), fitInRange = c(10, 1000), group = NULL ) ## S4 method for signature 'GRanges' plotReverseCumulatives( object, values = c("raw", "normalized"), fitInRange = c(10, 1000), group = NULL )
plotReverseCumulatives( object, values = c("raw", "normalized"), fitInRange = c(10, 1000), group = NULL ) ## S4 method for signature 'CAGEexp' plotReverseCumulatives( object, values = c("raw", "normalized"), fitInRange = c(10, 1000), group = NULL ) ## S4 method for signature 'GRangesList' plotReverseCumulatives( object, values = c("raw", "normalized"), fitInRange = c(10, 1000), group = NULL ) ## S4 method for signature 'GRanges' plotReverseCumulatives( object, values = c("raw", "normalized"), fitInRange = c(10, 1000), group = NULL )
object |
A |
values |
Plot |
fitInRange |
An integer vector with two values specifying a range of tag
count values to be used for fitting a power-law distribution to reverse
cumulatives. Ignored is set to |
group |
The name of a column data of the |
A power law distribution is fitted to each reverse cumulative using the
values in the range specified fitInRange
. The fitted distribution is
defined by
on the log-log scale, and the
value of alpha for each sample is shown on the plot's legend. In addition,
a suggested referent power law distribution to which all samples could be
normalized is drawn on the plot and corresponding parameters (slope alpha
and total number of tags T) are denoted on the plot. This referent
distribution is chosen so that its slope (alpha) is the median of slopes
fitted to individual samples and its total number of tags (T) is the power
of 10 nearest to the median number of tags of individual samples. Resulting
plots are helpful in deciding whether power-law normalization is appropriate
for given samples and reported alpha
values aid in choosing optimal
alpha value power law normalization (see normalizeTagCount
for details).
A ggplot2::ggplot
object containing the plots. The plot can
be further modified to change its title or axis labels (see
ggplot2::labs
). The legend can be removed with
ggplot2::guides
(col=FALSE)
.
Vanja Haberle (original work)
Charles Plessy (port to ggplot2)
Balwierz et al. (2009) Methods for analyzing deep sequencing expression data: constructing the human and mouse promoterome with deepCAGE data, Genome Biology 10(7):R79. https://doi.org/10.1186/gb-2009-10-7-r79
Other CAGEr plot functions:
TSSlogo()
,
hanabiPlot()
,
plotAnnot()
,
plotCorrelation()
,
plotExpressionProfiles()
,
plotInterquantileWidth()
Other CAGEr normalised data functions:
normalizeTagCount()
exampleCAGEexp <- setColors(exampleCAGEexp, c("salmon", "darkkhaki", "darkturquoise", "blueviolet", "blueviolet")) exampleCAGEexp$grp <- c("a", "b", "b", "c", "c") plotReverseCumulatives( exampleCAGEexp, fitInRange = c(5,100)) plotReverseCumulatives( exampleCAGEexp, values = "normalized" , fitInRange = c(200, 2000), group = "sampleLabels") plotReverseCumulatives( exampleCAGEexp[,4:5], fitInRange = c(5,100)) + ggplot2::ggtitle("prim6 replicates") tagClustersGR(exampleCAGEexp) |> plotReverseCumulatives()
exampleCAGEexp <- setColors(exampleCAGEexp, c("salmon", "darkkhaki", "darkturquoise", "blueviolet", "blueviolet")) exampleCAGEexp$grp <- c("a", "b", "b", "c", "c") plotReverseCumulatives( exampleCAGEexp, fitInRange = c(5,100)) plotReverseCumulatives( exampleCAGEexp, values = "normalized" , fitInRange = c(200, 2000), group = "sampleLabels") plotReverseCumulatives( exampleCAGEexp[,4:5], fitInRange = c(5,100)) + ggplot2::ggtitle("prim6 replicates") tagClustersGR(exampleCAGEexp) |> plotReverseCumulatives()
Calculates the positions of “upper” and “lower”
quantiles of CAGE signal along tag clusters or consensus clusters in each
sample of a CAGEexp
object.
quantilePositions( object, clusters = c("tagClusters", "consensusClusters"), qLow = 0.1, qUp = 0.9, useMulticore = FALSE, nrCores = NULL ) ## S4 method for signature 'CAGEexp' quantilePositions( object, clusters = c("tagClusters", "consensusClusters"), qLow = 0.1, qUp = 0.9, useMulticore = FALSE, nrCores = NULL )
quantilePositions( object, clusters = c("tagClusters", "consensusClusters"), qLow = 0.1, qUp = 0.9, useMulticore = FALSE, nrCores = NULL ) ## S4 method for signature 'CAGEexp' quantilePositions( object, clusters = c("tagClusters", "consensusClusters"), qLow = 0.1, qUp = 0.9, useMulticore = FALSE, nrCores = NULL )
object |
A CAGEexp object. |
clusters |
Either |
qLow , qUp
|
Which “lower” or “upper” quantiles should be
calculated. Numeric vector of values in range |
useMulticore |
Logical, should multicore be used. |
nrCores |
Number of cores to use when |
From the 5' end the position, the position of a quantile q is determined as the first base in which of the cumulative expression is higher or equal to q% of the total CAGE signal of that cluster. Promoter interquantile width is defined as the distance (in base pairs) between a “lower” and an “upper” quantile position.
Returns the objects, in which the positions of the quantiles are
defined relatively to the start point of their cluster, for more efficient
Rle
compression. The quantile data for tag clusters are stored in the
TagClusters
objects directly. The quantile data for consensus clusters
are stored in integer
matrices named “q_x”, where x
represents the quantile (for instance, q_0.1
), and these matrices are
assays of the consensusClusters
RangedSummarizedExperiment
.
Vanja Haberle
Charles Plessy
Other CAGEr object modifiers:
CTSStoGenes()
,
CustomConsensusClusters()
,
aggregateTagClusters()
,
annotateCTSS()
,
cumulativeCTSSdistribution()
,
distclu()
,
getCTSS()
,
normalizeTagCount()
,
paraclu()
,
quickEnhancers()
,
resetCAGEexp()
,
summariseChrExpr()
Other CAGEr clusters functions:
CTSScumulativesTagClusters()
,
CustomConsensusClusters()
,
aggregateTagClusters()
,
consensusClustersDESeq2()
,
consensusClustersGR()
,
cumulativeCTSSdistribution()
,
distclu()
,
paraclu()
,
plotInterquantileWidth()
,
tagClustersGR()
quantilePositions(exampleCAGEexp, "tagClusters", qLow = c(0.1, 0.2), qUp = c(0.8, 0.9)) tagClustersGR(exampleCAGEexp) quantilePositions(exampleCAGEexp, "consensusClusters", qLow = c(0.1, 0.2), qUp = c(0.8, 0.9))
quantilePositions(exampleCAGEexp, "tagClusters", qLow = c(0.1, 0.2), qUp = c(0.8, 0.9)) tagClustersGR(exampleCAGEexp) quantilePositions(exampleCAGEexp, "consensusClusters", qLow = c(0.1, 0.2), qUp = c(0.8, 0.9))
A convenient wrapper to the function CAGEfightR::quickEnhancers()
.
quickEnhancers(object) ## S4 method for signature 'CAGEexp' quickEnhancers(object)
quickEnhancers(object) ## S4 method for signature 'CAGEexp' quickEnhancers(object)
object |
A |
The CAGEr
object will be converted to a format similar to the output
of CAGEfightR::quantifyCTSSs()
, and then passed to the quickEnhancers
function.
A RangedSummarizedExperiment
object. See the example below on
how to attach it to the experiment list of a CAGEexp
object.
At the moment the conversion is expensive as it goes from DataFrame
of Rle
to data.frame
to matrix
.
Other CAGEr object modifiers:
CTSStoGenes()
,
CustomConsensusClusters()
,
aggregateTagClusters()
,
annotateCTSS()
,
cumulativeCTSSdistribution()
,
distclu()
,
getCTSS()
,
normalizeTagCount()
,
paraclu()
,
quantilePositions()
,
resetCAGEexp()
,
summariseChrExpr()
# Can not run as long as the test data has nothing on the minus strand! ## Not run: quickEnhancers(exampleCAGEexp) ## End(Not run)
# Can not run as long as the test data has nothing on the minus strand! ## Not run: quickEnhancers(exampleCAGEexp) ## End(Not run)
Assigns region types such as promoter
, exon
or unknown
to genomic
regions such as CTSS, tag clusters, or consensus clusters.
ranges2annot(ranges, annot, upstream = 500, downstream = 500)
ranges2annot(ranges, annot, upstream = 500, downstream = 500)
ranges |
A |
annot |
A |
upstream |
Number of bases upstream the start of the transcript models to be considered as part of the promoter region. |
downstream |
Number of bases downstream the start of the transcript models to be considered as part of the promoter region. |
Only the biotypes that are likely to have a pol II promoter will be
filtered in. This is currently hardcoded in the function; see its source
code. Example of biotypes without a pol II promoter: VDJ segments, miRNA,
but also snoRNA, etc. Thus, the Intergenic category displayed in output of
the plotAnnot
may include counts overlaping with real exons of discarded
transcribed regions: be careful that large percentages do not necessarly
suggest abundance of novel promoters.
A Run-length-encoded (Rle
) factor of same length as the CTSS
object, indicating if the interval is promoter
, exon
, intron
or
unknown
, or just promoter
, gene
, unknown
if the type
metadata is absent.
Charles Plessy
CTSScoordinatesGR
, exampleZv9_annot
Other CAGEr annotation functions:
annotateCTSS()
,
plotAnnot()
,
ranges2genes()
,
ranges2names()
CAGEr:::ranges2annot(CTSScoordinatesGR(exampleCAGEexp), exampleZv9_annot) ctss <- GenomicRanges::GRanges("chr1", IRanges::IPos(c(1,100,200,1500)), "+") ctss <- GenomicRanges::GPos(ctss, stitch = FALSE) ctss <- as(ctss, "CTSS") gr1 <- GenomicRanges::GRanges( "chr1" , IRanges::IRanges(c(650, 650, 1400), 2000), "+") CAGEr:::ranges2annot(ctss, gr1) gr2 <- gr1 gr2$type <- c("transcript", "exon", "transcript") gr2$transcript_type <- c("protein_coding", "protein_coding", "miRNA") CAGEr:::ranges2annot(ctss, gr2, up=500, down=20)
CAGEr:::ranges2annot(CTSScoordinatesGR(exampleCAGEexp), exampleZv9_annot) ctss <- GenomicRanges::GRanges("chr1", IRanges::IPos(c(1,100,200,1500)), "+") ctss <- GenomicRanges::GPos(ctss, stitch = FALSE) ctss <- as(ctss, "CTSS") gr1 <- GenomicRanges::GRanges( "chr1" , IRanges::IRanges(c(650, 650, 1400), 2000), "+") CAGEr:::ranges2annot(ctss, gr1) gr2 <- gr1 gr2$type <- c("transcript", "exon", "transcript") gr2$transcript_type <- c("protein_coding", "protein_coding", "miRNA") CAGEr:::ranges2annot(ctss, gr2, up=500, down=20)
Assign gene symbol(s) to Genomic Ranges.
ranges2genes(ranges, genes)
ranges2genes(ranges, genes)
ranges |
|
genes |
A GRanges object containing |
This private (non-exported) function is used to assign gene symbols
to genomic ranges. It is run by annotateCTSS
, which has to
be run before CTSStoGenes
.
A S4Vectors::Rle
factor of same length as the GRanges object,
indicating one gene symbol or a semicolon-separated list of gene symbols for each
range. The levels are alphabetically sorted.
Charles Plessy
CTSScoordinatesGR
, exampleZv9_annot
Other CAGEr annotation functions:
annotateCTSS()
,
plotAnnot()
,
ranges2annot()
,
ranges2names()
Other CAGEr gene expression analysis functions:
CTSStoGenes()
,
GeneExpDESeq2()
CAGEr:::ranges2genes(CTSScoordinatesGR(exampleCAGEexp), exampleZv9_annot)
CAGEr:::ranges2genes(CTSScoordinatesGR(exampleCAGEexp), exampleZv9_annot)
Intersection of genomic ranges
ranges2names(rangesA, rangesB)
ranges2names(rangesA, rangesB)
rangesA |
A |
rangesB |
A second |
This private (non-exported) function intersects two genomic ranges and for each element of the first object returns the name of the elements of the second object that it intersects with.
A Rle
factor of same length as the rangesA
GRanges
object, indicating one name or a semicolon-separated list of names from
the each rangesB
object. The levels are in order of appearance to
to maintain genomic coordinate sort order when the names are cluster names.
Charles Plessy
Other CAGEr annotation functions:
annotateCTSS()
,
plotAnnot()
,
ranges2annot()
,
ranges2genes()
names(exampleZv9_annot) <- exampleZv9_annot$gene_name CAGEr:::ranges2names(CTSScoordinatesGR(exampleCAGEexp), exampleZv9_annot)
names(exampleZv9_annot) <- exampleZv9_annot$gene_name CAGEr:::ranges2names(CTSScoordinatesGR(exampleCAGEexp), exampleZv9_annot)
Removes all data but the raw CTSS counts and coordinates from a CAGEexp
object. Useful after removing samples.
resetCAGEexp(object) ## S4 method for signature 'CAGEexp' resetCAGEexp(object)
resetCAGEexp(object) ## S4 method for signature 'CAGEexp' resetCAGEexp(object)
object |
A |
Returns a CAGEexp
object, which contains a non-normalised
tagCountMatrix
experiment.
Charles Plessy
Other CAGEr object modifiers:
CTSStoGenes()
,
CustomConsensusClusters()
,
aggregateTagClusters()
,
annotateCTSS()
,
cumulativeCTSSdistribution()
,
distclu()
,
getCTSS()
,
normalizeTagCount()
,
paraclu()
,
quantilePositions()
,
quickEnhancers()
,
summariseChrExpr()
resetCAGEexp(exampleCAGEexp)
resetCAGEexp(exampleCAGEexp)
Drop-in replacement for the rowsum
function, which does not work natively
on S4Vectors::DataFrame
objects containing S4Vectors::Rle
-encoded
numerical values.
## S3 method for class 'RleDataFrame' rowsum(x, group, reorder = TRUE, na.rm = FALSE, ...)
## S3 method for class 'RleDataFrame' rowsum(x, group, reorder = TRUE, na.rm = FALSE, ...)
x |
A |
group |
a vector or factor giving the grouping, with one element per row
of |
reorder |
If |
na.rm |
Logical ( |
... |
Other arguments to be passed to or from methods. |
See the file benchmarks/rowsum_on_Rle_DF.md
in the source Git repository
of CAGEr for the alternatives that were considered.
Charles Plessy
Other Rle DataFrames:
rowSums.RleDataFrame()
exampleCAGEexp |> CTSStagCountDF() |> CAGEr:::rowsum.RleDataFrame(decode(CTSScoordinatesGR(exampleCAGEexp)$cluster), reorder = FALSE)
exampleCAGEexp |> CTSStagCountDF() |> CAGEr:::rowsum.RleDataFrame(decode(CTSScoordinatesGR(exampleCAGEexp)$cluster), reorder = FALSE)
Drop-in replacement for the rowSums
function, which does not work natively
on S4Vectors::DataFrame
objects containing S4Vectors::Rle
-encoded
numerical values.
rowSums.RleDataFrame(x, na.rm = FALSE)
rowSums.RleDataFrame(x, na.rm = FALSE)
x |
A |
na.rm |
logical. Should missing values (including |
See the file benchmarks/rowSums_on_Rle_DF.md
in the source Git repository
of CAGEr for the alternatives that were considered.
A Rle
-encoded numerical vector of the same class as in the
DataFrame
.
Charles Plessy
Other Rle DataFrames:
rowsum.RleDataFrame()
exampleCAGEexp |> CTSStagCountDF() |> CAGEr:::rowSums.RleDataFrame(na.rm = TRUE)
exampleCAGEexp |> CTSStagCountDF() |> CAGEr:::rowSums.RleDataFrame(na.rm = TRUE)
sampleLabels
gets or sets the labels and colors of CAGE datasets
(samples) from CAGEr
objects.
sampleList
is an accessory function for convenience
iteration in functions such as lapply
or mapply
.
There is no set method for sampleList
.
sampleLabels(object) ## S4 method for signature 'CAGEexp' sampleLabels(object) ## S4 method for signature 'CTSS' sampleLabels(object) sampleList(object) ## S4 method for signature 'CAGEr' sampleList(object) sampleLabels(object) <- value ## S4 replacement method for signature 'CAGEexp' sampleLabels(object) <- value ## S4 replacement method for signature 'CTSS' sampleLabels(object) <- value
sampleLabels(object) ## S4 method for signature 'CAGEexp' sampleLabels(object) ## S4 method for signature 'CTSS' sampleLabels(object) sampleList(object) ## S4 method for signature 'CAGEr' sampleList(object) sampleLabels(object) <- value ## S4 replacement method for signature 'CAGEexp' sampleLabels(object) <- value ## S4 replacement method for signature 'CTSS' sampleLabels(object) <- value
object |
A CAGEr object. |
value |
A character vector with a unique and valid name for each sample.
The |
In CAGEexp
objects, renaming samples is possible only before
data is loaded.
sampleLabels
returns a named character vector representing labels of all
CAGE datasets present in the CAGEr object. The vector values are the labels and the
vector names are the colors.
sampleList
returns a named list where elements and their
names are the sample names, for instance: list(sampleA = "sampleA",
sampleB = "sampleB")
. Thus, after iterating on it with lapply
, the
element names will be sample names.
If no colors are supplied, then default colors will be assigned
usign the rainbow
function. Assigned colors are not guaranteed
to be stable.
Vanja Haberle
Charles Plessy
Other CAGEr accessor methods:
CTSScoordinatesGR()
,
CTSScumulativesTagClusters()
,
CTSSnormalizedTpmDF()
,
CTSStagCountDF()
,
GeneExpDESeq2()
,
GeneExpSE()
,
consensusClustersGR()
,
expressionClasses()
,
filteredCTSSidx()
,
genomeName()
,
inputFiles()
,
inputFilesType()
,
librarySizes()
,
seqNameTotalsSE()
,
tagClustersGR()
Other CAGEr setter methods:
genomeName()
,
inputFiles()
,
inputFilesType()
,
setColors()
sampleLabels(exampleCAGEexp) sampleList(exampleCAGEexp)
sampleLabels(exampleCAGEexp) sampleList(exampleCAGEexp)
Calculates the shifting score for all consensus clusters (promoters) between two specified (groups of) CAGE datasets. Shifting score is a measure of differential usage of TSSs within consensus cluster between two samples, which indicates the degree of physical separation of TSSs used in these samples within given consensus cluster. In addition to shifting score, a statistical significance (P-value and FDR) of differential TSS usage is calculated for each consensus cluster using Kolmogorov-Smirnov test.
scoreShift( object, groupX, groupY, testKS = TRUE, useTpmKS = TRUE, useMulticore = F, nrCores = NULL ) ## S4 method for signature 'CAGEexp' scoreShift( object, groupX, groupY, testKS = TRUE, useTpmKS = TRUE, useMulticore = F, nrCores = NULL )
scoreShift( object, groupX, groupY, testKS = TRUE, useTpmKS = TRUE, useMulticore = F, nrCores = NULL ) ## S4 method for signature 'CAGEexp' scoreShift( object, groupX, groupY, testKS = TRUE, useTpmKS = TRUE, useMulticore = F, nrCores = NULL )
object |
A |
groupX , groupY
|
Character vector of the one or more CAGE dataset labels in the first
( |
testKS |
Logical, should Kolomogorov-Smirnov test for statistical significance of differential TSS usage be performed, and P-values and FDR returned. See Details. |
useTpmKS |
Logical, should normalized (tpm) values ( |
useMulticore |
Logical, should multicore be used. |
nrCores |
Number of cores to use when |
TSSs within one consensus cluster (promoter) can be used differently in different samples (cell types, tissues, developmental stages), with respect to their position and frequency of usage detected by CAGE. This function calculates shifting scores of all consensus clusters between two specified (groups of) CAGE samples to detect promoters that are used differently in these two samples. Shifting score is a measure of differential TSS usage defined as:
score = max(F1 - F2) / max(F1)
where F1 is a cumulative sum of CAGE signal along consensus cluster in the group of samples
with lower total signal in that consensus cluster, and F2 in the opposite group. Since
cumulative sum can be calculated in both forward (5' -> 3') and reverse (3' -> 5')
direction, shifting score is calculated for both cases and the bigger value is selected as
final shifting score. Value of the shifting score is in the range [-Inf, 1]
, where
value of 1
means complete physical separation of TSSs used in the two samples for
given consensus cluster. In general, any non-negative value of the shifting score can be
interpreted as the proportion of transcription initiation in the sample with lower expression
that is happening "outside" (either upstream or downstream) of the region used for
transcription initiation in the other sample. Negative values indicate no physical
separation, i.e. the region used for transcription initiation in the sample with
lower expression is completely contained within the region used for transcription
initiation in the other sample.
In addition to shifting score which indicates only physical separation (upstream or
downstream shift of TSSs), a more general assessment of differential TSS usage can be
obtained by performing a two-sample Kolmogorov-Smirnov test on cumulative sums of CAGE
signal along the consensus cluster. In that case, cumulative sums in both samples are
scaled to range [0,1]
and are considered to be empirical cumulative distribution functions
(ECDF) reflecting sampling of TSS positions during transcription initiation.
Kolmogorov-Smirnov test is performed to assess whether the two underlying probability
distributions differ. To obtain P-value (i.e. the level at which the
null-hypothesis can be rejected), sample sizes that generated the ECDFs are required, in
addition to actual K-S statistics calculated from ECDFs. These are derived either from
raw tag counts, i.e. exact number of times each TSS in the cluster was sampled
during sequencing (when useTpmKS = FALSE
), or from normalized tpm values (when
useTpmKS = TRUE
). P-values obtained from K-S tests are further adjusted for
multiple testing using Benjamini & Hochberg (BH) method and for each P-value a
corresponding false-discovery rate (FDR) is also reported.
Since calculation of shifting scores and Kolmogorov-Smirnov test require cumulative sums
along consensus clusters, they have to be calculated beforehand by calling
cumulativeCTSSdistribution
function.
The slots shiftingGroupX
, shiftingGroupY
and
consensusClustersShiftingScores
of the provided CAGEexp
object will
be occupied by the information on the groups of CAGE datasets that have been compared and
shifting scores of all consensus clusters. Consensus clusters (promoters) with shifting
score and/or FDR above specified threshold can be extracted by calling
getShiftingPromoters
function.
Vanja Haberle
Sarvesh Nikumbh
Other CAGEr promoter shift functions:
getShiftingPromoters()
scoreShift( exampleCAGEexp , groupX = c("Zf.unfertilized.egg") , groupY = "Zf.30p.dome" , testKS = TRUE, useTpmKS = FALSE)
scoreShift( exampleCAGEexp , groupX = c("Zf.unfertilized.egg") , groupY = "Zf.30p.dome" , testKS = TRUE, useTpmKS = FALSE)
Get or set a SummarizedExperiment
summarising whole-chromosome
expression levels in the experiment slot seqNameTotals
and the sample metadata
of the CAGEexp
object.
seqNameTotalsSE(object) ## S4 method for signature 'CAGEexp' seqNameTotalsSE(object) seqNameTotalsSE(object) <- value
seqNameTotalsSE(object) ## S4 method for signature 'CAGEexp' seqNameTotalsSE(object) seqNameTotalsSE(object) <- value
object |
A |
value |
A SummarizedExperiment object where rows represent reference sequences such as chromosomes. |
Charles Plessy
summariseChrExpr
Other CAGEr accessor methods:
CTSScoordinatesGR()
,
CTSScumulativesTagClusters()
,
CTSSnormalizedTpmDF()
,
CTSStagCountDF()
,
GeneExpDESeq2()
,
GeneExpSE()
,
consensusClustersGR()
,
expressionClasses()
,
filteredCTSSidx()
,
genomeName()
,
inputFiles()
,
inputFilesType()
,
librarySizes()
,
sampleLabels()
,
tagClustersGR()
seqNameTotalsSE(exampleCAGEexp)
seqNameTotalsSE(exampleCAGEexp)
Assigns one color to each sample in the CAGEr object. These colors are used in various plots and exported tracks to consistently represent corresponding samples.
setColors(object, colors = NULL) ## S4 method for signature 'CAGEr' setColors(object, colors = NULL)
setColors(object, colors = NULL) ## S4 method for signature 'CAGEr' setColors(object, colors = NULL)
object |
A |
colors |
A character vector of one valid R color specification per
sample (see |
Assigns one color to each sample in the CAGEr object and modifies it in place.
Vanja Haberle
Other CAGEr setter methods:
genomeName()
,
inputFiles()
,
inputFilesType()
,
sampleLabels()
sampleLabels(exampleCAGEexp) setColors(exampleCAGEexp, 5) sampleLabels(exampleCAGEexp) setColors(exampleCAGEexp, c("#ff0000ff", "#CCFF00", "blue", "grey", 1)) sampleLabels(exampleCAGEexp) setColors(exampleCAGEexp, c("red", "darkgreen", "blue", "grey", "black")) sampleLabels(exampleCAGEexp)
sampleLabels(exampleCAGEexp) setColors(exampleCAGEexp, 5) sampleLabels(exampleCAGEexp) setColors(exampleCAGEexp, c("#ff0000ff", "#CCFF00", "blue", "grey", 1)) sampleLabels(exampleCAGEexp) setColors(exampleCAGEexp, c("red", "darkgreen", "blue", "grey", "black")) sampleLabels(exampleCAGEexp)
findStrandInvaders
detects strand invasion artefacts in the
CTSS data. removeStrandInvaders
removes them.
Strand invaders are artefacts produced by template switching reactions
used in methods such as nanoCAGE and its derivatives (C1 CAGE, ...).
They are described in details in Tang et al., 2013. Briefly, these
artefacts create CAGE-like signal downstream of genome sequences highly
similar to the tail of template-switching oligonucleotides, which is
TATAGGG
in recent (2017) nanoCAGE protocols. Since these artefacts
represent truncated cDNAs, they do not indicate promoter regions. It is
therefore advisable to remove these artefacts. Moreover, when a sample
barcode is near the linker sequence (which is not the case in recent
nanoCAGE protocols), the strand-invasion artefacts can produce
sample-specific biases, which can be confounded with biological effects
depending on how the barcode sequences were chosen. A barcode
parameter
is provided to incorporate this information.
findStrandInvaders(object, distance = 1, barcode = NULL, linker = "TATAGGG") removeStrandInvaders(object, distance = 1, barcode = NULL, linker = "TATAGGG") ## S4 method for signature 'CAGEexp' findStrandInvaders(object, distance = 1, barcode = NULL, linker = "TATAGGG") ## S4 method for signature 'CAGEexp' removeStrandInvaders(object, distance = 1, barcode = NULL, linker = "TATAGGG") ## S4 method for signature 'CTSS' findStrandInvaders(object, distance = 1, barcode = NULL, linker = "TATAGGG") ## S4 method for signature 'CTSS' removeStrandInvaders(object, distance = 1, barcode = NULL, linker = "TATAGGG")
findStrandInvaders(object, distance = 1, barcode = NULL, linker = "TATAGGG") removeStrandInvaders(object, distance = 1, barcode = NULL, linker = "TATAGGG") ## S4 method for signature 'CAGEexp' findStrandInvaders(object, distance = 1, barcode = NULL, linker = "TATAGGG") ## S4 method for signature 'CAGEexp' removeStrandInvaders(object, distance = 1, barcode = NULL, linker = "TATAGGG") ## S4 method for signature 'CTSS' findStrandInvaders(object, distance = 1, barcode = NULL, linker = "TATAGGG") ## S4 method for signature 'CTSS' removeStrandInvaders(object, distance = 1, barcode = NULL, linker = "TATAGGG")
object |
A |
distance |
The maximal edit distance between the genome and linker sequences. Regardless this parameter, only a single mismatch is allowed in the last three bases of the linker. |
barcode |
A vector of sample barcode sequences, or the name of a column
metadata of the |
linker |
The sequence of the tail of the template-switching
oligonucleotide, that will be matched with the genome sequence
(defaults to |
findStrandInvaders
returns a logical-Rle vector indicating the
position of the strand invaders in the input ranges.
With CTSS objects as input removeStrandInvaders
returns the
object after removing the CTSS positions identified as strand invaders.
In the case of CAGEexp
objects, a modified object is returned. Its sample
metadata is also updated by creating a new strandInvaders
column that
indicates the number of molecule counts removed. This value is subtracted
from the counts
colum so that the total number of tags is still equal to
librarySizes
.
Tang et al., “Suppression of artifacts and barcode bias in high-throughput transcriptome analyses utilizing template switching.” Nucleic Acids Res. 2013 Feb 1;41(3):e44. PubMed ID: 23180801, DOI: 10.1093/nar/gks112
# Note that these examples do not do much on the example data since it was # not constructed using a protocol based using the template-switching method. findStrandInvaders(exampleCAGEexp) removeStrandInvaders(exampleCAGEexp)
# Note that these examples do not do much on the example data since it was # not constructed using a protocol based using the template-switching method. findStrandInvaders(exampleCAGEexp) removeStrandInvaders(exampleCAGEexp)
Counts the number of molecules detected per chromosome, normalises
by library size and stores the raw and normalised results in the
CAGEr
object.
summariseChrExpr(object) ## S4 method for signature 'CAGEexp' summariseChrExpr(object)
summariseChrExpr(object) ## S4 method for signature 'CAGEexp' summariseChrExpr(object)
object |
A |
Modifies the CAGEexp
by adding a “seqNameTotals” experiment
containing matrices where rows represent chromosomes and columns represent samples.
Charles Plessy
seqNameTotals
Other CAGEr object modifiers:
CTSStoGenes()
,
CustomConsensusClusters()
,
aggregateTagClusters()
,
annotateCTSS()
,
cumulativeCTSSdistribution()
,
distclu()
,
getCTSS()
,
normalizeTagCount()
,
paraclu()
,
quantilePositions()
,
quickEnhancers()
,
resetCAGEexp()
summariseChrExpr(exampleCAGEexp)
summariseChrExpr(exampleCAGEexp)
TagClusters
The TagClusters
class represents tag clusters.
It is used internally by CAGEr for type safety.
Extracts tag clusters (TCs)
for a specified CAGE experiment from a CAGEexp
object.
tagClustersGR(object, sample = NULL, qLow = NULL, qUp = NULL) ## S4 method for signature 'CAGEexp' tagClustersGR(object, sample = NULL, qLow = NULL, qUp = NULL) tagClustersGR(object, sample = NULL) <- value ## S4 replacement method for signature 'CAGEexp,ANY,TagClusters' tagClustersGR(object, sample = NULL) <- value ## S4 replacement method for signature 'CAGEexp,missing,GRangesList' tagClustersGR(object, sample = NULL) <- value
tagClustersGR(object, sample = NULL, qLow = NULL, qUp = NULL) ## S4 method for signature 'CAGEexp' tagClustersGR(object, sample = NULL, qLow = NULL, qUp = NULL) tagClustersGR(object, sample = NULL) <- value ## S4 replacement method for signature 'CAGEexp,ANY,TagClusters' tagClustersGR(object, sample = NULL) <- value ## S4 replacement method for signature 'CAGEexp,missing,GRangesList' tagClustersGR(object, sample = NULL) <- value
object |
A |
sample |
Label of the CAGE dataset (experiment, sample) for which to
extract tag clusters. If |
qLow , qUp
|
Position of which quantile should be used as a left (lower)
or right (upper) boundary (for |
value |
A |
Returns a GRangesList
or a TagClusters
object with genomic coordinates,
position of dominant TSS, total CAGE signal and additional information for
all TCs from specified CAGE dataset (sample). If quantile information is
provided, interquantile width for each TC is also calculated. The
S4Vectors::metadata
slot of the object contains a copy of the CAGEexp
object's column data.
Vanja Haberle
Charles Plessy
Other CAGEr accessor methods:
CTSScoordinatesGR()
,
CTSScumulativesTagClusters()
,
CTSSnormalizedTpmDF()
,
CTSStagCountDF()
,
GeneExpDESeq2()
,
GeneExpSE()
,
consensusClustersGR()
,
expressionClasses()
,
filteredCTSSidx()
,
genomeName()
,
inputFiles()
,
inputFilesType()
,
librarySizes()
,
sampleLabels()
,
seqNameTotalsSE()
Other CAGEr clusters functions:
CTSScumulativesTagClusters()
,
CustomConsensusClusters()
,
aggregateTagClusters()
,
consensusClustersDESeq2()
,
consensusClustersGR()
,
cumulativeCTSSdistribution()
,
distclu()
,
paraclu()
,
plotInterquantileWidth()
,
quantilePositions()
tagClustersGR( exampleCAGEexp, "Zf.high", 0.1, 0.9 ) tagClustersGR( exampleCAGEexp, 1, qLow = 0.1, qUp = 0.9 ) tagClustersGR( exampleCAGEexp )@metadata$colData
tagClustersGR( exampleCAGEexp, "Zf.high", 0.1, 0.9 ) tagClustersGR( exampleCAGEexp, 1, qLow = 0.1, qUp = 0.9 ) tagClustersGR( exampleCAGEexp )@metadata$colData
Plot the sequence logo of the region flanking the TSS. When this function is given tag clusters or consensus clusters, it uses the dominant peak as the transcription start site.
TSSlogo(x, upstream = 10, downstream = 10) ## S4 method for signature 'CAGEexp' TSSlogo(x, upstream = 10, downstream = 10) ## S4 method for signature 'TagClusters' TSSlogo(x, upstream = 10, downstream = 10) ## S4 method for signature 'ConsensusClusters' TSSlogo(x, upstream = 10, downstream = 10) ## S4 method for signature 'CTSS' TSSlogo(x, upstream = 10, downstream = 10)
TSSlogo(x, upstream = 10, downstream = 10) ## S4 method for signature 'CAGEexp' TSSlogo(x, upstream = 10, downstream = 10) ## S4 method for signature 'TagClusters' TSSlogo(x, upstream = 10, downstream = 10) ## S4 method for signature 'ConsensusClusters' TSSlogo(x, upstream = 10, downstream = 10) ## S4 method for signature 'CTSS' TSSlogo(x, upstream = 10, downstream = 10)
x |
A |
upstream |
Number of bases to plot upstream the TSS. |
downstream |
Number of bases to plot downstream the TSS, including the TSS itself. |
This function will only work if the CAGEexp
object was built with a
BSgenome
package, as it needs to extract genomic sequences.
A ggplot2::ggplot
object showing the sequence logo. The
coordinates displayed are negative for upstream sequences and positive
downstream. The position of the TSS is set to 1.
Charles Plessy
Other CAGEr plot functions:
hanabiPlot()
,
plotAnnot()
,
plotCorrelation()
,
plotExpressionProfiles()
,
plotInterquantileWidth()
,
plotReverseCumulatives()
TSSlogo(exampleCAGEexp|>consensusClustersGR(), 20, 10)
TSSlogo(exampleCAGEexp|>consensusClustersGR(), 20, 10)