Title: | Create rapid visualizations of RNAseq data in R |
---|---|
Description: | The aim of vidger is to rapidly generate information-rich visualizations for the interpretation of differential gene expression results from three widely-used tools: Cuffdiff, DESeq2, and edgeR. |
Authors: | Brandon Monier [aut, cre], Adam McDermaid [aut], Jing Zhao [aut], Qin Ma [aut, fnd] |
Maintainer: | Brandon Monier <[email protected]> |
License: | GPL-3 | file LICENSE |
Version: | 1.27.0 |
Built: | 2024-10-31 06:29:06 UTC |
Source: | https://github.com/bioc/vidger |
A 'cuffdiff' example dataset
data(df.cuff)
data(df.cuff)
A 'DESeq2' example dataset
data(df.deseq)
data(df.deseq)
(FPKM or CPM) distributionsThis function allows you to extract necessary results-based data from analytical objects to create a box plot comparing log10(FPKM or CPM) distributions for experimental treatments.
vsBoxPlot(data, d.factor = NULL, type = c("cuffdiff", "deseq", "edger"), title = TRUE, legend = TRUE, grid = TRUE, aes = c("box", "violin", "boxdot", "viodot", "viosumm", "notch"), fill.color = NULL, data.return = FALSE, xaxis.text.size = 10, yaxis.text.size = 10, xaxis.title.size = 12, yaxis.title.size = 12, main.title.size = 15, legend.text.size = 10, legend.title.size = 12)
vsBoxPlot(data, d.factor = NULL, type = c("cuffdiff", "deseq", "edger"), title = TRUE, legend = TRUE, grid = TRUE, aes = c("box", "violin", "boxdot", "viodot", "viosumm", "notch"), fill.color = NULL, data.return = FALSE, xaxis.text.size = 10, yaxis.text.size = 10, xaxis.title.size = 12, yaxis.title.size = 12, main.title.size = 15, legend.text.size = 10, legend.title.size = 12)
data |
output generated from calling the main routines of either
|
d.factor |
a specified factor; for use with |
type |
an analysis classifier to tell the function how to process the
data. Must be either |
title |
display the main title of plot. Logical; defaults to
|
legend |
display legend of plot. Logical; defaults to |
grid |
display major and minor axis lines. Logical; defaults to
|
aes |
changes overall layout of the graph. |
fill.color |
changes the fill color for the plots. See
|
data.return |
returns data output of plot. Logical; defaults to
|
xaxis.text.size |
change the font size of the |
yaxis.text.size |
change the font size of the |
xaxis.title.size |
change the font size of the |
yaxis.title.size |
change the font size of the |
main.title.size |
change the font size of the plot title text.
Defaults to |
legend.text.size |
change the font size of the legend body text.
Defaults to |
legend.title.size |
change the font size of the legend title text.
Defaults to |
An object created by ggplot
Brandon Monier, [email protected]
# Cuffdiff example data("df.cuff") vsBoxPlot( data = df.cuff, d.factor = NULL, type = "cuffdiff", title = TRUE, legend = TRUE, grid = TRUE ) # DESeq2 example data("df.deseq") require(DESeq2) vsBoxPlot( data = df.deseq, d.factor = "condition", type = "deseq", title = TRUE, legend = TRUE, grid = TRUE ) # edgeR example data("df.edger") require(edgeR) vsBoxPlot( data = df.edger, d.factor = NULL, type = "edger", title = TRUE, legend = TRUE, grid = TRUE ) # Display different colors for plot data("df.edger") vsBoxPlot( data = df.edger, d.factor = NULL, type = "edger", title = TRUE, legend = TRUE, grid = TRUE, fill.color = "RdGy", data.return = FALSE ) # Extract data frame from visualization data("df.edger") require(edgeR) tmp <- vsBoxPlot( data = df.edger, d.factor = NULL, type = "edger", title = TRUE, legend = TRUE, grid = TRUE, data.return = FALSE ) df_box <- tmp[[1]] ## or use tmp$data head(df_box) # Show plot from object (see prior example for more details) tmp[[2]] ## or use tmp$plot
# Cuffdiff example data("df.cuff") vsBoxPlot( data = df.cuff, d.factor = NULL, type = "cuffdiff", title = TRUE, legend = TRUE, grid = TRUE ) # DESeq2 example data("df.deseq") require(DESeq2) vsBoxPlot( data = df.deseq, d.factor = "condition", type = "deseq", title = TRUE, legend = TRUE, grid = TRUE ) # edgeR example data("df.edger") require(edgeR) vsBoxPlot( data = df.edger, d.factor = NULL, type = "edger", title = TRUE, legend = TRUE, grid = TRUE ) # Display different colors for plot data("df.edger") vsBoxPlot( data = df.edger, d.factor = NULL, type = "edger", title = TRUE, legend = TRUE, grid = TRUE, fill.color = "RdGy", data.return = FALSE ) # Extract data frame from visualization data("df.edger") require(edgeR) tmp <- vsBoxPlot( data = df.edger, d.factor = NULL, type = "edger", title = TRUE, legend = TRUE, grid = TRUE, data.return = FALSE ) df_box <- tmp[[1]] ## or use tmp$data head(df_box) # Show plot from object (see prior example for more details) tmp[[2]] ## or use tmp$plot
This function allows you to visualize the number of differentially
expressed genes (DEG) at a given adjusted -value for each
experimental treatment level. Higher color intensity correlates to a
higher number of DEGs.
vsDEGMatrix(data, padj = 0.05, d.factor = NULL, type = c("cuffdiff", "deseq", "edger"), title = TRUE, legend = TRUE, grid = TRUE, data.return = FALSE, grey.scale = FALSE, xaxis.text.size = 10, yaxis.text.size = 10, main.title.size = 15, legend.text.size = 10, legend.title.size = 12)
vsDEGMatrix(data, padj = 0.05, d.factor = NULL, type = c("cuffdiff", "deseq", "edger"), title = TRUE, legend = TRUE, grid = TRUE, data.return = FALSE, grey.scale = FALSE, xaxis.text.size = 10, yaxis.text.size = 10, main.title.size = 15, legend.text.size = 10, legend.title.size = 12)
data |
output generated from calling the main routines of either
|
padj |
a user defined adjusted |
d.factor |
a specified factor; for use with |
type |
an analysis classifier to tell the function how to process the
data. Must be either |
title |
display the main title of plot. Logical; defaults to
|
legend |
display legend of plot. Logical; defaults to |
grid |
display major and minor axis lines. Logical; defaults to
|
data.return |
returns data output of plot. Logical; defaults to
|
grey.scale |
displays grey color scheme instead of blue if set to
|
xaxis.text.size |
change the font size of the |
yaxis.text.size |
change the font size of the |
main.title.size |
change the font size of the plot title text.
Defaults to |
legend.text.size |
change the font size of the legend body text.
Defaults to |
legend.title.size |
change the font size of the legend title text.
Defaults to |
An object created by ggplot
Brandon Monier, [email protected]
# cuffdiff example data("df.cuff") vsDEGMatrix( df.cuff, padj = 0.05, d.factor = NULL, type = "cuffdiff", title = TRUE, legend = TRUE, grid = TRUE ) # DESeq2 example data("df.deseq") require(DESeq2) vsDEGMatrix( df.deseq, padj = 0.05, d.factor = "condition", type = "deseq", title = TRUE, legend = TRUE, grid = TRUE ) # edgeR example data("df.edger") require(edgeR) vsDEGMatrix( df.edger, padj = 0.05, d.factor = NULL, type = "edger", title = TRUE, legend = TRUE, grid = TRUE ) # Extract data frame from visualization data("df.edger") require(edgeR) tmp <- vsDEGMatrix( df.edger, padj = 0.05, d.factor = NULL, type = "edger", title = TRUE, legend = TRUE, grid = TRUE ) df_deg <- tmp[[1]] ## or use tmp$data head(df_deg) # Show plot from object (see prior example for more details) tmp[[2]] ## or use tmp$plot
# cuffdiff example data("df.cuff") vsDEGMatrix( df.cuff, padj = 0.05, d.factor = NULL, type = "cuffdiff", title = TRUE, legend = TRUE, grid = TRUE ) # DESeq2 example data("df.deseq") require(DESeq2) vsDEGMatrix( df.deseq, padj = 0.05, d.factor = "condition", type = "deseq", title = TRUE, legend = TRUE, grid = TRUE ) # edgeR example data("df.edger") require(edgeR) vsDEGMatrix( df.edger, padj = 0.05, d.factor = NULL, type = "edger", title = TRUE, legend = TRUE, grid = TRUE ) # Extract data frame from visualization data("df.edger") require(edgeR) tmp <- vsDEGMatrix( df.edger, padj = 0.05, d.factor = NULL, type = "edger", title = TRUE, legend = TRUE, grid = TRUE ) df_deg <- tmp[[1]] ## or use tmp$data head(df_deg) # Show plot from object (see prior example for more details) tmp[[2]] ## or use tmp$plot
This function allows you to extract necessary results-based data from a DESeq object class to create a four-way plot to compare log fold changes in various treatments using ggplot2 aesthetics.
vsFourWay(x, y, control, data, d.factor = NULL, type = c("cuffdiff", "deseq", "edger"), padj = 0.05, x.lim = NULL, y.lim = NULL, lfc = NULL, legend = TRUE, title = TRUE, grid = TRUE, highlight = NULL, data.return = FALSE, xaxis.text.size = 10, yaxis.text.size = 10, xaxis.title.size = 10, yaxis.title.size = 10, main.title.size = 15, legend.text.size = 9)
vsFourWay(x, y, control, data, d.factor = NULL, type = c("cuffdiff", "deseq", "edger"), padj = 0.05, x.lim = NULL, y.lim = NULL, lfc = NULL, legend = TRUE, title = TRUE, grid = TRUE, highlight = NULL, data.return = FALSE, xaxis.text.size = 10, yaxis.text.size = 10, xaxis.title.size = 10, yaxis.title.size = 10, main.title.size = 15, legend.text.size = 9)
x |
treatment |
y |
treatment |
control |
|
data |
output generated from calling the main routines of either
|
d.factor |
a specified factor; for use with |
type |
an analysis classifier to tell the function how to process the
data. Must be either |
padj |
a user defined adjusted |
x.lim |
set manual limits (boundaries) to the x axis. Defaults to
|
y.lim |
set manual limits (boundaries) to the y axis. Defaults to
|
lfc |
log fold change level for setting conditonals. If no user input
is added ( |
legend |
display legend of plot. Logical; defaults to |
title |
display the main title of plot. Logical; defaults to
|
grid |
display major and minor axis lines. Logical; defaults to
|
highlight |
character string of IDs that will be highlighted. Set to
|
data.return |
returns data output of plot. Logical; defaults to
|
xaxis.text.size |
change the font size of the |
yaxis.text.size |
change the font size of the |
xaxis.title.size |
change the font size of the |
yaxis.title.size |
change the font size of the |
main.title.size |
change the font size of the plot title text.
Defaults to |
legend.text.size |
change the font size of the legend body text.
Defaults to |
This function allows the user to extract various elements from a different analytical object class which in turn, creates a temporary data frame to plot the necessary ggplot aesthetics. In order for this function to work, RNA seq experiments must have multiple factors (i.e. two treatments and a control) and levels including treatments and controls. By having the recommended criteria, this function will extract the necessary data dependent on the analysis performed. Data points with "extreme" values that exceed the default viewing frame of the plot will change character classes (i.e. points of interest a substantially large log fold change).
An object created by ggplot
Brandon Monier, [email protected]
# Cuffdiff example data("df.cuff") vsFourWay( x = "hESC", y = "iPS", control = "Fibroblasts", data = df.cuff, d.factor = NULL, type = "cuffdiff", padj = 0.05, x.lim = NULL, y.lim = NULL, lfc = 2, title = TRUE, grid = TRUE, data.return = FALSE ) # DESeq2 example data("df.deseq") vsFourWay( x = "treated_paired.end", y = "untreated_paired.end", control = "untreated_single.read", data = df.deseq, d.factor = "condition", type = "deseq", padj = 0.05, x.lim = NULL, y.lim = NULL, lfc = 2, title = TRUE, grid = TRUE, data.return = FALSE ) # edgeR example data("df.edger") require(edgeR) vsFourWay( x = "WM", y = "WW", control = "MM", data = df.edger, d.factor = NULL, type = "edger", padj = 0.05, x.lim = NULL, y.lim = NULL, lfc = 2, title = TRUE, grid = TRUE, data.return = FALSE ) # Highlight IDs data("df.edger") require(edgeR) hl <- c( "ID_639", "ID_518", "ID_602", "ID_449", "ID_076" ) vsFourWay( x = "WM", y = "WW", control = "MM", data = df.edger, d.factor = NULL, type = "edger", padj = 0.05, x.lim = NULL, y.lim = NULL, lfc = 2, title = TRUE, grid = TRUE, data.return = FALSE, highlight = hl ) # Extract data frame from visualization data("df.cuff") tmp <- vsFourWay( x = "WM", y = "WW", control = "MM", data = df.edger, d.factor = NULL, type = "edger", padj = 0.05, x.lim = NULL, y.lim = NULL, lfc = 2, title = TRUE, grid = TRUE, data.return = TRUE ) df_four <- tmp[[1]] ## or use tmp$data head(df_four) # Show plot from object (see prior example for more details) tmp[[2]] ## or use tmp$plot
# Cuffdiff example data("df.cuff") vsFourWay( x = "hESC", y = "iPS", control = "Fibroblasts", data = df.cuff, d.factor = NULL, type = "cuffdiff", padj = 0.05, x.lim = NULL, y.lim = NULL, lfc = 2, title = TRUE, grid = TRUE, data.return = FALSE ) # DESeq2 example data("df.deseq") vsFourWay( x = "treated_paired.end", y = "untreated_paired.end", control = "untreated_single.read", data = df.deseq, d.factor = "condition", type = "deseq", padj = 0.05, x.lim = NULL, y.lim = NULL, lfc = 2, title = TRUE, grid = TRUE, data.return = FALSE ) # edgeR example data("df.edger") require(edgeR) vsFourWay( x = "WM", y = "WW", control = "MM", data = df.edger, d.factor = NULL, type = "edger", padj = 0.05, x.lim = NULL, y.lim = NULL, lfc = 2, title = TRUE, grid = TRUE, data.return = FALSE ) # Highlight IDs data("df.edger") require(edgeR) hl <- c( "ID_639", "ID_518", "ID_602", "ID_449", "ID_076" ) vsFourWay( x = "WM", y = "WW", control = "MM", data = df.edger, d.factor = NULL, type = "edger", padj = 0.05, x.lim = NULL, y.lim = NULL, lfc = 2, title = TRUE, grid = TRUE, data.return = FALSE, highlight = hl ) # Extract data frame from visualization data("df.cuff") tmp <- vsFourWay( x = "WM", y = "WW", control = "MM", data = df.edger, d.factor = NULL, type = "edger", padj = 0.05, x.lim = NULL, y.lim = NULL, lfc = 2, title = TRUE, grid = TRUE, data.return = TRUE ) df_four <- tmp[[1]] ## or use tmp$data head(df_four) # Show plot from object (see prior example for more details) tmp[[2]] ## or use tmp$plot
fold changes and
(
-values)This function allows you to generate MA plots for all possible treatment combinations for a given factor in either a cuffdiff, DESeq2, or edgeR data set.
vsMAMatrix(data, d.factor = NULL, type = c("cuffdiff", "deseq", "edger"), padj = 0.05, y.lim = NULL, lfc = NULL, title = TRUE, legend = TRUE, grid = TRUE, counts = TRUE, data.return = FALSE, xaxis.text.size = 9, yaxis.text.size = 9, xaxis.title.size = 10, yaxis.title.size = 10, main.title.size = 15, legend.text.size = 9, facet.title.size = 10)
vsMAMatrix(data, d.factor = NULL, type = c("cuffdiff", "deseq", "edger"), padj = 0.05, y.lim = NULL, lfc = NULL, title = TRUE, legend = TRUE, grid = TRUE, counts = TRUE, data.return = FALSE, xaxis.text.size = 9, yaxis.text.size = 9, xaxis.title.size = 10, yaxis.title.size = 10, main.title.size = 15, legend.text.size = 9, facet.title.size = 10)
data |
output generated from calling the main routines of either
|
d.factor |
a specified factor; for use with |
type |
an analysis classifier to tell the function how to process the
data. Must be either |
padj |
a user defined adjusted |
y.lim |
set manual limits (boundaries) to the y axis. Defaults to
|
lfc |
|
title |
display the main title of plot. Logical; defaults to
|
legend |
display legend of plot. Logical; defaults to |
grid |
display major and minor axis lines. Logical; defaults to
|
counts |
displays the number of differentially expressed genes for
each treatment comparison. Defaults to |
data.return |
returns data output of plot. Logical; defaults to
|
xaxis.text.size |
change the font size of the |
yaxis.text.size |
change the font size of the |
xaxis.title.size |
change the font size of the |
yaxis.title.size |
change the font size of the |
main.title.size |
change the font size of the plot title text.
Defaults to |
legend.text.size |
change the font size of the legend body text.
Defaults to |
facet.title.size |
change the font size of the facet wrap title text.
Defaults to |
An object created by ggplot
Brandon Monier, [email protected]
# Cuffdiff example data("df.cuff") vsMAMatrix( data = df.cuff, d.factor = NULL, type = "cuffdiff", padj = 0.05, y.lim = NULL, lfc = 1, title = TRUE, grid = TRUE, counts = TRUE, data.return = FALSE ) # DESeq2 example data("df.deseq") require(DESeq2) vsMAMatrix( data = df.deseq, d.factor = "condition", type = "deseq", padj = 0.05, y.lim = NULL, lfc = 1, title = TRUE, grid = TRUE, counts = TRUE, data.return = FALSE ) # edgeR example data("df.edger") require(edgeR) vsMAMatrix( data = df.edger, d.factor = NULL, type = "edger", padj = 0.05, y.lim = NULL, lfc = 1, title = TRUE, grid = TRUE, counts = TRUE, data.return = FALSE ) # Extract data frame from visualization data("df.cuff") tmp <- vsMAMatrix( data = df.cuff, d.factor = NULL, type = "cuffdiff", padj = 0.05, y.lim = NULL, lfc = 1, title = TRUE, grid = TRUE, counts = TRUE, data.return = TRUE ) df_mamat <- tmp[[1]] ## or use tmp$data head(df_mamat) # Show plot from object (see prior example for more details) tmp[[2]] ## or use tmp$plot
# Cuffdiff example data("df.cuff") vsMAMatrix( data = df.cuff, d.factor = NULL, type = "cuffdiff", padj = 0.05, y.lim = NULL, lfc = 1, title = TRUE, grid = TRUE, counts = TRUE, data.return = FALSE ) # DESeq2 example data("df.deseq") require(DESeq2) vsMAMatrix( data = df.deseq, d.factor = "condition", type = "deseq", padj = 0.05, y.lim = NULL, lfc = 1, title = TRUE, grid = TRUE, counts = TRUE, data.return = FALSE ) # edgeR example data("df.edger") require(edgeR) vsMAMatrix( data = df.edger, d.factor = NULL, type = "edger", padj = 0.05, y.lim = NULL, lfc = 1, title = TRUE, grid = TRUE, counts = TRUE, data.return = FALSE ) # Extract data frame from visualization data("df.cuff") tmp <- vsMAMatrix( data = df.cuff, d.factor = NULL, type = "cuffdiff", padj = 0.05, y.lim = NULL, lfc = 1, title = TRUE, grid = TRUE, counts = TRUE, data.return = TRUE ) df_mamat <- tmp[[1]] ## or use tmp$data head(df_mamat) # Show plot from object (see prior example for more details) tmp[[2]] ## or use tmp$plot
fold changes from different
analytical objectsThis function allows you to extract necessary results-based data from
different output files to create a MA plot (i.e. a scatter plot) of
fold changes versus normalized mean counts while implementing
ggplot2 aesthetics.
vsMAPlot(x, y, data, d.factor = NULL, type = c("cuffdiff", "deseq", "edger"), padj = 0.05, y.lim = NULL, lfc = NULL, title = TRUE, legend = TRUE, grid = TRUE, highlight = NULL, data.return = FALSE, xaxis.text.size = 10, yaxis.text.size = 10, xaxis.title.size = 10, yaxis.title.size = 10, main.title.size = 15, legend.text.size = 9)
vsMAPlot(x, y, data, d.factor = NULL, type = c("cuffdiff", "deseq", "edger"), padj = 0.05, y.lim = NULL, lfc = NULL, title = TRUE, legend = TRUE, grid = TRUE, highlight = NULL, data.return = FALSE, xaxis.text.size = 10, yaxis.text.size = 10, xaxis.title.size = 10, yaxis.title.size = 10, main.title.size = 15, legend.text.size = 9)
x |
treatment |
y |
treatment |
data |
output generated from calling the main routines of either
|
d.factor |
a specified factor; for use with |
type |
an analysis classifier to tell the function how to process the
data. Must be either |
padj |
a user defined adjusted |
y.lim |
set manual limits (boundaries) to the y axis. Defaults to
|
lfc |
|
title |
display the main title of plot. Logical; defaults to
|
legend |
display legend of plot. Logical; defaults to |
grid |
display major and minor axis lines. Logical; defaults to
|
highlight |
character string of IDs that will be highlighted. Set to
|
data.return |
returns data output of plot Logical; defaults to
|
xaxis.text.size |
change the font size of the |
yaxis.text.size |
change the font size of the |
xaxis.title.size |
change the font size of the |
yaxis.title.size |
change the font size of the |
main.title.size |
change the font size of the plot title text.
Defaults to |
legend.text.size |
change the font size of the legend body text.
Defaults to |
An object created by ggplot
Brandon Monier, [email protected]
# Cuffdiff example data("df.cuff") vsMAPlot( x = "hESC", y = "iPS", data = df.cuff, d.factor = NULL, type = "cuffdiff", padj = 0.05, y.lim = NULL, lfc = 1, title = TRUE, legend = TRUE, grid = TRUE, data.return = FALSE ) # DESeq2 example data("df.deseq") require(DESeq2) vsMAPlot( x = "treated_paired.end", y = "untreated_paired.end", data = df.deseq, d.factor = "condition", type = "deseq", padj = 0.05, y.lim = NULL, lfc = NULL, title = TRUE, legend = TRUE, grid = TRUE, data.return = FALSE ) # edgeR example data("df.edger") require(edgeR) vsMAPlot( x = "WM", y = "MM", data = df.edger, d.factor = NULL, type = "edger", padj = 0.1, y.lim = NULL, lfc = 1, title = FALSE, legend = TRUE, grid = TRUE, data.return = FALSE ) # Highlight IDs data("df.deseq") require(DESeq2) hl <- c( "FBgn0022201", "FBgn0003042", "FBgn0031957", "FBgn0033853", "FBgn0003371" ) vsMAPlot( x = "treated_paired.end", y = "untreated_paired.end", data = df.deseq, d.factor = "condition", type = "deseq", padj = 0.05, y.lim = NULL, lfc = NULL, title = TRUE, legend = TRUE, grid = TRUE, data.return = FALSE, highlight = hl ) # Extract data frame from visualization data("df.cuff") tmp <- vsMAPlot( x = "hESC", y = "iPS", data = df.cuff, d.factor = NULL, type = "cuffdiff", padj = 0.05, y.lim = NULL, lfc = 1, title = TRUE, grid = TRUE, data.return = TRUE ) df_ma <- tmp[[1]] ## or use tmp$data head(df_ma) # Show plot from object (see prior example for more details) tmp[[2]] ## or use tmp$plot
# Cuffdiff example data("df.cuff") vsMAPlot( x = "hESC", y = "iPS", data = df.cuff, d.factor = NULL, type = "cuffdiff", padj = 0.05, y.lim = NULL, lfc = 1, title = TRUE, legend = TRUE, grid = TRUE, data.return = FALSE ) # DESeq2 example data("df.deseq") require(DESeq2) vsMAPlot( x = "treated_paired.end", y = "untreated_paired.end", data = df.deseq, d.factor = "condition", type = "deseq", padj = 0.05, y.lim = NULL, lfc = NULL, title = TRUE, legend = TRUE, grid = TRUE, data.return = FALSE ) # edgeR example data("df.edger") require(edgeR) vsMAPlot( x = "WM", y = "MM", data = df.edger, d.factor = NULL, type = "edger", padj = 0.1, y.lim = NULL, lfc = 1, title = FALSE, legend = TRUE, grid = TRUE, data.return = FALSE ) # Highlight IDs data("df.deseq") require(DESeq2) hl <- c( "FBgn0022201", "FBgn0003042", "FBgn0031957", "FBgn0033853", "FBgn0003371" ) vsMAPlot( x = "treated_paired.end", y = "untreated_paired.end", data = df.deseq, d.factor = "condition", type = "deseq", padj = 0.05, y.lim = NULL, lfc = NULL, title = TRUE, legend = TRUE, grid = TRUE, data.return = FALSE, highlight = hl ) # Extract data frame from visualization data("df.cuff") tmp <- vsMAPlot( x = "hESC", y = "iPS", data = df.cuff, d.factor = NULL, type = "cuffdiff", padj = 0.05, y.lim = NULL, lfc = 1, title = TRUE, grid = TRUE, data.return = TRUE ) df_ma <- tmp[[1]] ## or use tmp$data head(df_ma) # Show plot from object (see prior example for more details) tmp[[2]] ## or use tmp$plot
(FPKM or CPM) valuesThis function will generate a matrix of scatterplots for all possible treatment combinations with additional distribution info.
vsScatterMatrix(data, d.factor = NULL, type = c("cuffdiff", "deseq", "edger"), comp = NULL, title = TRUE, grid = TRUE, man.title = NULL, data.return = FALSE, xaxis.text.size = 9, yaxis.text.size = 9, xaxis.title.size = 10, yaxis.title.size = 10, main.title.size = 15, facet.title.size = 10)
vsScatterMatrix(data, d.factor = NULL, type = c("cuffdiff", "deseq", "edger"), comp = NULL, title = TRUE, grid = TRUE, man.title = NULL, data.return = FALSE, xaxis.text.size = 9, yaxis.text.size = 9, xaxis.title.size = 10, yaxis.title.size = 10, main.title.size = 15, facet.title.size = 10)
data |
output generated from calling the main routines of either
|
d.factor |
a specified factor; for use with |
type |
an analysis classifier to tell the function how to process the
data. Must be either |
comp |
treatments you would like to compare in the form of a vector.
If no parameter is specified, all possible treatment comparisons will be
made. Defaults to |
title |
display the main title of plot. Logical; defaults to
|
grid |
display major and minor axis lines. Logical; defaults to
|
man.title |
a manually specified title at the authors discretion.
Defaults to |
data.return |
returns data output of plot. Logical; defaults to
|
xaxis.text.size |
change the font size of the |
yaxis.text.size |
change the font size of the |
xaxis.title.size |
change the font size of the |
yaxis.title.size |
change the font size of the |
main.title.size |
change the font size of the plot title text.
Defaults to |
facet.title.size |
change the font size of the facet wrap title text.
Defaults to |
An object created by ggplot
Brandon Monier, [email protected]
# Cuffdiff example data("df.cuff") vsScatterMatrix( data = df.cuff, d.factor = NULL, type = "cuffdiff", comp = NULL, title = TRUE, grid = TRUE, man.title = "Example title" ) # DESeq2 example data("df.deseq") require(DESeq2) vsScatterMatrix( data = df.deseq, d.factor = "condition", type = "deseq", comp = NULL, title = TRUE, grid = FALSE, man.title = NULL ) # edgeR example data("df.edger") require(edgeR) vsScatterMatrix( data = df.edger, d.factor = NULL, type = "edger", comp = c("WM", "MM"), title = TRUE, grid = TRUE, man.title = NULL ) # Extract data frame from visualization data("df.edger") tmp <- vsScatterMatrix( data = df.edger, d.factor = NULL, type = "edger", comp = c("WM", "MM"), title = TRUE, grid = TRUE, man.title = NULL, data.return = TRUE ) df_scatmat <- tmp[[1]] ## or use tmp$data head(df_scatmat) # Show plot from object (see prior example for more details) tmp[[2]] ## or use tmp$plot
# Cuffdiff example data("df.cuff") vsScatterMatrix( data = df.cuff, d.factor = NULL, type = "cuffdiff", comp = NULL, title = TRUE, grid = TRUE, man.title = "Example title" ) # DESeq2 example data("df.deseq") require(DESeq2) vsScatterMatrix( data = df.deseq, d.factor = "condition", type = "deseq", comp = NULL, title = TRUE, grid = FALSE, man.title = NULL ) # edgeR example data("df.edger") require(edgeR) vsScatterMatrix( data = df.edger, d.factor = NULL, type = "edger", comp = c("WM", "MM"), title = TRUE, grid = TRUE, man.title = NULL ) # Extract data frame from visualization data("df.edger") tmp <- vsScatterMatrix( data = df.edger, d.factor = NULL, type = "edger", comp = c("WM", "MM"), title = TRUE, grid = TRUE, man.title = NULL, data.return = TRUE ) df_scatmat <- tmp[[1]] ## or use tmp$data head(df_scatmat) # Show plot from object (see prior example for more details) tmp[[2]] ## or use tmp$plot
(FPKM or CPM) valuesThis function allows you to visualize comparisons of values
of either FPKM or CPM measurements of two treatments depending on
analytical type.
vsScatterPlot(x, y, data, d.factor = NULL, type = c("cuffdiff", "deseq", "edger"), title = TRUE, grid = TRUE, highlight = NULL, data.return = FALSE, xaxis.text.size = 10, yaxis.text.size = 10, xaxis.title.size = 12, yaxis.title.size = 12, main.title.size = 15)
vsScatterPlot(x, y, data, d.factor = NULL, type = c("cuffdiff", "deseq", "edger"), title = TRUE, grid = TRUE, highlight = NULL, data.return = FALSE, xaxis.text.size = 10, yaxis.text.size = 10, xaxis.title.size = 12, yaxis.title.size = 12, main.title.size = 15)
x |
treatment |
y |
treatment |
data |
output generated from calling the main routines of either
|
d.factor |
a specified factor; for use with |
type |
an analysis classifier to tell the function how to process the
data. Must be either |
title |
display the main title of plot. Logical; defaults to
|
grid |
display major and minor axis lines. Logical; defaults to
|
highlight |
character string of IDs that will be highlighted. Set to
|
data.return |
returns data output of plot Logical; defaults to
|
xaxis.text.size |
change the font size of the |
yaxis.text.size |
change the font size of the |
xaxis.title.size |
change the font size of the |
yaxis.title.size |
change the font size of the |
main.title.size |
change the font size of the plot title text.
Defaults to |
An object created by ggplot
Brandon Monier, [email protected]
# Cuffdiff example data("df.cuff") vsScatterPlot( x = "hESC", y = "iPS", data = df.cuff, d.factor = NULL, type = "cuffdiff", title = TRUE, grid = TRUE ) # DESeq2 example data("df.deseq") require(DESeq2) vsScatterPlot( x = "treated_paired.end", y = "untreated_paired.end", data = df.deseq, d.factor = "condition", type = "deseq", title = TRUE, grid = TRUE ) # edgeR example data("df.edger") require(edgeR) vsScatterPlot( x = "WW", y = "WM", data = df.edger, d.factor = NULL, type = "edger", title = TRUE, grid = TRUE ) # Highlight IDs data("df.cuff") hl <- c( "XLOC_000033", "XLOC_000099", "XLOC_001414", "XLOC_001409" ) vsScatterPlot( x = "hESC", y = "iPS", data = df.cuff, d.factor = NULL, type = "cuffdiff", title = TRUE, grid = TRUE, highlight = hl ) # Extract data frame from visualization data("df.cuff") tmp <- vsScatterPlot( x = "hESC", y = "iPS", data = df.cuff, d.factor = NULL, type = "cuffdiff", title = TRUE, grid = TRUE, data.return = TRUE ) df_scatter <- tmp[[1]] ## or use tmp$data head(df_scatter) # Show plot from object (see prior example for more details) tmp[[2]] ## or use tmp$plot
# Cuffdiff example data("df.cuff") vsScatterPlot( x = "hESC", y = "iPS", data = df.cuff, d.factor = NULL, type = "cuffdiff", title = TRUE, grid = TRUE ) # DESeq2 example data("df.deseq") require(DESeq2) vsScatterPlot( x = "treated_paired.end", y = "untreated_paired.end", data = df.deseq, d.factor = "condition", type = "deseq", title = TRUE, grid = TRUE ) # edgeR example data("df.edger") require(edgeR) vsScatterPlot( x = "WW", y = "WM", data = df.edger, d.factor = NULL, type = "edger", title = TRUE, grid = TRUE ) # Highlight IDs data("df.cuff") hl <- c( "XLOC_000033", "XLOC_000099", "XLOC_001414", "XLOC_001409" ) vsScatterPlot( x = "hESC", y = "iPS", data = df.cuff, d.factor = NULL, type = "cuffdiff", title = TRUE, grid = TRUE, highlight = hl ) # Extract data frame from visualization data("df.cuff") tmp <- vsScatterPlot( x = "hESC", y = "iPS", data = df.cuff, d.factor = NULL, type = "cuffdiff", title = TRUE, grid = TRUE, data.return = TRUE ) df_scatter <- tmp[[1]] ## or use tmp$data head(df_scatter) # Show plot from object (see prior example for more details) tmp[[2]] ## or use tmp$plot
fold changes and
(
-values)This function allows you to extract necessary results-based data from
either a DESeq2
object, edgeR
object, or cuffdiff
data
frame to create a volcano plot (i.e. a scatter plot) of the negative
of the
-value versus the
of the fold change
while implementing ggplot2 aesthetics.
vsVolcano(x, y, data, d.factor = NULL, type = c("cuffdiff", "deseq", "edger"), padj = 0.05, x.lim = NULL, lfc = NULL, title = TRUE, legend = TRUE, grid = TRUE, highlight = NULL, data.return = FALSE, xaxis.text.size = 10, yaxis.text.size = 10, xaxis.title.size = 10, yaxis.title.size = 10, main.title.size = 15, legend.text.size = 9)
vsVolcano(x, y, data, d.factor = NULL, type = c("cuffdiff", "deseq", "edger"), padj = 0.05, x.lim = NULL, lfc = NULL, title = TRUE, legend = TRUE, grid = TRUE, highlight = NULL, data.return = FALSE, xaxis.text.size = 10, yaxis.text.size = 10, xaxis.title.size = 10, yaxis.title.size = 10, main.title.size = 15, legend.text.size = 9)
x |
treatment |
y |
treatment |
data |
output generated from calling the main routines of either
|
d.factor |
a specified factor; for use with |
type |
an analysis classifier to tell the function how to process the
data. Must be either |
padj |
a user defined adjusted |
x.lim |
set manual limits (boundaries) to the x axis. Defaults to
|
lfc |
|
title |
display the main title of plot. Logical; defaults to
|
legend |
display legend of plot. Logical; defaults to |
grid |
display major and minor axis lines. Logical; defaults to
|
highlight |
character string of IDs that will be highlighted. Set to
|
data.return |
returns data output of plot Logical; defaults to
|
xaxis.text.size |
change the font size of the |
yaxis.text.size |
change the font size of the |
xaxis.title.size |
change the font size of the |
yaxis.title.size |
change the font size of the |
main.title.size |
change the font size of the plot title text.
Defaults to |
legend.text.size |
change the font size of the legend body text.
Defaults to |
An object created by ggplot
Brandon Monier, [email protected]
# Cuffdiff example data("df.cuff") vsVolcano( x = "hESC", y = "iPS", data = df.cuff, d.factor = NULL, type = "cuffdiff", padj = 0.05, x.lim = NULL, lfc = 2, title = TRUE, grid = TRUE, data.return = FALSE ) # DESeq2 example data("df.deseq") require(DESeq2) vsVolcano( x = "treated_paired.end", y = "untreated_paired.end", data = df.deseq, d.factor = "condition", type = "deseq", padj = 0.05, x.lim = NULL, lfc = NULL, title = TRUE, grid = TRUE, data.return = FALSE ) # edgeR example data("df.edger") require(edgeR) vsVolcano( x = "WM", y = "MM", data = df.edger, d.factor = NULL, type = "edger", padj = 0.1, x.lim = NULL, lfc = 2, title = FALSE, grid = TRUE, data.return = FALSE ) data("df.deseq") require(DESeq2) hl <- c( "FBgn0036248", "FBgn0026573", "FBgn0259742", "FBgn0038961", "FBgn0038928" ) vsVolcano( x = "treated_paired.end", y = "untreated_paired.end", data = df.deseq, d.factor = "condition", type = "deseq", padj = 0.05, x.lim = NULL, lfc = NULL, title = TRUE, grid = TRUE, data.return = FALSE, highlight = hl ) # Extract data frame from visualization data("df.cuff") tmp <- vsVolcano( x = "hESC", y = "iPS", data = df.cuff, d.factor = NULL, type = "cuffdiff", padj = 0.05, x.lim = NULL, lfc = 2, title = TRUE, grid = TRUE, data.return = TRUE ) df_volcano <- tmp[[1]] ## or use tmp$data head(df_volcano) # Show plot from object (see prior example for more details) tmp[[2]] ## or use tmp$plot
# Cuffdiff example data("df.cuff") vsVolcano( x = "hESC", y = "iPS", data = df.cuff, d.factor = NULL, type = "cuffdiff", padj = 0.05, x.lim = NULL, lfc = 2, title = TRUE, grid = TRUE, data.return = FALSE ) # DESeq2 example data("df.deseq") require(DESeq2) vsVolcano( x = "treated_paired.end", y = "untreated_paired.end", data = df.deseq, d.factor = "condition", type = "deseq", padj = 0.05, x.lim = NULL, lfc = NULL, title = TRUE, grid = TRUE, data.return = FALSE ) # edgeR example data("df.edger") require(edgeR) vsVolcano( x = "WM", y = "MM", data = df.edger, d.factor = NULL, type = "edger", padj = 0.1, x.lim = NULL, lfc = 2, title = FALSE, grid = TRUE, data.return = FALSE ) data("df.deseq") require(DESeq2) hl <- c( "FBgn0036248", "FBgn0026573", "FBgn0259742", "FBgn0038961", "FBgn0038928" ) vsVolcano( x = "treated_paired.end", y = "untreated_paired.end", data = df.deseq, d.factor = "condition", type = "deseq", padj = 0.05, x.lim = NULL, lfc = NULL, title = TRUE, grid = TRUE, data.return = FALSE, highlight = hl ) # Extract data frame from visualization data("df.cuff") tmp <- vsVolcano( x = "hESC", y = "iPS", data = df.cuff, d.factor = NULL, type = "cuffdiff", padj = 0.05, x.lim = NULL, lfc = 2, title = TRUE, grid = TRUE, data.return = TRUE ) df_volcano <- tmp[[1]] ## or use tmp$data head(df_volcano) # Show plot from object (see prior example for more details) tmp[[2]] ## or use tmp$plot
fold changes and
(
-values)This function allows you to extract necessary results-based data from
either a DESeq2
object, edgeR
object, or cuffdiff
data
frame to create a volcano plot (i.e. a scatter plot) of the negative
of the
-value versus the
of the fold change
while implementing ggplot2 aesthetics for all possible combinations of
treatments.
vsVolcanoMatrix(data, d.factor = NULL, type = c("cuffdiff", "deseq", "edger"), padj = 0.05, x.lim = NULL, lfc = NULL, title = TRUE, legend = TRUE, grid = TRUE, counts = TRUE, data.return = FALSE, xaxis.text.size = 9, yaxis.text.size = 9, xaxis.title.size = 10, yaxis.title.size = 10, main.title.size = 15, legend.text.size = 9, facet.title.size = 10)
vsVolcanoMatrix(data, d.factor = NULL, type = c("cuffdiff", "deseq", "edger"), padj = 0.05, x.lim = NULL, lfc = NULL, title = TRUE, legend = TRUE, grid = TRUE, counts = TRUE, data.return = FALSE, xaxis.text.size = 9, yaxis.text.size = 9, xaxis.title.size = 10, yaxis.title.size = 10, main.title.size = 15, legend.text.size = 9, facet.title.size = 10)
data |
a cuffdiff, DESeq2, or edgeR object. |
d.factor |
a specified factor; for use with DESeq2 objects only.
Defaults to |
type |
an analysis classifier to tell the function how to process the
data. Must be either |
padj |
a user defined adjusted |
x.lim |
set manual limits to the x axis. Defaults to |
lfc |
|
title |
show title of plot. Defaults to |
legend |
shows legend of plot. Defaults to |
grid |
show major and minor axis lines. Defaults to |
counts |
displays the number of differentially expressed genes for
each treatment comparison. Defaults to |
data.return |
returns data output of plot if set to |
xaxis.text.size |
change the font size of the |
yaxis.text.size |
change the font size of the |
xaxis.title.size |
change the font size of the |
yaxis.title.size |
change the font size of the |
main.title.size |
change the font size of the plot title text.
Defaults to |
legend.text.size |
change the font size of the legend body text.
Defaults to |
facet.title.size |
change the font size of the facet wrap title text.
Defaults to |
An object created by ggplot
Brandon Monier, [email protected]
# Cuffdiff example data("df.cuff") vsVolcanoMatrix( data = df.cuff, d.factor = NULL, type = "cuffdiff", padj = 0.05, x.lim = NULL, lfc = 2, title = TRUE, grid = TRUE, counts = TRUE, data.return = FALSE ) # DESeq2 example data("df.deseq") require(DESeq2) vsVolcanoMatrix( data = df.deseq, d.factor = "condition", type = "deseq", padj = 0.05, x.lim = NULL, lfc = 2, title = TRUE, grid = TRUE, counts = TRUE, data.return = FALSE ) # edgeR example data("df.edger") require(edgeR) vsVolcanoMatrix( data = df.edger, d.factor = NULL, type = "edger", padj = 0.05, x.lim = NULL, lfc = 2, title = TRUE, grid = TRUE, counts = TRUE, data.return = FALSE ) # Extract data frame from visualization data("df.cuff") tmp <- vsVolcanoMatrix( data = df.cuff, d.factor = NULL, type = "cuffdiff", padj = 0.05, x.lim = NULL, lfc = 2, title = TRUE, grid = TRUE, counts = TRUE, data.return = TRUE ) df_vmat <- tmp[[1]] head(df_vmat) # Show plot from object (see prior example for more details) tmp[[2]] ## or use tmp$plot
# Cuffdiff example data("df.cuff") vsVolcanoMatrix( data = df.cuff, d.factor = NULL, type = "cuffdiff", padj = 0.05, x.lim = NULL, lfc = 2, title = TRUE, grid = TRUE, counts = TRUE, data.return = FALSE ) # DESeq2 example data("df.deseq") require(DESeq2) vsVolcanoMatrix( data = df.deseq, d.factor = "condition", type = "deseq", padj = 0.05, x.lim = NULL, lfc = 2, title = TRUE, grid = TRUE, counts = TRUE, data.return = FALSE ) # edgeR example data("df.edger") require(edgeR) vsVolcanoMatrix( data = df.edger, d.factor = NULL, type = "edger", padj = 0.05, x.lim = NULL, lfc = 2, title = TRUE, grid = TRUE, counts = TRUE, data.return = FALSE ) # Extract data frame from visualization data("df.cuff") tmp <- vsVolcanoMatrix( data = df.cuff, d.factor = NULL, type = "cuffdiff", padj = 0.05, x.lim = NULL, lfc = 2, title = TRUE, grid = TRUE, counts = TRUE, data.return = TRUE ) df_vmat <- tmp[[1]] head(df_vmat) # Show plot from object (see prior example for more details) tmp[[2]] ## or use tmp$plot