Package 'yarn'

Title: YARN: Robust Multi-Condition RNA-Seq Preprocessing and Normalization
Description: Expedite large RNA-Seq analyses using a combination of previously developed tools. YARN is meant to make it easier for the user in performing basic mis-annotation quality control, filtering, and condition-aware normalization. YARN leverages many Bioconductor tools and statistical techniques to account for the large heterogeneity and sparsity found in very large RNA-seq experiments.
Authors: Joseph N Paulson [aut, cre], Cho-Yi Chen [aut], Camila Lopes-Ramos [aut], Marieke Kuijjer [aut], John Platig [aut], Abhijeet Sonawane [aut], Maud Fagny [aut], Kimberly Glass [aut], John Quackenbush [aut]
Maintainer: Joseph N Paulson <[email protected]>
License: Artistic-2.0
Version: 1.33.0
Built: 2024-12-30 07:15:12 UTC
Source: https://github.com/bioc/yarn

Help Index


Annotate your Expression Set with biomaRt

Description

Annotate your Expression Set with biomaRt

Usage

annotateFromBiomart(obj, genes = featureNames(obj),
  filters = "ensembl_gene_id", attributes = c("ensembl_gene_id",
  "hgnc_symbol", "chromosome_name", "start_position", "end_position"),
  biomart = "ensembl", dataset = "hsapiens_gene_ensembl", ...)

Arguments

obj

ExpressionSet object.

genes

Genes or rownames of the ExpressionSet.

filters

getBM filter value, see getBM help file.

attributes

getBM attributes value, see getBM help file.

biomart

BioMart database name you want to connect to. Possible database names can be retrieved with teh function listMarts.

dataset

Dataset you want to use. To see the different datasets available within a biomaRt you can e.g. do: mart = useMart('ensembl'), followed by listDatasets(mart).

...

Values for useMart, see useMart help file.

Value

ExpressionSet object with a fuller featureData.

Examples

data(skin)
# subsetting and changing column name just for a silly example
skin <- skin[1:10,]
colnames(fData(skin)) = paste("names",1:6)
biomart<-"ENSEMBL_MART_ENSEMBL";
genes <- sapply(strsplit(rownames(skin),split="\\."),function(i)i[1])
newskin <-annotateFromBiomart(skin,genes=genes,biomar=biomart)
head(fData(newskin)[,7:11])

Bladder RNA-seq data from the GTEx consortium

Description

Bladder RNA-seq data from the GTEx consortium. V6 release.

Usage

data(bladder)

Format

An object of class "ExpressionSet"; see ExpressionSet.

Value

ExpressionSet object

Source

GTEx Portal

References

GTEx Consortium, 2015. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans. Science, 348(6235), pp.648-660. (PubMed)

Examples

data(bladder);
checkMissAnnotation(bladder);

Check for wrong annotation of a sample using classical MDS and control genes.

Description

Check for wrong annotation of a sample using classical MDS and control genes.

Usage

checkMisAnnotation(obj, phenotype, controlGenes = "all",
  columnID = "chromosome_name", plotFlag = TRUE,
  legendPosition = NULL, ...)

Arguments

obj

ExpressionSet object.

phenotype

phenotype column name in the phenoData slot to check.

controlGenes

Name of controlGenes, ie. 'Y' chromosome. Can specify 'all'.

columnID

Column name where controlGenes is defined in the featureData slot if other than 'all'.

plotFlag

TRUE/FALSE Whether to plot or not

legendPosition

Location for the legend.

...

Extra parameters for plotCMDS function.

Value

Plots a classical multi-dimensional scaling of the 'controlGenes'. Optionally returns co-ordinates.

Examples

data(bladder)
checkMisAnnotation(bladder,'GENDER',controlGenes='Y',legendPosition='topleft')

Check tissues to merge based on gene expression profile

Description

Check tissues to merge based on gene expression profile

Usage

checkTissuesToMerge(obj, majorGroups, minorGroups, filterFun = NULL,
  plotFlag = TRUE, ...)

Arguments

obj

ExpressionSet object.

majorGroups

Column name in the phenoData slot that describes the general body region or site of the sample.

minorGroups

Column name in the phenoData slot that describes the specific body region or site of the sample.

filterFun

Filter group specific genes that might disrupt PCoA analysis.

plotFlag

TRUE/FALSE whether to plot or not

...

Parameters that can go to checkMisAnnotation

Value

CMDS Plots of the majorGroupss colored by the minorGroupss. Optional matrix of CMDS loadings for each comparison.

See Also

checkTissuesToMerge

Examples

data(skin)
checkTissuesToMerge(skin,'SMTS','SMTSD')

Download GTEx files and turn them into ExpressionSet object

Description

Downloads the V6 GTEx release and turns it into an ExpressionSet object.

Usage

downloadGTEx(type = "genes", file = NULL, ...)

Arguments

type

Type of counts to download - default genes.

file

File path and name to automatically save the downloaded GTEx expression set. Saves as a RDS file.

...

Does nothing currently.

Value

Organized ExpressionSet set.

Examples

# obj <- downloadGTEx(type='genes',file='~/Desktop/gtex.rds')

Extract the appropriate matrix

Description

This returns the raw counts, log2-transformed raw counts, or normalized expression. If normalized = TRUE then the log paramater is ignored.

Usage

extractMatrix(obj, normalized = FALSE, log = TRUE)

Arguments

obj

ExpressionSet object or objrix.

normalized

TRUE / FALSE, use the normalized matrix or raw counts

log

TRUE/FALSE log2-transform.

Value

matrix

Examples

data(skin)
head(yarn:::extractMatrix(skin,normalized=FALSE,log=TRUE))
head(yarn:::extractMatrix(skin,normalized=FALSE,log=FALSE))

Filter specific genes

Description

The main use case for this function is the removal of sex-chromosome genes. Alternatively, filter genes that are not protein-coding.

Usage

filterGenes(obj, labels = c("X", "Y", "MT"),
  featureName = "chromosome_name", keepOnly = FALSE)

Arguments

obj

ExpressionSet object.

labels

Labels of genes to filter or keep, eg. X, Y, and MT

featureName

FeatureData column name, eg. chr

keepOnly

Filter or keep only the genes with those labels

Value

Filtered ExpressionSet object

Examples

data(skin)
filterGenes(skin,labels = c('X','Y','MT'),featureName='chromosome_name')
filterGenes(skin,labels = 'protein_coding',featureName='gene_biotype',keepOnly=TRUE)

Filter genes that have less than a minimum threshold CPM for a given group/tissue

Description

Filter genes that have less than a minimum threshold CPM for a given group/tissue

Usage

filterLowGenes(obj, groups, threshold = 1, minSamples = NULL, ...)

Arguments

obj

ExpressionSet object.

groups

Vector of labels for each sample or a column name of the phenoData slot. for the ids to filter. Default is the column names.

threshold

The minimum threshold for calling presence of a gene in a sample.

minSamples

Minimum number of samples - defaults to half the minimum group size.

...

Options for cpm.

Value

Filtered ExpressionSet object

See Also

cpm function defined in the edgeR package.

Examples

data(skin)
filterLowGenes(skin,'SMTSD')

Filter genes not expressed in any sample

Description

The main use case for this function is the removal of missing genes.

Usage

filterMissingGenes(obj, threshold = 0)

Arguments

obj

ExpressionSet object.

threshold

Minimum sum of gene counts across samples – defaults to zero.

Value

Filtered ExpressionSet object

Examples

data(skin)
filterMissingGenes(skin)

Filter samples

Description

Filter samples

Usage

filterSamples(obj, ids, groups = colnames(obj), keepOnly = FALSE)

Arguments

obj

ExpressionSet object.

ids

Names found within the groups labels corresponding to samples to be removed

groups

Vector of labels for each sample or a column name of the phenoData slot for the ids to filter. Default is the column names.

keepOnly

Filter or keep only the samples with those labels.

Value

Filtered ExpressionSet object

Examples

data(skin)
filterSamples(skin,ids = "Skin - Not Sun Exposed (Suprapubic)",groups="SMTSD")
filterSamples(skin,ids=c("GTEX-OHPL-0008-SM-4E3I9","GTEX-145MN-1526-SM-5SI9T"))

Normalize in a tissue aware context

Description

This function provides a wrapper to various normalization methods developed. Currently it only wraps qsmooth and quantile normalization returning a log-transformed normalized matrix. qsmooth is a normalization approach that normalizes samples in a condition aware manner.

Usage

normalizeTissueAware(obj, groups, normalizationMethod = c("qsmooth",
  "quantile"), ...)

Arguments

obj

ExpressionSet object

groups

Vector of labels for each sample or a column name of the phenoData slot for the ids to filter. Default is the column names

normalizationMethod

Choice of 'qsmooth' or 'quantile'

...

Options for qsmooth function or normalizeQuantiles

Value

ExpressionSet object with an assayData called normalizedMatrix

Source

The function qsmooth comes from the qsmooth packages currently available on github under user 'kokrah'.

Examples

data(skin)
normalizeTissueAware(skin,"SMTSD")

Plot classical MDS of dataset

Description

This function plots the MDS coordinates for the "n" features of interest. Potentially uncovering batch effects or feature relationships.

Usage

plotCMDS(obj, comp = 1:2, normalized = FALSE, distFun = dist,
  distMethod = "euclidian", n = NULL, samples = TRUE, log = TRUE,
  plotFlag = TRUE, ...)

Arguments

obj

ExpressionSet object or objrix.

comp

Which components to display.

normalized

TRUE / FALSE, use the normalized matrix or raw counts.

distFun

Distance function, default is dist.

distMethod

The distance measure to be used. This must be one of "euclidean", "maximum", "manhattan", "canberra", "binary" or "minkowski". Any unambiguous substring can be given.

n

Number of features to make use of in calculating your distances.

samples

Perform on samples or genes.

log

TRUE/FALSE log2-transform raw counts.

plotFlag

TRUE/FALSE whether to plot or not.

...

Additional plot arguments.

Value

coordinates

Examples

data(skin)
res <- plotCMDS(skin,pch=21,bg=factor(pData(skin)$SMTSD))

# library(calibrate)
# textxy(X=res[,1],Y=res[,2],labs=rownames(res))

Density plots of columns in a matrix

Description

Plots the density of the columns of a matrix. Wrapper for matdensity.

Usage

plotDensity(obj, groups = NULL, normalized = FALSE, legendPos = NULL,
  ...)

Arguments

obj

ExpressionSet object

groups

Vector of labels for each sample or a column name of the phenoData slot for the ids to filter. Default is the column names.

normalized

TRUE / FALSE, use the normalized matrix or log2-transformed raw counts

legendPos

Legend title position. If null, does not create legend by default.

...

Extra parameters for matdensity.

Value

A density plot for each column in the ExpressionSet object colored by groups

Examples

data(skin)
filtData <- filterLowGenes(skin,"SMTSD")
plotDensity(filtData,groups="SMTSD",legendPos="topleft")
# to remove the legend
plotDensity(filtData,groups="SMTSD")

Plot heatmap of most variable genes

Description

This function plots a heatmap of the gene expressions forthe "n" features of interest.

Usage

plotHeatmap(obj, n = NULL, fun = stats::sd, normalized = TRUE,
  log = TRUE, ...)

Arguments

obj

ExpressionSet object or objrix.

n

Number of features to make use of in plotting heatmap.

fun

Function to sort genes by, default sd.

normalized

TRUE / FALSE, use the normalized matrix or raw counts.

log

TRUE/FALSE log2-transform raw counts.

...

Additional plot arguments for heatmap.2.

Value

coordinates

Examples

data(skin)
tissues <- pData(skin)$SMTSD
plotHeatmap(skin,normalized=FALSE,log=TRUE,trace="none",n=10)
# Even prettier

# library(RColorBrewer)
data(skin)
tissues <- pData(skin)$SMTSD
heatmapColColors <- brewer.pal(12,"Set3")[as.integer(factor(tissues))]
heatmapCols <- colorRampPalette(brewer.pal(9, "RdBu"))(50)
plotHeatmap(skin,normalized=FALSE,log=TRUE,trace="none",n=10,
 col = heatmapCols,ColSideColors = heatmapColColors,cexRow = 0.6,cexCol = 0.6)

Quantile shrinkage normalization

Description

This function was modified from github user kokrah.

Usage

qsmooth(obj, groups, norm.factors = NULL, plot = FALSE,
  window = 0.05, log = TRUE)

Arguments

obj

for counts use log2(raw counts + 1)), for MA use log2(raw intensities)

groups

groups to which samples belong (character vector)

norm.factors

scaling normalization factors

plot

plot weights? (default=FALSE)

window

window size for running median (a fraction of the number of rows of exprs)

log

Whether or not the data should be log transformed before normalization, TRUE = YES.

Value

Normalized expression

Source

Kwame Okrah's qsmooth R package

Examples

data(skin)
head(yarn:::qsmooth(skin,groups=pData(skin)$SMTSD))

Compute quantile statistics

Description

This function was directly borrowed from github user kokrah.

Usage

qstats(exprs, groups, window)

Arguments

exprs

for counts use log2(raw counts + 1)), for MA use log2(raw intensities)

groups

groups to which samples belong (character vector)

window

window size for running median as a fraction on the number of rows of exprs

Value

list of statistics

Source

Kwame Okrah's qsmooth R package Compute quantile statistics


Skin RNA-seq data from the GTEx consortium

Description

Skin RNA-seq data from the GTEx consortium. V6 release. Random selection of 20 skin samples. 13 of the samples are fibroblast cells, 5 Skin sun exposed, 2 sun unexposed.

Usage

data(skin)

Format

An object of class "ExpressionSet"; see ExpressionSet.

Value

ExpressionSet object

Source

GTEx Portal

References

GTEx Consortium, 2015. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans. Science, 348(6235), pp.648-660. (PubMed)

Examples

data(skin);
checkMissAnnotation(skin,"GENDER");