Title: | Analysis of Cap Analysis of Gene Expression (CAGE) data using Bioconductor |
---|---|
Description: | CAGE is a widely used high throughput assay for measuring transcription start site (TSS) activity. CAGEfightR is an R/Bioconductor package for performing a wide range of common data analysis tasks for CAGE and 5'-end data in general. Core functionality includes: import of CAGE TSSs (CTSSs), tag (or unidirectional) clustering for TSS identification, bidirectional clustering for enhancer identification, annotation with transcript and gene models, correlation of TSS and enhancer expression, calculation of TSS shapes, quantification of CAGE expression as expression matrices and genome brower visualization. |
Authors: | Malte Thodberg |
Maintainer: | Malte Thodberg <[email protected]> |
License: | GPL-3 + file LICENSE |
Version: | 1.27.0 |
Built: | 2024-11-18 03:12:51 UTC |
Source: | https://github.com/bioc/CAGEfightR |
Annotate a set of ranges in a GRanges object with gene IDs (i.e. Entrez Gene Identifiers) based on their genic context. Features overlapping multiple genes are resolved by distance to the nearest TSS. Genes are obtained from a TxDb object, or can manually supplied as a GRanges.
assignGeneID(object, geneModels, ...) ## S4 method for signature 'GenomicRanges,GenomicRanges' assignGeneID( object, geneModels, outputColumn = "geneID", swap = NULL, upstream = 1000, downstream = 100 ) ## S4 method for signature 'RangedSummarizedExperiment,GenomicRanges' assignGeneID(object, geneModels, ...) ## S4 method for signature 'GenomicRanges,TxDb' assignGeneID( object, geneModels, outputColumn = "geneID", swap = NULL, upstream = 1000, downstream = 100 ) ## S4 method for signature 'RangedSummarizedExperiment,TxDb' assignGeneID(object, geneModels, ...)
assignGeneID(object, geneModels, ...) ## S4 method for signature 'GenomicRanges,GenomicRanges' assignGeneID( object, geneModels, outputColumn = "geneID", swap = NULL, upstream = 1000, downstream = 100 ) ## S4 method for signature 'RangedSummarizedExperiment,GenomicRanges' assignGeneID(object, geneModels, ...) ## S4 method for signature 'GenomicRanges,TxDb' assignGeneID( object, geneModels, outputColumn = "geneID", swap = NULL, upstream = 1000, downstream = 100 ) ## S4 method for signature 'RangedSummarizedExperiment,TxDb' assignGeneID(object, geneModels, ...)
object |
GRanges or RangedSummarizedExperiment: Ranges to be annotated. |
geneModels |
TxDb or GRanges: Gene models via a TxDb, or manually specified as a GRangesList. |
... |
additional arguments passed to methods. |
outputColumn |
character: Name of column to hold geneID values. |
swap |
character or NULL: If not NULL, use another set of ranges contained in object to calculate overlaps, for example peaks in the thick column. |
upstream |
integer: Distance to extend annotated promoter upstream. |
downstream |
integer: Distance to extend annotated promoter downstream. |
object with geneID added as a column in rowData (or mcols).
Other Annotation functions:
assignMissingID()
,
assignTxID()
,
assignTxType()
data(exampleUnidirectional) # Obtain gene models from a TxDb-object: library(TxDb.Mmusculus.UCSC.mm9.knownGene) txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene # Assign geneIDs assignGeneID(exampleUnidirectional, geneModels=txdb, outputColumn='geneID') # Assign geneIDs using only TC peaks: assignGeneID(exampleUnidirectional, geneModels=txdb, outputColumn='geneID', swap='thick')
data(exampleUnidirectional) # Obtain gene models from a TxDb-object: library(TxDb.Mmusculus.UCSC.mm9.knownGene) txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene # Assign geneIDs assignGeneID(exampleUnidirectional, geneModels=txdb, outputColumn='geneID') # Assign geneIDs using only TC peaks: assignGeneID(exampleUnidirectional, geneModels=txdb, outputColumn='geneID', swap='thick')
This function can relabel ranges with missing IDs (i.e. returned by assignTxID and assignGeneID), in case they need to be retained for further analysis.
assignMissingID(object, ...) ## S4 method for signature 'character' assignMissingID(object, prefix = "Novel") ## S4 method for signature 'GenomicRanges' assignMissingID(object, outputColumn = "geneID", prefix = "Novel") ## S4 method for signature 'RangedSummarizedExperiment' assignMissingID(object, outputColumn = "geneID", prefix = "Novel")
assignMissingID(object, ...) ## S4 method for signature 'character' assignMissingID(object, prefix = "Novel") ## S4 method for signature 'GenomicRanges' assignMissingID(object, outputColumn = "geneID", prefix = "Novel") ## S4 method for signature 'RangedSummarizedExperiment' assignMissingID(object, outputColumn = "geneID", prefix = "Novel")
object |
character, GRanges or RangedSummarizedExperiment: IDs to have NAs replaces with new IDs. |
... |
additional arguments passed to methods. |
prefix |
character: New name to assign to ranges with missing IDs, in the style prefix1, prefix2, etc. |
outputColumn |
character: Name of column to hold txID values. |
object with NAs replaced in outputColumn
Other Annotation functions:
assignGeneID()
,
assignTxID()
,
assignTxType()
data(exampleUnidirectional) # Obtain gene models from a TxDb-object: library(TxDb.Mmusculus.UCSC.mm9.knownGene) txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene # Assign geneIDs using only TC peaks: exampleUnidirectional <- assignGeneID(exampleUnidirectional, geneModels=txdb, outputColumn='geneID', swap='thick') # Replace NAs with 'Novel' assignMissingID(exampleUnidirectional) # Replace NAs with 'NovelTSS' assignMissingID(exampleUnidirectional, prefix = 'NovelTSS')
data(exampleUnidirectional) # Obtain gene models from a TxDb-object: library(TxDb.Mmusculus.UCSC.mm9.knownGene) txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene # Assign geneIDs using only TC peaks: exampleUnidirectional <- assignGeneID(exampleUnidirectional, geneModels=txdb, outputColumn='geneID', swap='thick') # Replace NAs with 'Novel' assignMissingID(exampleUnidirectional) # Replace NAs with 'NovelTSS' assignMissingID(exampleUnidirectional, prefix = 'NovelTSS')
Annotate a set of ranges in a GRanges object with transcript IDs based on their genic context. All overlapping transcripts are returned. Transcripts are obtained from a TxDb object, or can manually supplied as a GRanges.
assignTxID(object, txModels, ...) ## S4 method for signature 'GenomicRanges,GenomicRanges' assignTxID(object, txModels, outputColumn = "txID", swap = NULL) ## S4 method for signature 'RangedSummarizedExperiment,GenomicRanges' assignTxID(object, txModels, ...) ## S4 method for signature 'GenomicRanges,TxDb' assignTxID( object, txModels, outputColumn = "txID", swap = NULL, upstream = 1000, downstream = 0 ) ## S4 method for signature 'RangedSummarizedExperiment,TxDb' assignTxID(object, txModels, ...)
assignTxID(object, txModels, ...) ## S4 method for signature 'GenomicRanges,GenomicRanges' assignTxID(object, txModels, outputColumn = "txID", swap = NULL) ## S4 method for signature 'RangedSummarizedExperiment,GenomicRanges' assignTxID(object, txModels, ...) ## S4 method for signature 'GenomicRanges,TxDb' assignTxID( object, txModels, outputColumn = "txID", swap = NULL, upstream = 1000, downstream = 0 ) ## S4 method for signature 'RangedSummarizedExperiment,TxDb' assignTxID(object, txModels, ...)
object |
GRanges or RangedSummarizedExperiment: Ranges to be annotated. |
txModels |
TxDb or GRanges: Transcript models via a TxDb, or manually specified as a GRanges. |
... |
additional arguments passed to methods. |
outputColumn |
character: Name of column to hold txID values. |
swap |
character or NULL: If not NULL, use another set of ranges contained in object to calculate overlaps, for example peaks in the thick column. |
upstream |
integer: Distance to extend annotated promoter upstream. |
downstream |
integer: Distance to extend annotated promoter downstream. |
object with txID added as a column in rowData (or mcols)
Other Annotation functions:
assignGeneID()
,
assignMissingID()
,
assignTxType()
data(exampleUnidirectional) # Obtain transcript models from a TxDb-object: library(TxDb.Mmusculus.UCSC.mm9.knownGene) txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene # Assign txIDs assignTxID(exampleUnidirectional, txModels=txdb, outputColumn='geneID') # Assign txIDs using only TC peaks: assignTxID(exampleUnidirectional, txModels=txdb, outputColumn='geneID', swap='thick')
data(exampleUnidirectional) # Obtain transcript models from a TxDb-object: library(TxDb.Mmusculus.UCSC.mm9.knownGene) txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene # Assign txIDs assignTxID(exampleUnidirectional, txModels=txdb, outputColumn='geneID') # Assign txIDs using only TC peaks: assignTxID(exampleUnidirectional, txModels=txdb, outputColumn='geneID', swap='thick')
Annotate a set of ranges in a GRanges object with transcript type (txType) based on their genic context. Transcripts are obtained from a TxDb object, but can alternatively be specified manually as a GRangesList.
assignTxType(object, txModels, ...) ## S4 method for signature 'GenomicRanges,GenomicRangesList' assignTxType( object, txModels, outputColumn = "txType", swap = NULL, noOverlap = "intergenic" ) ## S4 method for signature 'RangedSummarizedExperiment,GenomicRangesList' assignTxType(object, txModels, ...) ## S4 method for signature 'GenomicRanges,TxDb' assignTxType( object, txModels, outputColumn = "txType", swap = NULL, tssUpstream = 100, tssDownstream = 100, proximalUpstream = 1000, detailedAntisense = FALSE ) ## S4 method for signature 'RangedSummarizedExperiment,TxDb' assignTxType(object, txModels, ...)
assignTxType(object, txModels, ...) ## S4 method for signature 'GenomicRanges,GenomicRangesList' assignTxType( object, txModels, outputColumn = "txType", swap = NULL, noOverlap = "intergenic" ) ## S4 method for signature 'RangedSummarizedExperiment,GenomicRangesList' assignTxType(object, txModels, ...) ## S4 method for signature 'GenomicRanges,TxDb' assignTxType( object, txModels, outputColumn = "txType", swap = NULL, tssUpstream = 100, tssDownstream = 100, proximalUpstream = 1000, detailedAntisense = FALSE ) ## S4 method for signature 'RangedSummarizedExperiment,TxDb' assignTxType(object, txModels, ...)
object |
GRanges or RangedSummarizedExperiment: Ranges to be annotated. |
txModels |
TxDb or GRangesList: Transcript models via a TxDb, or manually specified as a GRangesList. |
... |
additional arguments passed to methods. |
outputColumn |
character: Name of column to hold txType values. |
swap |
character or NULL: If not NULL, use another set of ranges contained in object to calculate overlaps, for example peaks in the thick column. |
noOverlap |
character: In case categories are manually supplied with as a GRangesList, what to call regions with no overlap. |
tssUpstream |
integer: Distance to extend annotated promoter upstream. |
tssDownstream |
integer: Distance to extend annotated promoter downstream. |
proximalUpstream |
integer: Maximum distance upstream of promoter to be considered proximal. |
detailedAntisense |
logical: Wether to mirror all txType categories in the antisense direction (TRUE) or lump them all together (FALSE). |
object with txType added as factor column in rowData (or mcols)
Other Annotation functions:
assignGeneID()
,
assignMissingID()
,
assignTxID()
## Not run: data(exampleUnidirectional) # Obtain transcript models from a TxDb-object: library(TxDb.Mmusculus.UCSC.mm9.knownGene) txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene # Assign txIDs assignTxType(exampleUnidirectional, txModels=txdb) # Assign txIDs using only TC peaks: exampleUnidirectional <- assignTxType(exampleUnidirectional, txModels=txdb, swap='thick') # The 'promoter' and 'proximal' category boundaries can be changed: assignTxType(exampleUnidirectional, txModels=txdb, swap='thick', tssUpstream=50, tssDownstream=50, proximalUpstream=100) # Annotation using complete antisense categories: exampleUnidirectional <- assignTxType(exampleUnidirectional, txModels=txdb, outputColumn='txTypeExtended', swap='thick', detailedAntisense=TRUE) # The output is always a factor added as a column: summary(rowRanges(exampleUnidirectional)$txType) summary(rowRanges(exampleUnidirectional)$txTypeExtended) # To avoid using a TxDb-object, a GRangesList can be supplied: custom_hierarchy <- GRangesList(promoters=granges(promoters(txdb)), exons=granges(exons(txdb))) assignTxType(exampleUnidirectional, txModels=custom_hierarchy, outputColumn='customType', swap='thick', noOverlap = 'intergenic') ## End(Not run)
## Not run: data(exampleUnidirectional) # Obtain transcript models from a TxDb-object: library(TxDb.Mmusculus.UCSC.mm9.knownGene) txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene # Assign txIDs assignTxType(exampleUnidirectional, txModels=txdb) # Assign txIDs using only TC peaks: exampleUnidirectional <- assignTxType(exampleUnidirectional, txModels=txdb, swap='thick') # The 'promoter' and 'proximal' category boundaries can be changed: assignTxType(exampleUnidirectional, txModels=txdb, swap='thick', tssUpstream=50, tssDownstream=50, proximalUpstream=100) # Annotation using complete antisense categories: exampleUnidirectional <- assignTxType(exampleUnidirectional, txModels=txdb, outputColumn='txTypeExtended', swap='thick', detailedAntisense=TRUE) # The output is always a factor added as a column: summary(rowRanges(exampleUnidirectional)$txType) summary(rowRanges(exampleUnidirectional)$txTypeExtended) # To avoid using a TxDb-object, a GRangesList can be supplied: custom_hierarchy <- GRangesList(promoters=granges(promoters(txdb)), exons=granges(exons(txdb))) assignTxType(exampleUnidirectional, txModels=custom_hierarchy, outputColumn='customType', swap='thick', noOverlap = 'intergenic') ## End(Not run)
Calculates the Bhattacharyya coefficient from observed plus/minus upstream/downstream signals to a perfect bidirectional site, where plus-downstream = 50
balanceBC(PD, MD, PU, MU)
balanceBC(PD, MD, PU, MU)
PD |
Plus-Downstream signal |
MD |
Minus-Downstream signal |
PU |
Plus-Upstream signal |
MU |
Plus-Upstream signal |
Balance score of the same class as inputs.
# Unbalanced balanceBC(2, 3, 1, 0) # Balanced balanceBC(3, 3, 0, 0)
# Unbalanced balanceBC(2, 3, 1, 0) # Balanced balanceBC(3, 3, 0, 0)
Calculates the D-statistics from Andersson et al the observed plus/minus downstream signals. The D statistics is rescaled from -1:1 to 0:1 so it can be used for slice-reduce identification of bidirectional sites.
balanceD(PD, MD, PU, MU)
balanceD(PD, MD, PU, MU)
PD |
Plus-Downstream signal |
MD |
Minus-Downstream signal |
PU |
Plus-Upstream signal |
MU |
Plus-Upstream signal |
Balance score of the same class as inputs.
# Unbalanced balanceD(2, 3, 1, 0) # Balanced balanceD(3, 3, 0, 0)
# Unbalanced balanceD(2, 3, 1, 0) # Balanced balanceD(3, 3, 0, 0)
Finds a common genome for a series of BigWig-files, either using only levels present in all files (intersect) or in any file (union).
bwCommonGenome(plusStrand, minusStrand, method = "intersect")
bwCommonGenome(plusStrand, minusStrand, method = "intersect")
plusStrand |
BigWigFileList: BigWig files with plus-strand CTSS data. |
minusStrand |
BigWigFileList: BigWig files with minus-strand CTSS data. |
method |
character: Either 'intersect' or 'union'. |
Sorted Seqinfo-object.
Other BigWig functions:
bwGenomeCompatibility()
,
bwValid()
if (.Platform$OS.type != "windows") { # Use the BigWig-files included with the package: data('exampleDesign') bw_plus <- system.file('extdata', exampleDesign$BigWigPlus, package = 'CAGEfightR') bw_minus <- system.file('extdata', exampleDesign$BigWigMinus, package = 'CAGEfightR') # Create two named BigWigFileList-objects: bw_plus <- BigWigFileList(bw_plus) bw_minus <- BigWigFileList(bw_minus) names(bw_plus) <- exampleDesign$Name names(bw_minus) <- exampleDesign$Name # Find the smallest common genome (intersect) across the BigWigList-objects: bwCommonGenome(plusStrand=bw_plus, minusStrand=bw_minus, method='intersect') # Find the most inclusive genome (union) across the BigWigList-objects: bwCommonGenome(plusStrand=bw_plus, minusStrand=bw_minus, method='union') }
if (.Platform$OS.type != "windows") { # Use the BigWig-files included with the package: data('exampleDesign') bw_plus <- system.file('extdata', exampleDesign$BigWigPlus, package = 'CAGEfightR') bw_minus <- system.file('extdata', exampleDesign$BigWigMinus, package = 'CAGEfightR') # Create two named BigWigFileList-objects: bw_plus <- BigWigFileList(bw_plus) bw_minus <- BigWigFileList(bw_minus) names(bw_plus) <- exampleDesign$Name names(bw_minus) <- exampleDesign$Name # Find the smallest common genome (intersect) across the BigWigList-objects: bwCommonGenome(plusStrand=bw_plus, minusStrand=bw_minus, method='intersect') # Find the most inclusive genome (union) across the BigWigList-objects: bwCommonGenome(plusStrand=bw_plus, minusStrand=bw_minus, method='union') }
Given a genome, checks whether a series of BigWig-files are compatible by checking if all common seqlevels have equal seqlengths.
bwGenomeCompatibility(plusStrand, minusStrand, genome)
bwGenomeCompatibility(plusStrand, minusStrand, genome)
plusStrand |
BigWigFileList: BigWig files with plus-strand CTSS data. |
minusStrand |
BigWigFileList: BigWig files with minus-strand CTSS data. |
genome |
Seqinfo: Genome information. |
TRUE, raises an error if the supplied genome is incompabtible.
Other BigWig functions:
bwCommonGenome()
,
bwValid()
if (.Platform$OS.type != "windows") { # Use the BigWig-files included with the package: data('exampleDesign') bw_plus <- system.file('extdata', exampleDesign$BigWigPlus, package = 'CAGEfightR') bw_minus <- system.file('extdata', exampleDesign$BigWigMinus, package = 'CAGEfightR') # Create two named BigWigFileList-objects: bw_plus <- BigWigFileList(bw_plus) bw_minus <- BigWigFileList(bw_minus) names(bw_plus) <- exampleDesign$Name names(bw_minus) <- exampleDesign$Name # Make a smaller genome: si <- seqinfo(bw_plus[[1]]) si <- si['chr18'] # Check if it is still compatible: bwGenomeCompatibility(plusStrand=bw_plus, minusStrand=bw_minus, genome=si) }
if (.Platform$OS.type != "windows") { # Use the BigWig-files included with the package: data('exampleDesign') bw_plus <- system.file('extdata', exampleDesign$BigWigPlus, package = 'CAGEfightR') bw_minus <- system.file('extdata', exampleDesign$BigWigMinus, package = 'CAGEfightR') # Create two named BigWigFileList-objects: bw_plus <- BigWigFileList(bw_plus) bw_minus <- BigWigFileList(bw_minus) names(bw_plus) <- exampleDesign$Name names(bw_minus) <- exampleDesign$Name # Make a smaller genome: si <- seqinfo(bw_plus[[1]]) si <- si['chr18'] # Check if it is still compatible: bwGenomeCompatibility(plusStrand=bw_plus, minusStrand=bw_minus, genome=si) }
Checks if a BigWigFile or BigWigFileList is composed of readable files with the proper .bw extension.
bwValid(object) ## S4 method for signature 'BigWigFile' bwValid(object) ## S4 method for signature 'BigWigFileList' bwValid(object)
bwValid(object) ## S4 method for signature 'BigWigFile' bwValid(object) ## S4 method for signature 'BigWigFileList' bwValid(object)
object |
BigWigFile or BigWigFileList |
TRUE, if any tests fails an error is raised.
Other BigWig functions:
bwCommonGenome()
,
bwGenomeCompatibility()
# Use the BigWig-files included with the package: data('exampleDesign') bw_plus <- system.file('extdata', exampleDesign$BigWigPlus, package = 'CAGEfightR') # Create a named BigWigFileList-object with names bw_plus <- BigWigFileList(bw_plus) names(bw_plus) <- exampleDesign$Name # Check a single BigWigFile: bwValid(bw_plus[[1]]) # Check the entire BigWigFileList: bwValid(bw_plus)
# Use the BigWig-files included with the package: data('exampleDesign') bw_plus <- system.file('extdata', exampleDesign$BigWigPlus, package = 'CAGEfightR') # Create a named BigWigFileList-object with names bw_plus <- BigWigFileList(bw_plus) names(bw_plus) <- exampleDesign$Name # Check a single BigWigFile: bwValid(bw_plus[[1]]) # Check the entire BigWigFileList: bwValid(bw_plus)
For each cluster, calculate how many individual samples shows transcription in both directions. This is refered to as the 'bidirectionality'. Clusters must be unstranded (*) and have a midpoint stored in the thick column
calcBidirectionality(object, ...) ## S4 method for signature 'GRanges' calcBidirectionality( object, samples, inputAssay = "counts", outputColumn = "bidirectionality" ) ## S4 method for signature 'GPos' calcBidirectionality(object, ...) ## S4 method for signature 'RangedSummarizedExperiment' calcBidirectionality(object, ...)
calcBidirectionality(object, ...) ## S4 method for signature 'GRanges' calcBidirectionality( object, samples, inputAssay = "counts", outputColumn = "bidirectionality" ) ## S4 method for signature 'GPos' calcBidirectionality(object, ...) ## S4 method for signature 'RangedSummarizedExperiment' calcBidirectionality(object, ...)
object |
GenomicRanges or RangedSummarizedExperiment: Unstranded clusters with midpoints stored in the 'thick' column. |
... |
additional arguments passed to methods. |
samples |
RangedSummarizedExperiment: Sample-wise CTSSs stored as an assay. |
inputAssay |
character: Name of assay in samples holding input CTSS values. |
outputColumn |
character: Name of column in object to hold bidirectionality values. |
object returned with bidirectionality scores added in rowData (or mcols).
Other Calculation functions:
calcComposition()
,
calcPooled()
,
calcShape()
,
calcSupport()
,
calcTPM()
,
calcTotalTags()
,
subsetByBidirectionality()
,
subsetByComposition()
,
subsetBySupport()
data(exampleCTSSs) data(exampleBidirectional) calcBidirectionality(exampleBidirectional, samples=exampleCTSSs)
data(exampleCTSSs) data(exampleBidirectional) calcBidirectionality(exampleBidirectional, samples=exampleCTSSs)
For every feature, count in how many samples it is expressed above a certain fraction (e.g. 10 percent) within a grouping, usually genes. This count is refered to as the 'composition' value.
calcComposition( object, inputAssay = "counts", outputColumn = "composition", unexpressed = 0.1, genes = "geneID" )
calcComposition( object, inputAssay = "counts", outputColumn = "composition", unexpressed = 0.1, genes = "geneID" )
object |
RangedSummarizedExperiment: CAGE data quantified at CTSS, cluster or gene-level. |
inputAssay |
character: Name of assay holding input expression values. |
outputColumn |
character: Name of column in rowRanges to hold composition values. |
unexpressed |
numeric: Composition will be calculated based on features larger than this cutoff. |
genes |
character: Name of column in rowData holding genes (NAs are not currently allowed.) |
object with composition added as a column in rowData.
Other Calculation functions:
calcBidirectionality()
,
calcPooled()
,
calcShape()
,
calcSupport()
,
calcTPM()
,
calcTotalTags()
,
subsetByBidirectionality()
,
subsetByComposition()
,
subsetBySupport()
data(exampleUnidirectional) # Annotate clusters with geneIDs: library(TxDb.Mmusculus.UCSC.mm9.knownGene) txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene exampleUnidirectional <- assignGeneID(exampleUnidirectional, geneModels=txdb, outputColumn='geneID', swap='thick') # Calculate composition values: exampleUnidirectional <- subset(exampleUnidirectional, !is.na(geneID)) calcComposition(exampleUnidirectional) # Use a lower threshold calcComposition(exampleUnidirectional, unexpressed=0.05, outputColumn='lenientComposition')
data(exampleUnidirectional) # Annotate clusters with geneIDs: library(TxDb.Mmusculus.UCSC.mm9.knownGene) txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene exampleUnidirectional <- assignGeneID(exampleUnidirectional, geneModels=txdb, outputColumn='geneID', swap='thick') # Calculate composition values: exampleUnidirectional <- subset(exampleUnidirectional, !is.na(geneID)) calcComposition(exampleUnidirectional) # Use a lower threshold calcComposition(exampleUnidirectional, unexpressed=0.05, outputColumn='lenientComposition')
Sum expression of features across all samples to obtain a 'pooled' signal.
calcPooled(object, inputAssay = "TPM", outputColumn = "score")
calcPooled(object, inputAssay = "TPM", outputColumn = "score")
object |
RangedSummarizedExperiment: CAGE data quantified at CTSS, cluster or gene-level. |
inputAssay |
character: Name of assay holding input expression values. |
outputColumn |
character: Name of column in rowRanges to hold pooled expression. |
object with pooled expression added as a column in rowRanges.
Other Calculation functions:
calcBidirectionality()
,
calcComposition()
,
calcShape()
,
calcSupport()
,
calcTPM()
,
calcTotalTags()
,
subsetByBidirectionality()
,
subsetByComposition()
,
subsetBySupport()
data(exampleCTSSs) # Calculate TPM using supplied total number of tags: exampleCTSSs <- calcTPM(exampleCTSSs, totalTags='totalTags') # Sum TPM values over samples: calcPooled(exampleCTSSs)
data(exampleCTSSs) # Calculate TPM using supplied total number of tags: exampleCTSSs <- calcTPM(exampleCTSSs, totalTags='totalTags') # Sum TPM values over samples: calcPooled(exampleCTSSs)
Apply a shape-function to the pooled CTSS signal of every Tag Cluster (TC).
calcShape(object, pooled, ...) ## S4 method for signature 'GRanges,GRanges' calcShape(object, pooled, outputColumn = "IQR", shapeFunction = shapeIQR, ...) ## S4 method for signature 'RangedSummarizedExperiment,GRanges' calcShape(object, pooled, ...) ## S4 method for signature 'GRanges,RangedSummarizedExperiment' calcShape(object, pooled, ...) ## S4 method for signature 'GRanges,GPos' calcShape(object, pooled, ...) ## S4 method for signature ## 'RangedSummarizedExperiment,RangedSummarizedExperiment' calcShape(object, pooled, ...)
calcShape(object, pooled, ...) ## S4 method for signature 'GRanges,GRanges' calcShape(object, pooled, outputColumn = "IQR", shapeFunction = shapeIQR, ...) ## S4 method for signature 'RangedSummarizedExperiment,GRanges' calcShape(object, pooled, ...) ## S4 method for signature 'GRanges,RangedSummarizedExperiment' calcShape(object, pooled, ...) ## S4 method for signature 'GRanges,GPos' calcShape(object, pooled, ...) ## S4 method for signature ## 'RangedSummarizedExperiment,RangedSummarizedExperiment' calcShape(object, pooled, ...)
object |
GenomicRanges or RangedSummarizedExperiment: TCs. |
pooled |
GenomicRanges or RangedSummarizedExperiment: Pooled CTSS as the score column. |
... |
additional arguments passed to shapeFunction. |
outputColumn |
character: Name of column to hold shape statistics. |
shapeFunction |
function: Function to apply to each TC (See details). |
object with calculated shape statistics added as a column in rowData (or mcols).
Other Calculation functions:
calcBidirectionality()
,
calcComposition()
,
calcPooled()
,
calcSupport()
,
calcTPM()
,
calcTotalTags()
,
subsetByBidirectionality()
,
subsetByComposition()
,
subsetBySupport()
Other Shape functions:
shapeEntropy()
,
shapeIQR()
,
shapeMean()
data(exampleCTSSs) data(exampleUnidirectional) # Calculate pooled CTSSs using pre-calculated number of total tags: exampleCTSSs <- calcTPM(exampleCTSSs, totalTags='totalTags') exampleCTSSs <- calcPooled(exampleCTSSs) # Calculate shape statistics calcShape(exampleUnidirectional, pooled=exampleCTSSs, outputColumn='entropy', shapeFunction=shapeEntropy) calcShape(exampleUnidirectional, pooled=exampleCTSSs, outputColumn='IQR', shapeFunction=shapeIQR, lower=0.2, upper=0.8) # See the vignette for how to implement custom shape functions!
data(exampleCTSSs) data(exampleUnidirectional) # Calculate pooled CTSSs using pre-calculated number of total tags: exampleCTSSs <- calcTPM(exampleCTSSs, totalTags='totalTags') exampleCTSSs <- calcPooled(exampleCTSSs) # Calculate shape statistics calcShape(exampleUnidirectional, pooled=exampleCTSSs, outputColumn='entropy', shapeFunction=shapeEntropy) calcShape(exampleUnidirectional, pooled=exampleCTSSs, outputColumn='IQR', shapeFunction=shapeIQR, lower=0.2, upper=0.8) # See the vignette for how to implement custom shape functions!
Calculate the number of samples expression a feature above a certain level. This number is refered to as the 'support'.
calcSupport( object, inputAssay = "counts", outputColumn = "support", unexpressed = 0 )
calcSupport( object, inputAssay = "counts", outputColumn = "support", unexpressed = 0 )
object |
RangedSummarizedExperiment: CAGE data quantified at CTSS, cluster or gene-level. |
inputAssay |
character: Name of assay holding input expression values. |
outputColumn |
character: Name of column in rowRanges to hold support values. |
unexpressed |
numeric: Support will be calculated based on features larger than this cutoff. |
object with support added as a column in rowRanges.
Other Calculation functions:
calcBidirectionality()
,
calcComposition()
,
calcPooled()
,
calcShape()
,
calcTPM()
,
calcTotalTags()
,
subsetByBidirectionality()
,
subsetByComposition()
,
subsetBySupport()
data(exampleUnidirectional) # Count samples with at at least a single tags exampleUnidirectional <- calcSupport(exampleUnidirectional, inputAssay='counts', unexpressed=0) # Count number of samples with more than 1 TPM and save as a new column. exampleUnidirectional <- calcTPM(exampleUnidirectional, totalTags = 'totalTags') exampleUnidirectional <- calcSupport(exampleUnidirectional, inputAssay='TPM', unexpressed=1, outputColumn='TPMsupport')
data(exampleUnidirectional) # Count samples with at at least a single tags exampleUnidirectional <- calcSupport(exampleUnidirectional, inputAssay='counts', unexpressed=0) # Count number of samples with more than 1 TPM and save as a new column. exampleUnidirectional <- calcTPM(exampleUnidirectional, totalTags = 'totalTags') exampleUnidirectional <- calcSupport(exampleUnidirectional, inputAssay='TPM', unexpressed=1, outputColumn='TPMsupport')
For each CAGE library, calculate the total number of tags.
calcTotalTags(object, inputAssay = "counts", outputColumn = "totalTags")
calcTotalTags(object, inputAssay = "counts", outputColumn = "totalTags")
object |
RangedSummarizedExperiment: CAGE data quantified at CTSS, cluster or gene-level. |
inputAssay |
character: Name of assay holding input expression values. |
outputColumn |
character: Name of column in colData to hold number of total tags. |
object with total tags per library added as a column in colData.
Other Calculation functions:
calcBidirectionality()
,
calcComposition()
,
calcPooled()
,
calcShape()
,
calcSupport()
,
calcTPM()
,
subsetByBidirectionality()
,
subsetByComposition()
,
subsetBySupport()
data(exampleUnidirectional) calcTotalTags(exampleUnidirectional)
data(exampleUnidirectional) calcTotalTags(exampleUnidirectional)
Normalize CAGE-tag counts into TPM values.
calcTPM( object, inputAssay = "counts", outputAssay = "TPM", totalTags = NULL, outputColumn = "totalTags" )
calcTPM( object, inputAssay = "counts", outputAssay = "TPM", totalTags = NULL, outputColumn = "totalTags" )
object |
RangedSummarizedExperiment: CAGE data quantified at CTSS, cluster or gene-level. |
inputAssay |
character: Name of assay holding input expression values. |
outputAssay |
character: Name of assay to hold TPM values. |
totalTags |
character or NULL: Column in colData holding the total number of tags for each samples. If NULL, this will be calculated using calcTotalTags. |
outputColumn |
character: Name of column in colData to hold number of total tags, only used if totalTags is NULL. |
object with TPM-values added as a new assay. If totalTags is NULL, total tags added as a column in colData.
Other Calculation functions:
calcBidirectionality()
,
calcComposition()
,
calcPooled()
,
calcShape()
,
calcSupport()
,
calcTotalTags()
,
subsetByBidirectionality()
,
subsetByComposition()
,
subsetBySupport()
data(exampleUnidirectional) # Calculate TPM: calcTPM(exampleUnidirectional) # Use pre-calculated total number of tags: calcTPM(exampleUnidirectional, outputAssay='TPMsupplied', totalTags='totalTags')
data(exampleUnidirectional) # Calculate TPM: calcTPM(exampleUnidirectional) # Use pre-calculated total number of tags: calcTPM(exampleUnidirectional, outputAssay='TPMsupplied', totalTags='totalTags')
Checks whether a file (or GRanges/GPos) contains data formatted in the same manner as CAGE Transcription Start Sites (CTSSs): Each basepair of the genome is associated with a single integer count.
checkCTSSs(object) ## S4 method for signature 'ANY' checkCTSSs(object) ## S4 method for signature 'GRanges' checkCTSSs(object) ## S4 method for signature 'character' checkCTSSs(object) ## S4 method for signature 'GPos' checkCTSSs(object) ## S4 method for signature 'BigWigFile' checkCTSSs(object)
checkCTSSs(object) ## S4 method for signature 'ANY' checkCTSSs(object) ## S4 method for signature 'GRanges' checkCTSSs(object) ## S4 method for signature 'character' checkCTSSs(object) ## S4 method for signature 'GPos' checkCTSSs(object) ## S4 method for signature 'BigWigFile' checkCTSSs(object)
object |
BigWigFile, character, GRanges or GPos: Path to the file storing CTSSs, or an already improted GRanges/GPos. |
TRUE if CTSSs are correctly formatted, otherwise a (hopefully) informative error is thrown.
In the case that a character is supplied pointing to a file, checkCTSSs will not check any extensions, but simply try to read it using rtracklayer::import. This means that checkCTSSs can technically analyze BED-files, although CAGEfightR can only import CTSSs from BigWig or bedGraph files.
if (.Platform$OS.type != "windows") { # Load example data data('exampleDesign') bw_plus <- system.file('extdata', exampleDesign$BigWigPlus, package = 'CAGEfightR') bw_plus <- BigWigFileList(bw_plus) # Check raw file checkCTSSs(bw_plus[[1]]) # Import first, then check gr <- import(bw_plus[[1]]) checkCTSSs(gr) }
if (.Platform$OS.type != "windows") { # Load example data data('exampleDesign') bw_plus <- system.file('extdata', exampleDesign$BigWigPlus, package = 'CAGEfightR') bw_plus <- BigWigFileList(bw_plus) # Check raw file checkCTSSs(bw_plus[[1]]) # Import first, then check gr <- import(bw_plus[[1]]) checkCTSSs(gr) }
Checks whether a supplied set of cluster have valid peaks: Whether the thick column contains IRanges all contained within the main ranges.
checkPeaked(object)
checkPeaked(object)
object |
GRanges or GPos: Clusters with peaks to be checked. |
TRUE if object is correct format, otherwise an error is thrown
Other Checking functions:
checkPooled()
data(exampleUnidirectional) checkPeaked(rowRanges(exampleUnidirectional))
data(exampleUnidirectional) checkPeaked(rowRanges(exampleUnidirectional))
Checks whether a supplied pooled signal is valid: Single bp disjoint with signal in the score column with supplied genome information.
checkPooled(object)
checkPooled(object)
object |
GRanges or GPos: Pooled signal to be checked |
TRUE if object is correct format, otherwise an error is thrown
Other Checking functions:
checkPeaked()
data(exampleCTSSs) checkPooled(rowRanges(exampleCTSSs))
data(exampleCTSSs) checkPooled(rowRanges(exampleCTSSs))
Finds sites with (balanced and divergent) bidirectional transcription using sliding windows of summed coverage: The Bhattacharyya coefficient (BC) is used to quantify depature from a perfectly balanced site, and a slice-reduce is used to identify sites.
clusterBidirectionally(object, ...) ## S4 method for signature 'GRanges' clusterBidirectionally( object, window = 201, balanceThreshold = 0.95, balanceFun = balanceBC ) ## S4 method for signature 'GPos' clusterBidirectionally(object, ...) ## S4 method for signature 'RangedSummarizedExperiment' clusterBidirectionally(object, ...)
clusterBidirectionally(object, ...) ## S4 method for signature 'GRanges' clusterBidirectionally( object, window = 201, balanceThreshold = 0.95, balanceFun = balanceBC ) ## S4 method for signature 'GPos' clusterBidirectionally(object, ...) ## S4 method for signature 'RangedSummarizedExperiment' clusterBidirectionally(object, ...)
object |
GenomicRanges or RangedSummarizedExperiment: Pooled CTSSs stored in the score column. |
... |
additional arguments passed to methods. |
window |
integer: Width of sliding window used for calculating window sums. |
balanceThreshold |
numeric: Minimum value of the BC to use for slice-reduce, a value of 1 corresponds to perfectly balanced sites. |
balanceFun |
function: Advanced users may supply their own function for calculating the balance score instead of the the default balanceBC. See details for instructions. |
GRanges with bidirectional sites: Minimum width is 1 + 2*window, TPM sum (on both strands) in the score column, maximal bidirectional site in the thick column and maximum balance in the balance column.
Other Clustering functions:
clusterUnidirectionally()
,
trimToPeak()
,
trimToPercentiles()
,
tuneTagClustering()
## Not run: data(exampleCTSSs) # Calculate pooledTPM, using supplied number of total tags exampleCTSSs <- calcTPM(exampleCTSSs, inputAssay='counts', outputAssay='TPM', totalTags='totalTags') exampleCTSSs <- calcPooled(exampleCTSSs, inputAssay='TPM') # Cluster using defaults: balance-treshold of 199 and window of 199 bp: clusterBidirectionally(exampleCTSSs) # Use custom thresholds: clusterBidirectionally(exampleCTSSs, balanceThreshold=0.99, window=101) ## End(Not run)
## Not run: data(exampleCTSSs) # Calculate pooledTPM, using supplied number of total tags exampleCTSSs <- calcTPM(exampleCTSSs, inputAssay='counts', outputAssay='TPM', totalTags='totalTags') exampleCTSSs <- calcPooled(exampleCTSSs, inputAssay='TPM') # Cluster using defaults: balance-treshold of 199 and window of 199 bp: clusterBidirectionally(exampleCTSSs) # Use custom thresholds: clusterBidirectionally(exampleCTSSs, balanceThreshold=0.99, window=101) ## End(Not run)
Finds unidirectional Tag Clusters (TCs) with a pooled TPM above a certain threshold using a slice-reduce approach. Addtionally calculates the sum and peak position of the TCs.
clusterUnidirectionally(object, ...) ## S4 method for signature 'GRanges' clusterUnidirectionally(object, pooledCutoff = 0, mergeDist = 20L) ## S4 method for signature 'RangedSummarizedExperiment' clusterUnidirectionally(object, ...) ## S4 method for signature 'GPos' clusterUnidirectionally(object, ...)
clusterUnidirectionally(object, ...) ## S4 method for signature 'GRanges' clusterUnidirectionally(object, pooledCutoff = 0, mergeDist = 20L) ## S4 method for signature 'RangedSummarizedExperiment' clusterUnidirectionally(object, ...) ## S4 method for signature 'GPos' clusterUnidirectionally(object, ...)
object |
GRanges or RangedSummarizedExperiment: Basepair-wise pooled CTSS. |
... |
additional arguments passed to methods. |
pooledCutoff |
numeric: Minimum pooled value to be considered as TC. |
mergeDist |
integer: Merge TCs within this distance. |
GRanges with TPM sum as the score column, and TC peak as the thick column.
Other Clustering functions:
clusterBidirectionally()
,
trimToPeak()
,
trimToPercentiles()
,
tuneTagClustering()
data(exampleCTSSs) # Calculate pooledTPM, using supplied number of total tags exampleCTSSs <- calcTPM(exampleCTSSs, inputAssay='counts', outputAssay='TPM', totalTags='totalTags') exampleCTSSs <- calcPooled(exampleCTSSs, inputAssay='TPM') # Cluster using defaults: slice-threshold of 0 and reduce-distance of 20 clusterUnidirectionally(exampleCTSSs) # Use custom thresholds: clusterUnidirectionally(exampleCTSSs, pooledCutoff=1, mergeDist=25)
data(exampleCTSSs) # Calculate pooledTPM, using supplied number of total tags exampleCTSSs <- calcTPM(exampleCTSSs, inputAssay='counts', outputAssay='TPM', totalTags='totalTags') exampleCTSSs <- calcPooled(exampleCTSSs, inputAssay='TPM') # Cluster using defaults: slice-threshold of 0 and reduce-distance of 20 clusterUnidirectionally(exampleCTSSs) # Use custom thresholds: clusterUnidirectionally(exampleCTSSs, pooledCutoff=1, mergeDist=25)
This function can safely combine two CAGE experiments, for example TCs and enhancers, for later analysis, by making sure no ranges in the final object are overlapping.
combineClusters(object1, object2, ...) ## S4 method for signature ## 'RangedSummarizedExperiment,RangedSummarizedExperiment' combineClusters(object1, object2, removeIfOverlapping = "none")
combineClusters(object1, object2, ...) ## S4 method for signature ## 'RangedSummarizedExperiment,RangedSummarizedExperiment' combineClusters(object1, object2, removeIfOverlapping = "none")
object1 |
RangedSummarizedExperiment: First experiment to be combined. |
object2 |
RangedSummarizedExperiment: First experiment to be combined. |
... |
arguments passed to methods. |
removeIfOverlapping |
character: Whether to keep overlapping ranges ('none') or discard from either the first ('object1') or second ('object2') experiment. |
RangedSummarizedExperiment with merged and sorted ranges (colData and metadata are carried over unchanged).
data(exampleUnidirectional) data(exampleBidirectional) # Clusters must have identical colData to be combined: exampleUnidirectional$totalTags <- NULL # Combine, keeping potential overlaps combineClusters(object1=exampleUnidirectional, object2=exampleBidirectional) # If features overlap, keep only from object1 combineClusters(object1=exampleUnidirectional, object2=exampleBidirectional, removeIfOverlapping='object2') # If features overlap, keep only from object2 combineClusters(object1=exampleUnidirectional, object2=exampleBidirectional, removeIfOverlapping='object1')
data(exampleUnidirectional) data(exampleBidirectional) # Clusters must have identical colData to be combined: exampleUnidirectional$totalTags <- NULL # Combine, keeping potential overlaps combineClusters(object1=exampleUnidirectional, object2=exampleBidirectional) # If features overlap, keep only from object1 combineClusters(object1=exampleUnidirectional, object2=exampleBidirectional, removeIfOverlapping='object2') # If features overlap, keep only from object2 combineClusters(object1=exampleUnidirectional, object2=exampleBidirectional, removeIfOverlapping='object1')
Function for converting mapped reads in BAM-files to CAGE Transcription Start Sites (CTSSs) in BigWig-files. Currently, this function will simply load a (single-end) BAM-file (respecting a supplied ScanBamParam), optionally remove short tags, and count the number of 5'-ends at each bp. Note, the BAM-file is loaded as a single object, so you must be able to keep at least one complete BAM-file in RAM.
convertBAM2BigWig(input, outputPlus, outputMinus, minLength = 1L, ...)
convertBAM2BigWig(input, outputPlus, outputMinus, minLength = 1L, ...)
input |
character: Path to input BAM-file |
outputPlus |
character: Path to output BigWig-file holding CTSSs on the plus strand. |
outputMinus |
character: Path to output BigWig-file holding CTSSs on the minus strand. |
minLength |
integer: Minimum length of mapped reads. |
... |
Additional arguments passed to rtracklayer::import. This will often include a ScanBamParam |
Number of CTSSs/Tags returned invisibly.
WARNING: This function is experimental, has not been thoroughly tested, and will most likely significantly change in upcoming CAGEfightR version. For comments/question please go to the CAGEfightR github page.
# TBA
# TBA
Collection of functions for converting CTSSs/CTSSs-like data stored in BigWig, bedGraph or BED file formats. BigWig and bedGraph files use a file for each strand, while BED-files stores both strands in a single file. As BigWig files stores info about the chromosome lenghts, conversion from bedGraph/BED to BigWig requires a genome. Note that CAGEfightR will only import BigWig or bedGraph files!
convertBED2BigWig(input, outputPlus, outputMinus, genome) convertBED2BedGraph(input, outputPlus, outputMinus) convertBedGraph2BigWig(input, output, genome) convertBigWig2BedGraph(input, output) convertBigWig2BED(inputPlus, inputMinus, output) convertBedGraph2BED(inputPlus, inputMinus, output)
convertBED2BigWig(input, outputPlus, outputMinus, genome) convertBED2BedGraph(input, outputPlus, outputMinus) convertBedGraph2BigWig(input, output, genome) convertBigWig2BedGraph(input, output) convertBigWig2BED(inputPlus, inputMinus, output) convertBedGraph2BED(inputPlus, inputMinus, output)
input |
charater: Path to input files holding CTSSs on both strands. |
outputPlus |
character: Path to output files holding CTSSs on plus strand. |
outputMinus |
character: Path to output files holding CTSSs on minus strand. |
genome |
Seqinfo or character: Genome info passed to rtracklayer::import (see note). |
output |
charater: Path to output files holding CTSSs on both strands. |
inputPlus |
character: Path to input files holding CTSSs on plus strand. |
inputMinus |
character: Path to input files holding CTSSs on minus strand. |
TRUE returned invisibly if conversion(s) was succesful, otherwise an error is raised.
These functions will warn if input files do not have the correct extensions (.bw, .bedGraph, .bed), but otherwise simply pass input to rtracklayer::import. This makes them able to handle compressed files (like .gz). The same applies to the genome argument, which can also be the name of a UCSC genome.
## Not run: # Find paths to BigWig files data('exampleDesign') bw_plus <- system.file('extdata', exampleDesign$BigWigPlus, package = 'CAGEfightR') bw_minus <- system.file('extdata', exampleDesign$BigWigMinus, package = 'CAGEfightR') # Designate paths to new files n_samples <- length(bw_plus) beds <- replicate(n=n_samples, tempfile(fileext=".bed")) bg_plus <- replicate(n=n_samples, tempfile(fileext="_plus.bedGraph")) bg_minus <- replicate(n=n_samples, tempfile(fileext="_minus.bedGraph")) conv_plus <- replicate(n=n_samples, tempfile(fileext="_plus.bw")) conv_minus <- replicate(n=n_samples, tempfile(fileext="_minus.bw")) # Convert BigWig to BED convertBigWig2BED(inputPlus=bw_plus, inputMinus=bw_minus, output=beds) # Convert BED to bedGraph convertBED2BedGraph(input=beds, outputPlus=bg_plus, outputMinus=bg_minus) # Convert BED to bedGraph mm9 <- SeqinfoForUCSCGenome("mm9") convertBED2BigWig(input=beds, outputPlus=conv_plus, outputMinus=conv_minus, genome=mm9) # Check it's still the same data x <- import(bw_plus[1]) y <- import(bg_plus[1]) z <- import(conv_plus[1]) all(x == y) all(x == z) sum(score(x)) == sum(score(y)) sum(score(x)) == sum(score(z)) ## End(Not run)
## Not run: # Find paths to BigWig files data('exampleDesign') bw_plus <- system.file('extdata', exampleDesign$BigWigPlus, package = 'CAGEfightR') bw_minus <- system.file('extdata', exampleDesign$BigWigMinus, package = 'CAGEfightR') # Designate paths to new files n_samples <- length(bw_plus) beds <- replicate(n=n_samples, tempfile(fileext=".bed")) bg_plus <- replicate(n=n_samples, tempfile(fileext="_plus.bedGraph")) bg_minus <- replicate(n=n_samples, tempfile(fileext="_minus.bedGraph")) conv_plus <- replicate(n=n_samples, tempfile(fileext="_plus.bw")) conv_minus <- replicate(n=n_samples, tempfile(fileext="_minus.bw")) # Convert BigWig to BED convertBigWig2BED(inputPlus=bw_plus, inputMinus=bw_minus, output=beds) # Convert BED to bedGraph convertBED2BedGraph(input=beds, outputPlus=bg_plus, outputMinus=bg_minus) # Convert BED to bedGraph mm9 <- SeqinfoForUCSCGenome("mm9") convertBED2BigWig(input=beds, outputPlus=conv_plus, outputMinus=conv_minus, genome=mm9) # Check it's still the same data x <- import(bw_plus[1]) y <- import(bg_plus[1]) z <- import(conv_plus[1]) all(x == y) all(x == z) sum(score(x)) == sum(score(y)) sum(score(x)) == sum(score(z)) ## End(Not run)
Converts a GRanges to a GPos, correctly expanding the score column. This is useful is nearby CTSSs with the same count are grouped in the same range (see example).
convertGRanges2GPos(object)
convertGRanges2GPos(object)
object |
GRanges object with a score column |
GPos with score column
# Example GRanges gr <- GRanges(Rle(c("chr2", "chr2", "chr3", "chr4")), IRanges(start=c(1, 10, 5, 3), end=c(5L, 10L, 5L, 4L)), strand="+", score=c(2, 1, 3, 11)) # Expand to proper GPos / CTSS format: gp <- convertGRanges2GPos(gr) # Double check that the total number of counts remains the same stopifnot(sum(score(gr) * width(gr)) == sum(score(gp)))
# Example GRanges gr <- GRanges(Rle(c("chr2", "chr2", "chr3", "chr4")), IRanges(start=c(1, 10, 5, 3), end=c(5L, 10L, 5L, 4L)), strand="+", score=c(2, 1, 3, 11)) # Expand to proper GPos / CTSS format: gp <- convertGRanges2GPos(gr) # Double check that the total number of counts remains the same stopifnot(sum(score(gr) * width(gr)) == sum(score(gp)))
Subset of the CAGE dataset from the paper 'Identification of Gene Transcription Start Sites and Enhancers Responding to Pulmonary Carbon Nanotube Exposure in Vivo'. CTSS data from subsets of chr18 and chr19 across 3 mouse (mm9 ) samples are included. Datasets can be loaded with the data function.
exampleDesign exampleCTSSs exampleUnidirectional exampleBidirectional exampleGenes
exampleDesign exampleCTSSs exampleUnidirectional exampleBidirectional exampleGenes
Example data from various stages of CAGEfightR:
DataFrame: Description of samples, including .bw filenames
RangedSummarizedExperiment: CTSSs
RangedSummarizedExperiment: Unidirectional or Tag Clusters
RangedSummarizedExperiment: Bidirectional clusters
RangedSummarizedExperiment: Genes
An object of class RangedSummarizedExperiment
with 41256 rows and 3 columns.
An object of class RangedSummarizedExperiment
with 21008 rows and 3 columns.
An object of class RangedSummarizedExperiment
with 377 rows and 3 columns.
An object of class RangedSummarizedExperiment
with 127 rows and 3 columns.
http://pubs.acs.org/doi/abs/10.1021/acsnano.6b07533
data(exampleDesign) data(exampleCTSSs) data(exampleUnidirectional) data(exampleBidirectional) data(exampleGenes)
data(exampleDesign) data(exampleCTSSs) data(exampleUnidirectional) data(exampleBidirectional) data(exampleGenes)
Finds all links or pairs of clusters within a certain distance of each other and then calculates the correlation between them. The links found can be restricted to only be between two classes, for example TSSs to enhancers.
findLinks(object, ...) ## S4 method for signature 'GRanges' findLinks(object, maxDist = 10000L, directional = NULL) ## S4 method for signature 'RangedSummarizedExperiment' findLinks( object, inputAssay, maxDist = 10000L, directional = NULL, corFun = stats::cor.test, vals = c("estimate", "p.value"), ... )
findLinks(object, ...) ## S4 method for signature 'GRanges' findLinks(object, maxDist = 10000L, directional = NULL) ## S4 method for signature 'RangedSummarizedExperiment' findLinks( object, inputAssay, maxDist = 10000L, directional = NULL, corFun = stats::cor.test, vals = c("estimate", "p.value"), ... )
object |
GRanges or RangedSummarizedExperiment: Clusters, possibly with expression for calculating correlations. |
... |
additional arguments passed to methods or ultimately corFun. |
maxDist |
integer: Maximum distance between links. |
directional |
character: Name of a column in object holding a grouping of the clusters. This must be a factor with two levels. The first level is used as the basis for calculating orientation (see below). |
inputAssay |
character: Name of assay holding expression values (if object is a RangedSummarizedExperiment) |
corFun |
function: Function for calculating pairwise correlations. See notes for supplying custom functions. |
vals |
character: Statistics extracted from the results produced by corFun. See notes for supplying custom functions. |
A custom function for calculation correlations can be supplied by the user. The output of this function must be a named list or vector of numeric values. The names of the vals to be extracted should be supplied to vals.
A GInteractions holding the links, along with the distance between them and correlation estimate and p-value calculated from their expression. If a directional analysis was performed, the two anchors are always connecting members of the two classes and the orientation of the second anchor relative to the first is additionaly calculated (e.g. whether an enhancers is upstream or downstream of the TSS).
Other Spatial functions:
findStretches()
,
trackLinks()
library(InteractionSet) # Subset to highly expressed unidirectional clusters TCs <- subset(exampleUnidirectional, score > 10) # Find links within a certain distance findLinks(TCs, inputAssay="counts", maxDist=10000L) # To find TSS-to-enhancer type links, first merge the clusters: colData(exampleBidirectional) <- colData(TCs) rowRanges(TCs)$clusterType <- "TSS" rowRanges(exampleBidirectional)$clusterType <- "Enhancer" SE <- combineClusters(TCs, exampleBidirectional, removeIfOverlapping="object1") rowRanges(SE)$clusterType <- factor(rowRanges(SE)$clusterType, levels=c("TSS", "Enhancer")) # Calculate kendall correlations of TPM values: SE <- calcTPM(SE, totalTags="totalTags") findLinks(SE, inputAssay="TPM", maxDist=10000L, directional="clusterType", method="kendall")
library(InteractionSet) # Subset to highly expressed unidirectional clusters TCs <- subset(exampleUnidirectional, score > 10) # Find links within a certain distance findLinks(TCs, inputAssay="counts", maxDist=10000L) # To find TSS-to-enhancer type links, first merge the clusters: colData(exampleBidirectional) <- colData(TCs) rowRanges(TCs)$clusterType <- "TSS" rowRanges(exampleBidirectional)$clusterType <- "Enhancer" SE <- combineClusters(TCs, exampleBidirectional, removeIfOverlapping="object1") rowRanges(SE)$clusterType <- factor(rowRanges(SE)$clusterType, levels=c("TSS", "Enhancer")) # Calculate kendall correlations of TPM values: SE <- calcTPM(SE, totalTags="totalTags") findLinks(SE, inputAssay="TPM", maxDist=10000L, directional="clusterType", method="kendall")
Finds stretches or groups of clusters along the genome, where each cluster is within a certain distance of the next. Once stretches have been identified, the average pairwise correlation between all clusters in the stretch is calculated. A typical use case is to look for stretches of enhancers, often refered to as "super enhancers".
findStretches(object, ...) ## S4 method for signature 'GRanges' findStretches(object, mergeDist = 10000L, minSize = 3L) ## S4 method for signature 'RangedSummarizedExperiment' findStretches( object, inputAssay, mergeDist = 10000L, minSize = 3L, corFun = cor, ... )
findStretches(object, ...) ## S4 method for signature 'GRanges' findStretches(object, mergeDist = 10000L, minSize = 3L) ## S4 method for signature 'RangedSummarizedExperiment' findStretches( object, inputAssay, mergeDist = 10000L, minSize = 3L, corFun = cor, ... )
object |
GRanges or RangedSummarizedExperiment: Clusters, possibly with expression for calculating correlations. |
... |
additional arguments passed to methods or ultimately corFun. |
mergeDist |
integer: Maximum distance between clusters to be merged into stretches. |
minSize |
integer: Minimum number of clusters in stretches. |
inputAssay |
character: Name of assay holding expression values (if object is a RangedSummarizedExperiment) |
corFun |
function: Function for calculating correlations. Should behave and produce output similar to cor(). |
A GRanges containing stretches with number of clusters and average pairwise correlations calculated. The revmap can be used to retrieve the original clusters (see example below.)
Other Spatial functions:
findLinks()
,
trackLinks()
# Calculate TPM values for bidirectional clusters data(exampleBidirectional) BCs <- calcTPM(exampleBidirectional) # Find stretches pearson_stretches <- findStretches(BCs, inputAssay="TPM") # Use Kendall instead of pearson and require bigger stretches kendall_stretches <- findStretches(BCs, inputAssay="TPM", minSize=5, method="kendall") # Use the revmap to get stretches as a GRangesList grl <- extractList(rowRanges(BCs), kendall_stretches$revmap) names(grl) <- names(kendall_stretches)
# Calculate TPM values for bidirectional clusters data(exampleBidirectional) BCs <- calcTPM(exampleBidirectional) # Find stretches pearson_stretches <- findStretches(BCs, inputAssay="TPM") # Use Kendall instead of pearson and require bigger stretches kendall_stretches <- findStretches(BCs, inputAssay="TPM", minSize=5, method="kendall") # Use the revmap to get stretches as a GRangesList grl <- extractList(rowRanges(BCs), kendall_stretches$revmap) names(grl) <- names(kendall_stretches)
Quantify expression of clusters (TSSs or enhancers) by summing CTSSs within clusters.
quantifyClusters(object, clusters, inputAssay = "counts", sparse = FALSE)
quantifyClusters(object, clusters, inputAssay = "counts", sparse = FALSE)
object |
RangedSummarizedExperiment: CTSSs. |
clusters |
GRanges: Clusters to be quantified. |
inputAssay |
character: Name of assay holding expression values to be quantified (usually counts). |
sparse |
logical: If the input is a sparse matrix, TRUE will keep the output matrix sparse while FALSE will coerce it into a normal matrix. |
RangedSummarizedExperiment with row corresponding to clusters. seqinfo and colData is copied over from object.
Other Quantification functions:
quantifyCTSSs2()
,
quantifyCTSSs()
,
quantifyGenes()
# CTSSs stored in a RangedSummarizedExperiment: data(exampleCTSS) # Clusters to be quantified as a GRanges: data(exampleUnidirectional) clusters <- rowRanges(exampleUnidirectional) # Quantify clusters: quantifyClusters(exampleCTSSs, clusters) # For exceptionally large datasets, # the resulting count matrix can be left sparse: quantifyClusters(exampleCTSSs, rowRanges(exampleUnidirectional), sparse=TRUE)
# CTSSs stored in a RangedSummarizedExperiment: data(exampleCTSS) # Clusters to be quantified as a GRanges: data(exampleUnidirectional) clusters <- rowRanges(exampleUnidirectional) # Quantify clusters: quantifyClusters(exampleCTSSs, clusters) # For exceptionally large datasets, # the resulting count matrix can be left sparse: quantifyClusters(exampleCTSSs, rowRanges(exampleUnidirectional), sparse=TRUE)
This function reads in CTSS count data from a series of BigWig-files (or bedGraph-files) and returns a CTSS-by-library count matrix. For efficient processing, the count matrix is stored as a sparse matrix (dgCMatrix from the Matrix package), and CTSSs are compressed to a GPos object if possible.
quantifyCTSSs(plusStrand, minusStrand, design = NULL, genome = NULL, ...) ## S4 method for signature 'BigWigFileList,BigWigFileList' quantifyCTSSs( plusStrand, minusStrand, design = NULL, genome = NULL, nTiles = 1L ) ## S4 method for signature 'character,character' quantifyCTSSs(plusStrand, minusStrand, design = NULL, genome = NULL)
quantifyCTSSs(plusStrand, minusStrand, design = NULL, genome = NULL, ...) ## S4 method for signature 'BigWigFileList,BigWigFileList' quantifyCTSSs( plusStrand, minusStrand, design = NULL, genome = NULL, nTiles = 1L ) ## S4 method for signature 'character,character' quantifyCTSSs(plusStrand, minusStrand, design = NULL, genome = NULL)
plusStrand |
BigWigFileList or character: BigWig/bedGraph files with plus-strand CTSS data. |
minusStrand |
BigWigFileList or character: BigWig/bedGraph files with minus-strand CTSS data. |
design |
DataFrame or data.frame: Additional information on samples which will be added to the ouput |
genome |
Seqinfo: Genome information. If NULL the smallest common genome will be found using bwCommonGenome when BigWig-files are analyzed. |
... |
additional arguments passed to methods. |
nTiles |
integer: Number of genomic tiles to parallelize over. |
RangedSummarizedExperiment, where assay is a sparse matrix (dgCMatrix) of CTSS counts and design stored in colData.
Other Quantification functions:
quantifyCTSSs2()
,
quantifyClusters()
,
quantifyGenes()
## Not run: # Load the example data data('exampleDesign') # Use the BigWig-files included with the package: bw_plus <- system.file('extdata', exampleDesign$BigWigPlus, package = 'CAGEfightR') bw_minus <- system.file('extdata', exampleDesign$BigWigMinus, package = 'CAGEfightR') # Create two named BigWigFileList-objects: bw_plus <- BigWigFileList(bw_plus) bw_minus <- BigWigFileList(bw_minus) names(bw_plus) <- exampleDesign$Name names(bw_minus) <- exampleDesign$Name # Quantify CTSSs, by default this will use the smallest common genome: CTSSs <- quantifyCTSSs(plusStrand=bw_plus, minusStrand=bw_minus, design=exampleDesign) # Alternatively, a genome can be specified: si <- seqinfo(bw_plus[[1]]) si <- si['chr18'] CTSSs_subset <- quantifyCTSSs(plusStrand=bw_plus, minusStrand=bw_minus, design=exampleDesign, genome=si) # Quantification can be speed up by using multiple cores: library(BiocParallel) register(MulticoreParam(workers=3)) CTSSs_subset <- quantifyCTSSs(plusStrand=bw_plus, minusStrand=bw_minus, design=exampleDesign, genome=si) # CAGEfightR also support bedGraph files, first BigWig is converted bg_plus <- replicate(n=length(bw_plus), tempfile(fileext="_plus.bedGraph")) bg_minus <- replicate(n=length(bw_minus), tempfile(fileext="_minus.bedGraph")) names(bg_plus) <- names(bw_plus) names(bg_minus) <- names(bw_minus) convertBigWig2BedGraph(input=sapply(bw_plus, resource), output=bg_plus) convertBigWig2BedGraph(input=sapply(bw_minus, resource), output=bg_minus) # Then analyze: Note a genome MUST be supplied here! si <- bwCommonGenome(bw_plus, bw_minus) CTSSs_via_bg <- quantifyCTSSs(plusStrand=bg_plus, minusStrand=bg_minus, design=exampleDesign, genome=si) # Confirm that the two approaches yield the same results all(assay(CTSSs_via_bg) == assay(CTSSs)) ## End(Not run)
## Not run: # Load the example data data('exampleDesign') # Use the BigWig-files included with the package: bw_plus <- system.file('extdata', exampleDesign$BigWigPlus, package = 'CAGEfightR') bw_minus <- system.file('extdata', exampleDesign$BigWigMinus, package = 'CAGEfightR') # Create two named BigWigFileList-objects: bw_plus <- BigWigFileList(bw_plus) bw_minus <- BigWigFileList(bw_minus) names(bw_plus) <- exampleDesign$Name names(bw_minus) <- exampleDesign$Name # Quantify CTSSs, by default this will use the smallest common genome: CTSSs <- quantifyCTSSs(plusStrand=bw_plus, minusStrand=bw_minus, design=exampleDesign) # Alternatively, a genome can be specified: si <- seqinfo(bw_plus[[1]]) si <- si['chr18'] CTSSs_subset <- quantifyCTSSs(plusStrand=bw_plus, minusStrand=bw_minus, design=exampleDesign, genome=si) # Quantification can be speed up by using multiple cores: library(BiocParallel) register(MulticoreParam(workers=3)) CTSSs_subset <- quantifyCTSSs(plusStrand=bw_plus, minusStrand=bw_minus, design=exampleDesign, genome=si) # CAGEfightR also support bedGraph files, first BigWig is converted bg_plus <- replicate(n=length(bw_plus), tempfile(fileext="_plus.bedGraph")) bg_minus <- replicate(n=length(bw_minus), tempfile(fileext="_minus.bedGraph")) names(bg_plus) <- names(bw_plus) names(bg_minus) <- names(bw_minus) convertBigWig2BedGraph(input=sapply(bw_plus, resource), output=bg_plus) convertBigWig2BedGraph(input=sapply(bw_minus, resource), output=bg_minus) # Then analyze: Note a genome MUST be supplied here! si <- bwCommonGenome(bw_plus, bw_minus) CTSSs_via_bg <- quantifyCTSSs(plusStrand=bg_plus, minusStrand=bg_minus, design=exampleDesign, genome=si) # Confirm that the two approaches yield the same results all(assay(CTSSs_via_bg) == assay(CTSSs)) ## End(Not run)
This function reads in CTSS count data from a series of BigWig-files and returns a CTSS-by-library count matrix. For efficient processing, the count matrix is stored as a sparse matrix (dgCMatrix).
quantifyCTSSs2( plusStrand, minusStrand, design = NULL, genome = NULL, tileWidth = 100000000L )
quantifyCTSSs2( plusStrand, minusStrand, design = NULL, genome = NULL, tileWidth = 100000000L )
plusStrand |
BigWigFileList: BigWig files with plus-strand CTSS data. |
minusStrand |
BigWigFileList: BigWig files with minus-strand CTSS data. |
design |
DataFrame or data.frame: Additional information on samples. |
genome |
Seqinfo: Genome information. If NULL the smallest common genome will be found using bwCommonGenome. |
tileWidth |
integer: Size of tiles to parallelize over. |
RangedSummarizedExperiment, where assay is a sparse matrix (dgCMatrix) of CTSS counts..
Other Quantification functions:
quantifyCTSSs()
,
quantifyClusters()
,
quantifyGenes()
## Not run: # Load the example data data('exampleDesign') # Use the BigWig-files included with the package: bw_plus <- system.file('extdata', exampleDesign$BigWigPlus, package = 'CAGEfightR') bw_minus <- system.file('extdata', exampleDesign$BigWigMinus, package = 'CAGEfightR') # Create two named BigWigFileList-objects: bw_plus <- BigWigFileList(bw_plus) bw_minus <- BigWigFileList(bw_minus) names(bw_plus) <- exampleDesign$Name names(bw_minus) <- exampleDesign$Name # Quantify CTSSs, by default this will use the smallest common genome: CTSSs <- quantifyCTSSs(plusStrand=bw_plus, minusStrand=bw_minus, design=exampleDesign) # Alternatively, a genome can be specified: si <- seqinfo(bw_plus[[1]]) si <- si['chr18'] CTSSs <- quantifyCTSSs(plusStrand=bw_plus, minusStrand=bw_minus, design=exampleDesign, genome=si) # Quantification can be speed up by using multiple cores: library(BiocParallel) register(MulticoreParam(workers=3)) CTSSs <- quantifyCTSSs(plusStrand=bw_plus, minusStrand=bw_minus, design=exampleDesign, genome=si) ## End(Not run)
## Not run: # Load the example data data('exampleDesign') # Use the BigWig-files included with the package: bw_plus <- system.file('extdata', exampleDesign$BigWigPlus, package = 'CAGEfightR') bw_minus <- system.file('extdata', exampleDesign$BigWigMinus, package = 'CAGEfightR') # Create two named BigWigFileList-objects: bw_plus <- BigWigFileList(bw_plus) bw_minus <- BigWigFileList(bw_minus) names(bw_plus) <- exampleDesign$Name names(bw_minus) <- exampleDesign$Name # Quantify CTSSs, by default this will use the smallest common genome: CTSSs <- quantifyCTSSs(plusStrand=bw_plus, minusStrand=bw_minus, design=exampleDesign) # Alternatively, a genome can be specified: si <- seqinfo(bw_plus[[1]]) si <- si['chr18'] CTSSs <- quantifyCTSSs(plusStrand=bw_plus, minusStrand=bw_minus, design=exampleDesign, genome=si) # Quantification can be speed up by using multiple cores: library(BiocParallel) register(MulticoreParam(workers=3)) CTSSs <- quantifyCTSSs(plusStrand=bw_plus, minusStrand=bw_minus, design=exampleDesign, genome=si) ## End(Not run)
Obtain gene-level expression estimates by summing clusters annotated to the same gene. Unannotated transcripts (NAs) are discarded.
quantifyGenes(object, genes, inputAssay = "counts", sparse = FALSE)
quantifyGenes(object, genes, inputAssay = "counts", sparse = FALSE)
object |
RangedSummarizedExperiment: Cluster-level expression values. |
genes |
character: Name of column in rowData holding gene IDs (NAs will be discarded). |
inputAssay |
character: Name of assay holding values to be quantified, (usually counts). |
sparse |
logical: If the input is a sparse matrix, TRUE will keep the output matrix sparse while FALSE will coerce it into a normal matrix. |
RangedSummarizedExperiment with rows corresponding to genes. Location of clusters within genes is stored as a GRangesList in rowRanges. seqinfo and colData is copied over from object.
Other Quantification functions:
quantifyCTSSs2()
,
quantifyCTSSs()
,
quantifyClusters()
data(exampleUnidirectional) # Annotate clusters with geneIDs: library(TxDb.Mmusculus.UCSC.mm9.knownGene) txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene exampleUnidirectional <- assignGeneID(exampleUnidirectional, geneModels=txdb, outputColumn='geneID') # Quantify counts within genes: quantifyGenes(exampleUnidirectional, genes='geneID', inputAssay='counts') # For exceptionally large datasets, # the resulting count matrix can be left sparse: quantifyGenes(exampleUnidirectional, genes='geneID', inputAssay='counts', sparse=TRUE)
data(exampleUnidirectional) # Annotate clusters with geneIDs: library(TxDb.Mmusculus.UCSC.mm9.knownGene) txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene exampleUnidirectional <- assignGeneID(exampleUnidirectional, geneModels=txdb, outputColumn='geneID') # Quantify counts within genes: quantifyGenes(exampleUnidirectional, genes='geneID', inputAssay='counts') # For exceptionally large datasets, # the resulting count matrix can be left sparse: quantifyGenes(exampleUnidirectional, genes='geneID', inputAssay='counts', sparse=TRUE)
A convienient wrapper around clusterBidirectionally, subsetByBidirectionality and quantifyClusters.
quickEnhancers(object)
quickEnhancers(object)
object |
RangedSummarizedExperiment: Location and counts of CTSSs, usually found by calling quantifyCTSSs. |
RangedSummarizedExperiment containing location and counts of enhancers.
Other Wrapper functions:
quickGenes()
,
quickTSSs()
# See the CAGEfightR vignette for an overview!
# See the CAGEfightR vignette for an overview!
A convienient wrapper around assignGeneID, and quantifyGenes. Also removes unstranded features
quickGenes(object, geneModels = NULL, ...)
quickGenes(object, geneModels = NULL, ...)
object |
RangedSummarizedExperiment: Location and counts of clusters, usually found by calling quantifyClusters. |
geneModels |
TxDb or GRanges: Gene models via a TxDb, or manually specified as a GRangesList. |
... |
additional arguments passed to assignGeneID. |
RangedSummarizedExperiment containing gene expression and clusters assigned within each gene.
Other Wrapper functions:
quickEnhancers()
,
quickTSSs()
# See the CAGEfightR vignette for an overview!
# See the CAGEfightR vignette for an overview!
A convienient wrapper around calcTPM, calcPooled, tuneTagClustering, clusterUnidirectionally and quantifyClusters.
quickTSSs(object)
quickTSSs(object)
object |
RangedSummarizedExperiment: Location and counts of CTSSs, usually found by calling quantifyCTSSs. |
RangedSummarizedExperiment containing location and counts of TSSs
Other Wrapper functions:
quickEnhancers()
,
quickGenes()
# See the CAGEfightR vignette for an overview!
# See the CAGEfightR vignette for an overview!
Calculates the Shannon Entropy (base log2) for a vector. Zeros are removed before calculation.
shapeEntropy(x)
shapeEntropy(x)
x |
numeric Rle vector: Coverage series. |
Numeric.
Other Shape functions:
calcShape()
,
shapeIQR()
,
shapeMean()
# Hypothetical shard/broad clusters: x_sharp <- Rle(c(1,1,1,4,5,2,1,1)) x_broad <- Rle(c(1,2,3,5,4,3,2,1)) # Calculate Entropy shapeEntropy(x_sharp) shapeEntropy(x_broad) # See calcShape for more usage examples
# Hypothetical shard/broad clusters: x_sharp <- Rle(c(1,1,1,4,5,2,1,1)) x_broad <- Rle(c(1,2,3,5,4,3,2,1)) # Calculate Entropy shapeEntropy(x_sharp) shapeEntropy(x_broad) # See calcShape for more usage examples
Calculates the interquartile range of a vector.
shapeIQR(x, lower = 0.25, upper = 0.75)
shapeIQR(x, lower = 0.25, upper = 0.75)
x |
numeric Rle vector: Coverage series. |
lower |
numeric: Lower quartile. |
upper |
numeric: Upper quartile. |
Numeric
Other Shape functions:
calcShape()
,
shapeEntropy()
,
shapeMean()
# Hypothetical shard/broad clusters: x_sharp <- Rle(c(1,1,1,4,5,2,1,1)) x_broad <- Rle(c(1,2,3,5,4,3,2,1)) # Calculate IQR shapeIQR(x_sharp) shapeIQR(x_broad) # See calcShape for more usage examples
# Hypothetical shard/broad clusters: x_sharp <- Rle(c(1,1,1,4,5,2,1,1)) x_broad <- Rle(c(1,2,3,5,4,3,2,1)) # Calculate IQR shapeIQR(x_sharp) shapeIQR(x_broad) # See calcShape for more usage examples
Calculates the mean of a vector.
shapeMean(x)
shapeMean(x)
x |
numeric Rle vector: Coverage series. |
Numeric
Other Shape functions:
calcShape()
,
shapeEntropy()
,
shapeIQR()
# Hypothetical shard/broad clusters: x_sharp <- Rle(c(1,1,1,4,5,2,1,1)) x_broad <- Rle(c(1,2,3,5,4,3,2,1)) # Calculate mean shapeMean(x_sharp) shapeMean(x_broad) # See calcShape for more usage examples
# Hypothetical shard/broad clusters: x_sharp <- Rle(c(1,1,1,4,5,2,1,1)) x_broad <- Rle(c(1,2,3,5,4,3,2,1)) # Calculate mean shapeMean(x_sharp) shapeMean(x_broad) # See calcShape for more usage examples
Shape statistic: Multimodality
shapeMultimodality(x)
shapeMultimodality(x)
x |
numeric Rle vector: Coverage series. |
Numeric.
# See calcShape for usage examples
# See calcShape for usage examples
A convenient wrapper around calcBidirectionality and subset.
subsetByBidirectionality(object, ...) ## S4 method for signature 'GRanges' subsetByBidirectionality( object, samples, inputAssay = "counts", outputColumn = "bidirectionality", minSamples = 0 ) ## S4 method for signature 'GPos' subsetByBidirectionality(object, ...) ## S4 method for signature 'RangedSummarizedExperiment' subsetByBidirectionality(object, ...)
subsetByBidirectionality(object, ...) ## S4 method for signature 'GRanges' subsetByBidirectionality( object, samples, inputAssay = "counts", outputColumn = "bidirectionality", minSamples = 0 ) ## S4 method for signature 'GPos' subsetByBidirectionality(object, ...) ## S4 method for signature 'RangedSummarizedExperiment' subsetByBidirectionality(object, ...)
object |
GRanges or RangedSummarizedExperiment: Unstranded clusters with peaks stored in the 'thick' column. |
... |
additional arguments passed to methods. |
samples |
RangedSummarizedExperiment: Sample-wise CTSSs stored as an assay. |
inputAssay |
character: Name of assay in samples holding input CTSS values. |
outputColumn |
character: Name of column in object to hold bidirectionality values. |
minSamples |
integer: Only regions with bidirectionality above this value are retained. |
object with bidirectionality values added as a column, and low bidirectionaly regions removed.
Other Subsetting functions:
subsetByComposition()
,
subsetBySupport()
Other Calculation functions:
calcBidirectionality()
,
calcComposition()
,
calcPooled()
,
calcShape()
,
calcSupport()
,
calcTPM()
,
calcTotalTags()
,
subsetByComposition()
,
subsetBySupport()
data(exampleCTSSs) data(exampleBidirectional) # Keep only clusters that are bidirectional in at least one sample: subsetByBidirectionality(exampleBidirectional, samples=exampleCTSSs)
data(exampleCTSSs) data(exampleBidirectional) # Keep only clusters that are bidirectional in at least one sample: subsetByBidirectionality(exampleBidirectional, samples=exampleCTSSs)
A convenient wrapper around calcComposition and subset.
subsetByComposition( object, inputAssay = "counts", outputColumn = "composition", unexpressed = 0.1, genes = "geneID", minSamples = 1 )
subsetByComposition( object, inputAssay = "counts", outputColumn = "composition", unexpressed = 0.1, genes = "geneID", minSamples = 1 )
object |
RangedSummarizedExperiment: CAGE data quantified at CTSS, cluster or gene-level. |
inputAssay |
character: Name of assay holding input expression values. |
outputColumn |
character: Name of column in rowRanges to hold composition values. |
unexpressed |
numeric: Composition will be calculated based on features larger than this cutoff. |
genes |
character: Name of column in rowData holding genes (NAs are not allowed.) |
minSamples |
numeric: Only features with composition in more than this number of samples will be kept. |
RangedSummarizedExperiment with composition values added as a column in rowData and features with less composition than minSamples removed.
Other Subsetting functions:
subsetByBidirectionality()
,
subsetBySupport()
Other Calculation functions:
calcBidirectionality()
,
calcComposition()
,
calcPooled()
,
calcShape()
,
calcSupport()
,
calcTPM()
,
calcTotalTags()
,
subsetByBidirectionality()
,
subsetBySupport()
data(exampleUnidirectional) # Annotate clusters with geneIDs: library(TxDb.Mmusculus.UCSC.mm9.knownGene) txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene exampleUnidirectional <- assignGeneID(exampleUnidirectional, geneModels=txdb, outputColumn='geneID') exampleUnidirectional <- subset(exampleUnidirectional, !is.na(geneID)) # Keep only clusters more than 10% in more than one sample: calcComposition(exampleUnidirectional) # Keep only clusters more than 5% in more than 2 samples: subsetByComposition(exampleUnidirectional, unexpressed = 0.05, minSamples=2)
data(exampleUnidirectional) # Annotate clusters with geneIDs: library(TxDb.Mmusculus.UCSC.mm9.knownGene) txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene exampleUnidirectional <- assignGeneID(exampleUnidirectional, geneModels=txdb, outputColumn='geneID') exampleUnidirectional <- subset(exampleUnidirectional, !is.na(geneID)) # Keep only clusters more than 10% in more than one sample: calcComposition(exampleUnidirectional) # Keep only clusters more than 5% in more than 2 samples: subsetByComposition(exampleUnidirectional, unexpressed = 0.05, minSamples=2)
A convienient wrapper around calcSupport and subset.
subsetBySupport( object, inputAssay = "counts", outputColumn = "support", unexpressed = 0, minSamples = 1 )
subsetBySupport( object, inputAssay = "counts", outputColumn = "support", unexpressed = 0, minSamples = 1 )
object |
RangedSummarizedExperiment: CAGE data quantified at CTSS, cluster or gene-level. |
inputAssay |
character: Name of assay holding input expression values. |
outputColumn |
character: Name of column in rowRanges to hold support values. |
unexpressed |
numeric: Support will be calculated based on features larger than this cutoff. |
minSamples |
numeric: Only features with support in more than this number of samples will be kept. |
RangedSummarizedExperiment with support added as a column in rowRanges and features with less support than minSamples removed.
Other Subsetting functions:
subsetByBidirectionality()
,
subsetByComposition()
Other Calculation functions:
calcBidirectionality()
,
calcComposition()
,
calcPooled()
,
calcShape()
,
calcSupport()
,
calcTPM()
,
calcTotalTags()
,
subsetByBidirectionality()
,
subsetByComposition()
data(exampleBidirectional) # Keep clusters with at least one tag in two samples subsetBySupport(exampleBidirectional) # Keep clusters with at least two tags in four samples subsetBySupport(exampleBidirectional, unexpressed=1, minSamples=2)
data(exampleBidirectional) # Keep clusters with at least one tag in two samples subsetBySupport(exampleBidirectional) # Keep clusters with at least two tags in four samples subsetBySupport(exampleBidirectional, unexpressed=1, minSamples=2)
Swap out the range of a GRanges-object with another IRanges-object stored inside the same object. I.e., swapping cluster widths with cluster peaks.
swapRanges(object, ...) ## S4 method for signature 'GenomicRanges' swapRanges(object, inputColumn = "thick", outputColumn = NULL) ## S4 method for signature 'RangedSummarizedExperiment' swapRanges(object, ...)
swapRanges(object, ...) ## S4 method for signature 'GenomicRanges' swapRanges(object, inputColumn = "thick", outputColumn = NULL) ## S4 method for signature 'RangedSummarizedExperiment' swapRanges(object, ...)
object |
GRanges or RangedSummarizedExperiment: Primary ranges to be swapped out. |
... |
additional arguments passed to methods. |
inputColumn |
character: Name of column holding IRanges to be swapped in. |
outputColumn |
character or NULL: Name of column to hold swapped out ranges, if NULL original ranges are not saved. |
GRanges with inputColumn swapped in as ranges.
Other Swapping functions:
swapScores()
data(exampleUnidirectional) gr <- rowRanges(exampleUnidirectional) # Swap in peaks as main ranges peaks <- swapRanges(gr) head(width(gr)) head(width(peaks)) # swapRanges() can also be directly called on a RangedSummarizedExperiment: swapRanges(exampleUnidirectional) # The original can optionally be saved in the output object swapRanges(gr, outputColumn = 'swapped')
data(exampleUnidirectional) gr <- rowRanges(exampleUnidirectional) # Swap in peaks as main ranges peaks <- swapRanges(gr) head(width(gr)) head(width(peaks)) # swapRanges() can also be directly called on a RangedSummarizedExperiment: swapRanges(exampleUnidirectional) # The original can optionally be saved in the output object swapRanges(gr, outputColumn = 'swapped')
Take scores for a specific sample and a specific assay and put them into rowData.
swapScores(object, outputColumn = "score", inputAssay, sample)
swapScores(object, outputColumn = "score", inputAssay, sample)
object |
SummarizedExperiment: CAGE-data |
outputColumn |
character: Column in rowData to to hold swapped in scores. |
inputAssay |
character: Name of assay to take scores from. |
sample |
character: Name of sample to take scores from. |
SummarizedExperiment with sample scores from inputAssay in rowRata.
Other Swapping functions:
swapRanges()
data(exampleCTSSs) sample_names <- colnames(exampleCTSSs) # Replace scores with values from the first sample: x <- swapScores(exampleCTSSs, inputAssay='counts', sample=sample_names[1]) rowRanges(x)
data(exampleCTSSs) sample_names <- colnames(exampleCTSSs) # Replace scores with values from the first sample: x <- swapScores(exampleCTSSs, inputAssay='counts', sample=sample_names[1]) rowRanges(x)
Visualize balance scores used for detectiong of bidirectional sites. Mainly intended as diagnostic tools for expert user.
trackBalance(object, ...) ## S4 method for signature 'GRanges' trackBalance( object, window = 199, plusColor = "cornflowerblue", minusColor = "tomato", balanceColor = "forestgreen", ... ) ## S4 method for signature 'GPos' trackBalance(object, ...) ## S4 method for signature 'RangedSummarizedExperiment' trackBalance(object, ...)
trackBalance(object, ...) ## S4 method for signature 'GRanges' trackBalance( object, window = 199, plusColor = "cornflowerblue", minusColor = "tomato", balanceColor = "forestgreen", ... ) ## S4 method for signature 'GPos' trackBalance(object, ...) ## S4 method for signature 'RangedSummarizedExperiment' trackBalance(object, ...)
object |
GenomicRanges or RangedSummarizedExperiment: Ranges with CTSSs in the score column. |
... |
additional arguments passed to DataTrack. |
window |
integer: Width of sliding window used for calculating windowed sums. |
plusColor |
character: Color for plus-strand coverage. |
minusColor |
character: Color for minus-strand coverage. |
balanceColor |
character: Color for bidirectional balance. |
list of 3 DataTracks for upstream, downstream and balance.
Potentially consumes a large amount of memory!
Other Genome Browser functions:
trackCTSS()
,
trackClusters()
,
trackLinks()
## Not run: library(Gviz) data(exampleCTSSs) data(exampleBidirectional) # Calculate pooled CTSSs exampleCTSSs <- calcTPM(exampleCTSSs, totalTags='totalTags') exampleCTSSs <- calcPooled(exampleCTSSs) # Find a bidirectional cluster to plot: BC <- rowRanges(exampleBidirectional[10,]) start(BC) <- start(BC) - 250 end(BC) <- end(BC) + 250 subsetOfCTSSs <- subsetByOverlaps(exampleCTSSs, BC) # Build balance track balance_track <- trackBalance(subsetOfCTSSs) # Plot plotTracks(balance_track, from=start(BC), to=end(BC), chromosome=seqnames(BC)) ## End(Not run)
## Not run: library(Gviz) data(exampleCTSSs) data(exampleBidirectional) # Calculate pooled CTSSs exampleCTSSs <- calcTPM(exampleCTSSs, totalTags='totalTags') exampleCTSSs <- calcPooled(exampleCTSSs) # Find a bidirectional cluster to plot: BC <- rowRanges(exampleBidirectional[10,]) start(BC) <- start(BC) - 250 end(BC) <- end(BC) + 250 subsetOfCTSSs <- subsetByOverlaps(exampleCTSSs, BC) # Build balance track balance_track <- trackBalance(subsetOfCTSSs) # Plot plotTracks(balance_track, from=start(BC), to=end(BC), chromosome=seqnames(BC)) ## End(Not run)
Create a Gviz-track of clusters (unidirectional TCs or bidirectional enhancers), where cluster strand and peak is indicated.
trackClusters(object, ...) ## S4 method for signature 'GRanges' trackClusters( object, plusColor = "cornflowerblue", minusColor = "tomato", unstrandedColor = "hotpink", ... ) ## S4 method for signature 'RangedSummarizedExperiment' trackClusters(object, ...)
trackClusters(object, ...) ## S4 method for signature 'GRanges' trackClusters( object, plusColor = "cornflowerblue", minusColor = "tomato", unstrandedColor = "hotpink", ... ) ## S4 method for signature 'RangedSummarizedExperiment' trackClusters(object, ...)
object |
GRanges: GRanges with peaks in the thick-column. |
... |
additional arguments passed on to GeneRegionTrack. |
plusColor |
character: Color for plus-strand features. |
minusColor |
character: Color for minus-strand features. |
unstrandedColor |
character: Color for unstranded features. |
GeneRegionTrack-object.
Other Genome Browser functions:
trackBalance()
,
trackCTSS()
,
trackLinks()
library(Gviz) data(exampleUnidirectional) # Find some wide unidirectional clusters: TCs <- subset(exampleUnidirectional, width >= 100) # Create track clusters_track <- trackClusters(TCs[1:2,], name='Tag clusters', col=NULL) # Plot plotTracks(clusters_track) # See vignette for examples on how to combine multiple Gviz tracks
library(Gviz) data(exampleUnidirectional) # Find some wide unidirectional clusters: TCs <- subset(exampleUnidirectional, width >= 100) # Create track clusters_track <- trackClusters(TCs[1:2,], name='Tag clusters', col=NULL) # Plot plotTracks(clusters_track) # See vignette for examples on how to combine multiple Gviz tracks
Create a Gviz-track of CTSSs, where Plus/minus strand signal is shown positive/negative. This representation makes it easy to identify bidirectional peaks.
trackCTSS(object, ...) ## S4 method for signature 'GRanges' trackCTSS(object, plusColor = "cornflowerblue", minusColor = "tomato", ...) ## S4 method for signature 'RangedSummarizedExperiment' trackCTSS(object, ...) ## S4 method for signature 'GPos' trackCTSS(object, ...)
trackCTSS(object, ...) ## S4 method for signature 'GRanges' trackCTSS(object, plusColor = "cornflowerblue", minusColor = "tomato", ...) ## S4 method for signature 'RangedSummarizedExperiment' trackCTSS(object, ...) ## S4 method for signature 'GPos' trackCTSS(object, ...)
object |
GenomicRanges or RangedSummarizedExperiment: Ranges with CTSSs in the score column. |
... |
additional arguments passed on to DataTrack. |
plusColor |
character: Color for plus-strand coverage. |
minusColor |
character: Color for minus-strand coverage. |
DataTrack-object.
Other Genome Browser functions:
trackBalance()
,
trackClusters()
,
trackLinks()
library(Gviz) data(exampleCTSSs) data(exampleUnidirectional) data(exampleBidirectional) # Example uni- and bidirectional clusters TC <- rowRanges(subset(exampleUnidirectional, width>=100)[3,]) BC <- rowRanges(exampleBidirectional[3,]) # Create pooled track subsetOfCTSSs <- subsetByOverlaps(rowRanges(exampleCTSSs), c(BC, TC, ignore.mcols=TRUE)) pooledTrack <- trackCTSS(subsetOfCTSSs) # Plot plotTracks(pooledTrack, from=start(TC)-100, to=end(TC)+100, chromosome=seqnames(TC), name='TC') plotTracks(pooledTrack, from=start(BC)-100, to=end(BC)+100, chromosome=seqnames(BC), name='BC') # See vignette for examples on how to combine multiple Gviz tracks
library(Gviz) data(exampleCTSSs) data(exampleUnidirectional) data(exampleBidirectional) # Example uni- and bidirectional clusters TC <- rowRanges(subset(exampleUnidirectional, width>=100)[3,]) BC <- rowRanges(exampleBidirectional[3,]) # Create pooled track subsetOfCTSSs <- subsetByOverlaps(rowRanges(exampleCTSSs), c(BC, TC, ignore.mcols=TRUE)) pooledTrack <- trackCTSS(subsetOfCTSSs) # Plot plotTracks(pooledTrack, from=start(TC)-100, to=end(TC)+100, chromosome=seqnames(TC), name='TC') plotTracks(pooledTrack, from=start(BC)-100, to=end(BC)+100, chromosome=seqnames(BC), name='BC') # See vignette for examples on how to combine multiple Gviz tracks
Create a Gviz-track of links (e.g. between TSSs and enhancers), where arches connect the different pairs of clusters. The height of arches can be set to scale the strength of the interaction (for example indicating higher correlation). This function is a thin wrapper around the InteractionTrack-class from the GenomicInteractions package. Currently, only scaling arch height by p-value is supported.
trackLinks(object, ...)
trackLinks(object, ...)
object |
GInteractions: Links or pairs between clusters. |
... |
additional arguments passed to InteractionTrack via displayPars. |
InteractionTrack-object from the GenomicInteractions package.
Other Genome Browser functions:
trackBalance()
,
trackCTSS()
,
trackClusters()
Other Spatial functions:
findLinks()
,
findStretches()
library(InteractionSet) library(Gviz) library(GenomicInteractions) # Links between highly expressed unidirectional clusters TCs <- subset(exampleUnidirectional, score > 10) TC_links <- findLinks(TCs, inputAssay="counts", maxDist=10000L) link_track <- trackLinks(TC_links, name="TSS links", interaction.measure="p.value") # Plot region plot_region <- GRanges(seqnames="chr18", ranges = IRanges(start=start(anchors(TC_links[1], "first")), end=end(anchors(TC_links[1], "second")))) # Plot using Gviz plotTracks(link_track, from=start(plot_region), to=end(plot_region), chromosome = as.character(seqnames(plot_region))) # See vignette for examples on how to combine multiple Gviz tracks
library(InteractionSet) library(Gviz) library(GenomicInteractions) # Links between highly expressed unidirectional clusters TCs <- subset(exampleUnidirectional, score > 10) TC_links <- findLinks(TCs, inputAssay="counts", maxDist=10000L) link_track <- trackLinks(TC_links, name="TSS links", interaction.measure="p.value") # Plot region plot_region <- GRanges(seqnames="chr18", ranges = IRanges(start=start(anchors(TC_links[1], "first")), end=end(anchors(TC_links[1], "second")))) # Plot using Gviz plotTracks(link_track, from=start(plot_region), to=end(plot_region), chromosome = as.character(seqnames(plot_region))) # See vignette for examples on how to combine multiple Gviz tracks
Trim the width of TCs by distance from the TC peaks.
trimToPeak(object, pooled, ...) ## S4 method for signature 'GRanges,GRanges' trimToPeak(object, pooled, upstream, downstream) ## S4 method for signature 'GRanges,GPos' trimToPeak(object, pooled, ...) ## S4 method for signature 'RangedSummarizedExperiment,GenomicRanges' trimToPeak(object, pooled, ...) ## S4 method for signature 'GRanges,RangedSummarizedExperiment' trimToPeak(object, pooled, ...) ## S4 method for signature ## 'RangedSummarizedExperiment,RangedSummarizedExperiment' trimToPeak(object, pooled, ...)
trimToPeak(object, pooled, ...) ## S4 method for signature 'GRanges,GRanges' trimToPeak(object, pooled, upstream, downstream) ## S4 method for signature 'GRanges,GPos' trimToPeak(object, pooled, ...) ## S4 method for signature 'RangedSummarizedExperiment,GenomicRanges' trimToPeak(object, pooled, ...) ## S4 method for signature 'GRanges,RangedSummarizedExperiment' trimToPeak(object, pooled, ...) ## S4 method for signature ## 'RangedSummarizedExperiment,RangedSummarizedExperiment' trimToPeak(object, pooled, ...)
object |
GenomicRanges or RangedSummarizedExperiment: Tag clusters. |
pooled |
GenomicRanges or RangedSummarizedExperiment: Basepair-wise pooled CTSS (stored in the score column). |
... |
additional arguments passed to methods. |
upstream |
integer: Maximum upstream distance from TC peak. |
downstream |
integer: Maximum downstream distance from TC peak. |
data.frame with two columns: threshold and nTCs (number of Tag Clusters)
Other Clustering functions:
clusterBidirectionally()
,
clusterUnidirectionally()
,
trimToPercentiles()
,
tuneTagClustering()
Other Trimming functions:
trimToPercentiles()
data(exampleCTSSs) data(exampleBidirectional) # Calculate pooled CTSSs exampleCTSSs <- calcTPM(exampleCTSSs, totalTags='totalTags') exampleCTSSs <- calcPooled(exampleCTSSs) # Choose a few wide clusters: TCs <- subset(exampleUnidirectional, width >= 100) # Trim to +/- 10 bp of TC peak trimToPeak(TCs, pooled=exampleCTSSs, upstream=10, downstream=10)
data(exampleCTSSs) data(exampleBidirectional) # Calculate pooled CTSSs exampleCTSSs <- calcTPM(exampleCTSSs, totalTags='totalTags') exampleCTSSs <- calcPooled(exampleCTSSs) # Choose a few wide clusters: TCs <- subset(exampleUnidirectional, width >= 100) # Trim to +/- 10 bp of TC peak trimToPeak(TCs, pooled=exampleCTSSs, upstream=10, downstream=10)
Given a set of TCs and genome-wide CTSS coverage, reduce the width of TC until a certain amount of expression has been removed.
trimToPercentiles(object, pooled, ...) ## S4 method for signature 'GRanges,GRanges' trimToPercentiles(object, pooled, percentile = 0.1, symmetric = FALSE) ## S4 method for signature 'GRanges,GPos' trimToPercentiles(object, pooled, ...) ## S4 method for signature 'RangedSummarizedExperiment,GenomicRanges' trimToPercentiles(object, pooled, ...) ## S4 method for signature 'GRanges,RangedSummarizedExperiment' trimToPercentiles(object, pooled, ...) ## S4 method for signature ## 'RangedSummarizedExperiment,RangedSummarizedExperiment' trimToPercentiles(object, pooled, ...)
trimToPercentiles(object, pooled, ...) ## S4 method for signature 'GRanges,GRanges' trimToPercentiles(object, pooled, percentile = 0.1, symmetric = FALSE) ## S4 method for signature 'GRanges,GPos' trimToPercentiles(object, pooled, ...) ## S4 method for signature 'RangedSummarizedExperiment,GenomicRanges' trimToPercentiles(object, pooled, ...) ## S4 method for signature 'GRanges,RangedSummarizedExperiment' trimToPercentiles(object, pooled, ...) ## S4 method for signature ## 'RangedSummarizedExperiment,RangedSummarizedExperiment' trimToPercentiles(object, pooled, ...)
object |
GenomicRanges or RangedSummarizedExperiment: TCs to be trimmed. |
pooled |
GenomicRanges or RangedSummarizedExperiment: CTSS coverage. |
... |
additional arguments passed to methods. |
percentile |
numeric: Fraction of expression to remove from TCs. |
symmetric |
logical: Whether to trim the same amount from both edges of the TC (TRUE) or always trim from the least expressed end (FALSE). |
GRanges with trimmed TCs, including recalculated peaks and scores.
Other Clustering functions:
clusterBidirectionally()
,
clusterUnidirectionally()
,
trimToPeak()
,
tuneTagClustering()
Other Trimming functions:
trimToPeak()
data(exampleCTSSs) data(exampleBidirectional) # Calculate pooled CTSSs exampleCTSSs <- calcTPM(exampleCTSSs, totalTags='totalTags') exampleCTSSs <- calcPooled(exampleCTSSs) # Choose a few wide clusters: TCs <- subset(exampleUnidirectional, width >= 100) # Symmetric trimming (same percentage from each side): TCs_sym <- trimToPercentiles(TCs, pooled=exampleCTSSs, symmetric=FALSE) # Assymmetric trimming (always trim from lowest side): TCs_asym <- trimToPercentiles(TCs, pooled=exampleCTSSs, symmetric=TRUE) # Compare the two results sets of widths: summary(width(TCs_sym) - width(TCs_asym))
data(exampleCTSSs) data(exampleBidirectional) # Calculate pooled CTSSs exampleCTSSs <- calcTPM(exampleCTSSs, totalTags='totalTags') exampleCTSSs <- calcPooled(exampleCTSSs) # Choose a few wide clusters: TCs <- subset(exampleUnidirectional, width >= 100) # Symmetric trimming (same percentage from each side): TCs_sym <- trimToPercentiles(TCs, pooled=exampleCTSSs, symmetric=FALSE) # Assymmetric trimming (always trim from lowest side): TCs_asym <- trimToPercentiles(TCs, pooled=exampleCTSSs, symmetric=TRUE) # Compare the two results sets of widths: summary(width(TCs_sym) - width(TCs_asym))
This function counts the number of Tag Clusters (TCs) for an series of small incremental pooled cutoffs
tuneTagClustering(object, ...) ## S4 method for signature 'GRanges' tuneTagClustering( object, steps = 10L, mergeDist = 20L, searchMethod = "minUnique", maxExponent = 1 ) ## S4 method for signature 'RangedSummarizedExperiment' tuneTagClustering(object, ...) ## S4 method for signature 'GPos' tuneTagClustering(object, ...)
tuneTagClustering(object, ...) ## S4 method for signature 'GRanges' tuneTagClustering( object, steps = 10L, mergeDist = 20L, searchMethod = "minUnique", maxExponent = 1 ) ## S4 method for signature 'RangedSummarizedExperiment' tuneTagClustering(object, ...) ## S4 method for signature 'GPos' tuneTagClustering(object, ...)
object |
GenomicRanges or RangedSummarizedExperiment: Pooled CTSS. |
... |
additional arguments passed to methods. |
steps |
integer: Number of thresholds to analyze (in addition to treshold=0). |
mergeDist |
integer: Merge TCs within this distance. |
searchMethod |
character: For advanced user only, see details. |
maxExponent |
numeric: The maximal threshold to analyse is obtained as min(score)*2^maxExponent (only used if searchMethod='exponential'). |
data.frame with two columns: threshold and nTCs (number of Tag Clusters)
Other Clustering functions:
clusterBidirectionally()
,
clusterUnidirectionally()
,
trimToPeak()
,
trimToPercentiles()
## Not run: data(exampleCTSSs) # Calculate pooledTPM, using supplied number of total tags exampleCTSSs <- calcTPM(exampleCTSSs, inputAssay='counts', outputAssay='TPM', totalTags='totalTags') exampleCTSSs <- calcPooled(exampleCTSSs, inputAssay='TPM') # Set backend library(BiocParallel) register(SerialParam()) # Find optimal slice-threshold for reduce distance of 20: tuneTagClustering(object=exampleCTSSs) ## End(Not run)
## Not run: data(exampleCTSSs) # Calculate pooledTPM, using supplied number of total tags exampleCTSSs <- calcTPM(exampleCTSSs, inputAssay='counts', outputAssay='TPM', totalTags='totalTags') exampleCTSSs <- calcPooled(exampleCTSSs, inputAssay='TPM') # Set backend library(BiocParallel) register(SerialParam()) # Find optimal slice-threshold for reduce distance of 20: tuneTagClustering(object=exampleCTSSs) ## End(Not run)
Used by quantifyClusters and quantifyGenes. Wrapper around rowsum with a few improvements: 1) Handles dgCMatrix 2) Suppresses warnings from and discards NAs in grouping 3) Checks if output can be coerced to integer (useful when aggregating a dgCMatrix), 4) For the dgCMatrix case, has the option to keep unused levels and output a sparse matrix.
utilsAggregateRows(x, group, drop = TRUE, sparse = FALSE) ## S4 method for signature 'matrix' utilsAggregateRows(x, group, drop = TRUE, sparse = FALSE) ## S4 method for signature 'dgCMatrix' utilsAggregateRows(x, group, drop = TRUE, sparse = FALSE)
utilsAggregateRows(x, group, drop = TRUE, sparse = FALSE) ## S4 method for signature 'matrix' utilsAggregateRows(x, group, drop = TRUE, sparse = FALSE) ## S4 method for signature 'dgCMatrix' utilsAggregateRows(x, group, drop = TRUE, sparse = FALSE)
x |
matrix or dgCMatrix: Matrix to be aggregated. |
group |
factor: Grouping, can cannot NAs which will be discarded. |
drop |
logical: Whether to drop unused levels (TRUE) or keep assign them 0 (FALSE). |
sparse |
logical: Whether output should be coerced to a dense matrix. |
matrix (or dgCMatrix if sparse=TRUE)
Other Utility functions:
utilsDeStrand()
,
utilsScoreOverlaps()
,
utilsSimplifyTxDb()
library(Matrix) data("exampleCTSSs") data("exampleUnidirectional") # Sparse and dense examples sparse_matrix <- assay(exampleCTSSs) dense_matrix <- as(sparse_matrix, "matrix") # Groupings grp <- findOverlaps(query = exampleCTSSs, subject = exampleUnidirectional, select="arbitrary") # Aggregate rows and compare sparse_res <- utilsAggregateRows(sparse_matrix, grp) dense_res <- utilsAggregateRows(dense_matrix, grp) all(sparse_res == dense_res) # Note that storage type was converted to integers! storage.mode(sparse_res) storage.mode(dense_res) # You can also elect to keep a sparse representation utilsAggregateRows(sparse_matrix, grp, sparse = TRUE) #### Examples with unused levels #### # Silly example dense_mat <- replicate(5, runif(10)) sparse_mat <- as(dense_mat, "dgCMatrix") fct_unused <- factor(c(1, 1, NA, NA, 3, 3, NA, NA, 5, 5), levels=1:5) # The default is to drop unused levels utilsAggregateRows(dense_mat, fct_unused, drop=TRUE) utilsAggregateRows(sparse_mat, fct_unused, drop=TRUE) # For dgCMatrix, one can elect to retain these: utilsAggregateRows(sparse_mat, fct_unused, drop=FALSE) # For matrix, a warning is produced if either drop or sparse is requested utilsAggregateRows(dense_mat, fct_unused, drop=FALSE) utilsAggregateRows(dense_mat, fct_unused, sparse=TRUE)
library(Matrix) data("exampleCTSSs") data("exampleUnidirectional") # Sparse and dense examples sparse_matrix <- assay(exampleCTSSs) dense_matrix <- as(sparse_matrix, "matrix") # Groupings grp <- findOverlaps(query = exampleCTSSs, subject = exampleUnidirectional, select="arbitrary") # Aggregate rows and compare sparse_res <- utilsAggregateRows(sparse_matrix, grp) dense_res <- utilsAggregateRows(dense_matrix, grp) all(sparse_res == dense_res) # Note that storage type was converted to integers! storage.mode(sparse_res) storage.mode(dense_res) # You can also elect to keep a sparse representation utilsAggregateRows(sparse_matrix, grp, sparse = TRUE) #### Examples with unused levels #### # Silly example dense_mat <- replicate(5, runif(10)) sparse_mat <- as(dense_mat, "dgCMatrix") fct_unused <- factor(c(1, 1, NA, NA, 3, 3, NA, NA, 5, 5), levels=1:5) # The default is to drop unused levels utilsAggregateRows(dense_mat, fct_unused, drop=TRUE) utilsAggregateRows(sparse_mat, fct_unused, drop=TRUE) # For dgCMatrix, one can elect to retain these: utilsAggregateRows(sparse_mat, fct_unused, drop=FALSE) # For matrix, a warning is produced if either drop or sparse is requested utilsAggregateRows(dense_mat, fct_unused, drop=FALSE) utilsAggregateRows(dense_mat, fct_unused, sparse=TRUE)
Utility function that attemps to split genomic ranges by strand with split(object, strand(object))
utilsDeStrand(object)
utilsDeStrand(object)
object |
Any object with a split and strand method, e.g. GRanges/GPos |
Object split by strand, e.g. GRangesList.
Other Utility functions:
utilsAggregateRows()
,
utilsScoreOverlaps()
,
utilsSimplifyTxDb()
gp <- GPos(seqnames=Rle(c("chr1", "chr2", "chr1"), c(10, 6, 4)), pos=c(44:53, 5:10, 2:5), strand=c(rep("+", 10), rep("-", 10))) gr <- as(gp, "GRanges") utilsDeStrand(gp) utilsDeStrand(gr)
gp <- GPos(seqnames=Rle(c("chr1", "chr2", "chr1"), c(10, 6, 4)), pos=c(44:53, 5:10, 2:5), strand=c(rep("+", 10), rep("-", 10))) gr <- as(gp, "GRanges") utilsDeStrand(gp) utilsDeStrand(gr)
Similar to countOverlaps, but takes the score column into account.
utilsScoreOverlaps(query, subject, ...)
utilsScoreOverlaps(query, subject, ...)
query |
same as findOverlaps/countOverlaps |
subject |
same as findOverlaps/countOverlaps |
... |
additional arguments passed to findOverlaps |
vector of number of overlaps weigthed by score column.
https://support.bioconductor.org/p/87736/#87758
Other Utility functions:
utilsAggregateRows()
,
utilsDeStrand()
,
utilsSimplifyTxDb()
gr1 <- GRanges(seqnames="chr1", ranges=IRanges(start = c(4, 9, 10, 30), end = c(4, 15, 20, 31)), strand="+") gr2 <- GRanges(seqnames="chr1", ranges=IRanges(start = c(1, 4, 15, 25), end = c(2, 4, 20, 26)), strand=c("+"), score=c(10, 20, 15, 5)) countOverlaps(gr1, gr2) utilsScoreOverlaps(gr1, gr2)
gr1 <- GRanges(seqnames="chr1", ranges=IRanges(start = c(4, 9, 10, 30), end = c(4, 15, 20, 31)), strand="+") gr2 <- GRanges(seqnames="chr1", ranges=IRanges(start = c(1, 4, 15, 25), end = c(2, 4, 20, 26)), strand=c("+"), score=c(10, 20, 15, 5)) countOverlaps(gr1, gr2) utilsScoreOverlaps(gr1, gr2)
Used by assignTxType. This function extracts the hierachical annotations used by assignTxType from a TxDb object. If you are annotating many ranges, it can be time saving to built the hierachy first, to avoid processing the TxDb for every assignTxDb call.
utilsSimplifyTxDb( object, tssUpstream = 100, tssDownstream = 100, proximalUpstream = 1000, detailedAntisense = FALSE )
utilsSimplifyTxDb( object, tssUpstream = 100, tssDownstream = 100, proximalUpstream = 1000, detailedAntisense = FALSE )
object |
TxDb: Transcript database |
tssUpstream |
integer: Distance to extend annotated promoter upstream. |
tssDownstream |
integer: Distance to extend annotated promoter downstream. |
proximalUpstream |
integer: Maximum distance upstream of promoter to be considered proximal. |
detailedAntisense |
logical: Wether to mirror all txType categories in the antisense direction (TRUE) or lump them all together (FALSE). |
GRangesList of annotation hierachy
assignTxType
Other Utility functions:
utilsAggregateRows()
,
utilsDeStrand()
,
utilsScoreOverlaps()
## Not run: data(exampleUnidirectional) # Obtain transcript models from a TxDb-object: library(TxDb.Mmusculus.UCSC.mm9.knownGene) txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene # Simplify txdb hierachy <- utilsSimplifyTxDb(txdb) # Standard way of calling x <- assignTxType(exampleUnidirectional, txModels=txdb) # Calling with premade hierachy y <- assignTxType(exampleUnidirectional, txModels=hierachy) # These are identical stopifnot(all(rowRanges(x)$txType == rowRanges(y)$txType)) ## End(Not run)
## Not run: data(exampleUnidirectional) # Obtain transcript models from a TxDb-object: library(TxDb.Mmusculus.UCSC.mm9.knownGene) txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene # Simplify txdb hierachy <- utilsSimplifyTxDb(txdb) # Standard way of calling x <- assignTxType(exampleUnidirectional, txModels=txdb) # Calling with premade hierachy y <- assignTxType(exampleUnidirectional, txModels=hierachy) # These are identical stopifnot(all(rowRanges(x)$txType == rowRanges(y)$txType)) ## End(Not run)