Title: | VeloViz: RNA-velocity informed 2D embeddings for visualizing cell state trajectories |
---|---|
Description: | VeloViz uses each cell’s current observed and predicted future transcriptional states inferred from RNA velocity analysis to build a nearest neighbor graph between cells in the population. Edges are then pruned based on a cosine correlation threshold and/or a distance threshold and the resulting graph is visualized using a force-directed graph layout algorithm. VeloViz can help ensure that relationships between cell states are reflected in the 2D embedding, allowing for more reliable representation of underlying cellular trajectories. |
Authors: | Lyla Atta [aut, cre] , Jean Fan [aut] , Arpan Sahoo [aut] |
Maintainer: | Lyla Atta <[email protected]> |
License: | GPL-3 |
Version: | 1.13.0 |
Built: | 2024-11-30 05:34:49 UTC |
Source: | https://github.com/bioc/veloviz |
Function to produce idx and dist representation of a VeloViz graph
asNNGraph(vig)
asNNGraph(vig)
vig |
output of |
idx
numVertices x numNeighbors matrix, where each row i contains indices of vertex i's neighbors
dist
numVertices x numNeighbors matrix, where each row i contains distances from vertex i to its neighbors
data(vel) curr <- vel$current proj <- vel$projected vv <- buildVeloviz(curr = curr, proj = proj, normalize.depth = TRUE, use.ods.genes = FALSE, alpha = 0.05, pca = TRUE, nPCs = 3, center = TRUE, scale = TRUE, k = 10, similarity.threshold = -1, distance.weight = 1, distance.threshold = 1, weighted = TRUE, verbose = FALSE) asNNGraph(vv)
data(vel) curr <- vel$current proj <- vel$projected vv <- buildVeloviz(curr = curr, proj = proj, normalize.depth = TRUE, use.ods.genes = FALSE, alpha = 0.05, pca = TRUE, nPCs = 3, center = TRUE, scale = TRUE, k = 10, similarity.threshold = -1, distance.weight = 1, distance.threshold = 1, weighted = TRUE, verbose = FALSE) asNNGraph(vv)
Creates VeloViz graph and FDG layout from PC scores of current and projected transcriptional states.
buildVeloviz( curr, proj, normalize.depth = TRUE, depth = 1e+06, use.ods.genes = TRUE, max.ods.genes = 2000, alpha = 0.05, pca = TRUE, center = TRUE, scale = TRUE, nPCs = 10, k = 10, similarity.threshold = 0, distance.weight = 1, distance.threshold = 1, weighted = TRUE, remove.unconnected = TRUE, verbose = FALSE, details = FALSE )
buildVeloviz( curr, proj, normalize.depth = TRUE, depth = 1e+06, use.ods.genes = TRUE, max.ods.genes = 2000, alpha = 0.05, pca = TRUE, center = TRUE, scale = TRUE, nPCs = 10, k = 10, similarity.threshold = 0, distance.weight = 1, distance.threshold = 1, weighted = TRUE, remove.unconnected = TRUE, verbose = FALSE, details = FALSE )
curr |
Genes (rows) x cells (columns) matrix of observed current transcriptional state |
proj |
Genes (rows) x cells (columns) matrix of predicted future transcriptional state |
normalize.depth |
logical to normalize raw counts to counts per million, default = TRUE |
depth |
Depth scaling, default = 1e6 for counts per million (CPM) |
use.ods.genes |
Use only overdispersed genes to create VeloViz graph, default = TRUE |
max.ods.genes |
number of most highly expressed overdispersed genes to use to create VeloViz graph, default = 2000 |
alpha |
Significance threshold for overdispersed genes, default = 0.05 |
pca |
logical to use PC scores to create VeloViz graph, default = TRUE. FALSE = use gene expression to create VeloViz graph |
center |
logical to mean center gene expression before PCA, default = TRUE |
scale |
logical to scale gene expression variance before PCA, default = TRUE |
nPCs |
number of principal components to use to create VeloViz graph, default = 10 |
k |
Number of nearest neighbors to assign each cell |
similarity.threshold |
similarity threshold below which to remove edges, default = -1 i.e. no edges removed |
distance.weight |
Weight of distance component of composite distance, default = 1 |
distance.threshold |
quantile threshold for distance component above which to remove edges, default = 1 i.e. no edges removed |
weighted |
logical indicating whether to compute VeloViz edges based on composite distance, default = TRUE. FALSE = all edges are of equal weight |
remove.unconnected |
logical indicating whether to remove cells with no edges in the VeloViz graph from the output embedding, default = TRUE (removed) |
verbose |
logical for verbosity setting, default = FALSE |
details |
logical to return detailed data frame or names of genes, default = FALSE |
graph
igraph object of VeloViz graph
fdg_coords
cells (rows) x 2 coordinates of force-directed layout of VeloViz graph
projectedNeighbors
output of projectedNeighbors
data(vel) curr <- vel$current proj <- vel$projected buildVeloviz(curr = curr, proj = proj, normalize.depth = TRUE, use.ods.genes = TRUE, alpha = 0.05, pca = TRUE, nPCs = 20, center = TRUE, scale = TRUE, k = 5, similarity.threshold = 0.25, distance.weight = 1, distance.threshold = 0.5, weighted = TRUE, verbose = FALSE)
data(vel) curr <- vel$current proj <- vel$projected buildVeloviz(curr = curr, proj = proj, normalize.depth = TRUE, use.ods.genes = TRUE, alpha = 0.05, pca = TRUE, nPCs = 20, center = TRUE, scale = TRUE, k = 5, similarity.threshold = 0.25, distance.weight = 1, distance.threshold = 0.5, weighted = TRUE, verbose = FALSE)
Visualize as velocity informed force directed graph
graphViz( observed, projected, k, distance_metric = "L2", similarity_metric = "cosine", distance_weight = 1, distance_threshold = 1, similarity_threshold = -1, weighted = TRUE, remove_unconnected = TRUE, return_graph = FALSE, plot = TRUE, cell.colors = NA, title = NA )
graphViz( observed, projected, k, distance_metric = "L2", similarity_metric = "cosine", distance_weight = 1, distance_threshold = 1, similarity_threshold = -1, weighted = TRUE, remove_unconnected = TRUE, return_graph = FALSE, plot = TRUE, cell.colors = NA, title = NA )
observed |
PCs (rows) x cells (columns) matrix of observed transcriptional state projected into PC space |
projected |
PCs (rows) x cells (columns) matrix of projected transcriptional states. Cell should be in same order as in |
k |
Number of nearest neighbors to assign each cell |
distance_metric |
Method to compute distance component of composite distance. "L1" or "L2", default = "L2" |
similarity_metric |
Method to compute similarity between velocity and cell transition matrices. "cosine" or "pearson", default = "cosine" |
distance_weight |
Weight of distance component of composite distance, default = 1 |
distance_threshold |
quantile threshold for distance component above which to remove edges, default = 1 i.e. no edges removed |
similarity_threshold |
similarity threshold below which to remove edges, default = -1 i.e. no edges removed |
weighted |
if TRUE, assigns edge weights based on composite distance, if FALSE assigns equal weights to all edges, default = TRUE |
remove_unconnected |
if TRUE, does not plot cells with no edges, default = TRUE |
return_graph |
if TRUE, returns igraph object |
plot |
if TRUE, plots graph and force-directed layout |
cell.colors |
cell.colors to use for plotting |
title |
title to use for plot |
graph
igraph object of VeloViz graph
fdg_coords
cells (rows) x 2 coordinates of force-directed layout of VeloViz graph
projectedNeighbors
output of projectedNeighbors
data(vel) curr = vel$current proj = vel$projected m <- log10(curr+1) pca <- RSpectra::svds(A = Matrix::t(m), k=3, opts = list(center = FALSE, scale = FALSE, maxitr = 2000, tol = 1e-10)) pca.curr <- Matrix::t(m) %*% pca$v[,1:3] m <- log10(proj+1) pca.proj <- Matrix::t(m) %*% pca$v[,1:3] graphViz(t(pca.curr), t(pca.proj), k=10, cell.colors=NA, similarity_threshold=-1, distance_weight = 1, distance_threshold = 1, weighted = TRUE, remove_unconnected = TRUE, plot = FALSE, return_graph = TRUE)
data(vel) curr = vel$current proj = vel$projected m <- log10(curr+1) pca <- RSpectra::svds(A = Matrix::t(m), k=3, opts = list(center = FALSE, scale = FALSE, maxitr = 2000, tol = 1e-10)) pca.curr <- Matrix::t(m) %*% pca$v[,1:3] m <- log10(proj+1) pca.proj <- Matrix::t(m) %*% pca$v[,1:3] graphViz(t(pca.curr), t(pca.proj), k=10, cell.colors=NA, similarity_threshold=-1, distance_weight = 1, distance_threshold = 1, weighted = TRUE, remove_unconnected = TRUE, plot = FALSE, return_graph = TRUE)
Normalizes raw counts to counts per million
normalizeDepth(counts, depthScale = 1e+06, verbose = TRUE)
normalizeDepth(counts, depthScale = 1e+06, verbose = TRUE)
counts |
Read count matrix. The rows correspond to genes, columns correspond to individual cells |
depthScale |
Depth scaling. Using a million for CPM (default: 1e6) |
verbose |
Boolean for verbosity setting (default: TRUE) |
a normalized matrix
data(vel) curr <- vel$current normalizeDepth(curr)
data(vel) curr <- vel$current normalizeDepth(curr)
Normalizes gene expression magnitudes to with respect to its ratio to the transcriptome-wide expectation as determined by local regression on expression magnitude
normalizeVariance( cpm, gam.k = 5, alpha = 0.05, max.adjusted.variance = 1000, min.adjusted.variance = 0.001, verbose = TRUE, plot = FALSE, details = FALSE )
normalizeVariance( cpm, gam.k = 5, alpha = 0.05, max.adjusted.variance = 1000, min.adjusted.variance = 0.001, verbose = TRUE, plot = FALSE, details = FALSE )
cpm |
Counts per million (CPM) matrix. Rows are genes, columns are cells. |
gam.k |
Generalized additive model parameter; the dimension of the basis used to represent the smooth term (default: 5) |
alpha |
Significance threshold for overdispersed genes (default: 0.05) |
max.adjusted.variance |
Ceiling on maximum variance after normalization to prevent infinites (default: 1e3) |
min.adjusted.variance |
Floor on minimum variance after normalization (default: 1e-3) |
verbose |
Boolean for verbosity setting (default: TRUE) |
plot |
Boolean to plot mean variance plots before and after correction |
details |
Boolean to return detailed data frame or names of genes (default: FALSE) |
A list with two items: (1) an adjusted CPM matrix with the same dimensions as the input and (2) a dataframe with the summary statistics for each gene.
data(vel) curr <- vel$current normalizeDepth(curr)
data(vel) curr <- vel$current normalizeDepth(curr)
Pancreatic endocrinogenesis scRNA-seq from Bastidas-Ponce et. al., Development 2019 accessed via scVelo package and subsampled to 739 cells.
pancreas
pancreas
list of 4 objects:
matrix, 7192 genes x 739 cells of spliced counts
matrix, 7192 genes x 739 cells of unspliced counts
matrix, 739 x 50 cell scores in 50 PCs
factor of cell type annotations from scVelo
https://dev.biologists.org/content/146/12/dev173849.long
Plot 2D embedding From scde/pagoda2/MUDAN
plotEmbedding( emb, groups = NULL, colors = NULL, cex = 0.6, alpha = 0.4, gradientPalette = NULL, zlim = NULL, s = 1, v = 0.8, min.group.size = 1, show.legend = FALSE, mark.clusters = FALSE, mark.cluster.cex = 2, shuffle.colors = FALSE, legend.x = "topright", gradient.range.quantile = 0.95, verbose = TRUE, unclassified.cell.color = "gray70", group.level.colors = NULL, ... )
plotEmbedding( emb, groups = NULL, colors = NULL, cex = 0.6, alpha = 0.4, gradientPalette = NULL, zlim = NULL, s = 1, v = 0.8, min.group.size = 1, show.legend = FALSE, mark.clusters = FALSE, mark.cluster.cex = 2, shuffle.colors = FALSE, legend.x = "topright", gradient.range.quantile = 0.95, verbose = TRUE, unclassified.cell.color = "gray70", group.level.colors = NULL, ... )
emb |
dataframe with x and y coordinates |
groups |
factor annotations for rows on emb for visualizing cluster annotations |
colors |
color or numeric values for rows on emb for visualizing gene expression |
cex |
point size |
alpha |
point opacity |
gradientPalette |
palette for colors if numeric values provided |
zlim |
range for colors |
s |
saturation of rainbow for group colors |
v |
value of rainbow for group colors |
min.group.size |
minimum size of group in order for group to be colored |
show.legend |
whether to show legend |
mark.clusters |
whether to mark clusters with name of cluster |
mark.cluster.cex |
cluster marker point size |
shuffle.colors |
whether to shuffle group colors |
legend.x |
legend position ie. 'topright', 'topleft', 'bottomleft', 'bottomright' |
gradient.range.quantile |
quantile for mapping colors to gradient palette |
verbose |
verbosity |
unclassified.cell.color |
cells not included in groups will be labeled in this color |
group.level.colors |
set group level colors. Default uses rainbow. |
... |
Additional parameters to pass to BASE::plot |
embedding plot
data(vel) curr <- vel$current proj <- vel$projected vv <- buildVeloviz(curr = curr, proj = proj, normalize.depth = TRUE, use.ods.genes = TRUE, alpha = 0.05, pca = TRUE, nPCs = 20, center = TRUE, scale = TRUE, k = 5, similarity.threshold = 0.25, distance.weight = 1, distance.threshold = 0.5, weighted = TRUE, verbose = FALSE) plotEmbedding(vv$fdg_coords)
data(vel) curr <- vel$current proj <- vel$projected vv <- buildVeloviz(curr = curr, proj = proj, normalize.depth = TRUE, use.ods.genes = TRUE, alpha = 0.05, pca = TRUE, nPCs = 20, center = TRUE, scale = TRUE, k = 5, similarity.threshold = 0.25, distance.weight = 1, distance.threshold = 0.5, weighted = TRUE, verbose = FALSE) plotEmbedding(vv$fdg_coords)
Plot function
plotVeloviz( vig, layout.method = igraph::layout_with_fr, clusters = NA, cluster.method = igraph::cluster_louvain, col = NA, alpha = 0.05, verbose = TRUE )
plotVeloviz( vig, layout.method = igraph::layout_with_fr, clusters = NA, cluster.method = igraph::cluster_louvain, col = NA, alpha = 0.05, verbose = TRUE )
vig |
output of buildVeloviz |
layout.method |
igraph method to use for generating 2D graph representation, default = igraph::layout_with_fr |
clusters |
cluster annotations for cells in data |
cluster.method |
igraph method to use for clustering if clusters are not provided, default = igraph::cluster_louvain |
col |
colors to use for plotting |
alpha |
transparency for plotting graph nodes |
verbose |
logical for verbosity setting, default = FALSE |
cells (rows) x 2 coordinates of force-directed layout of VeloViz graph
data(vel) curr <- vel$current proj <- vel$projected vv <- buildVeloviz(curr = curr, proj = proj, normalize.depth = TRUE, use.ods.genes = TRUE, alpha = 0.05, pca = TRUE, nPCs = 20, center = TRUE, scale = TRUE, k = 5, similarity.threshold = 0.25, distance.weight = 1, distance.threshold = 0.5, weighted = TRUE, verbose = FALSE) plotVeloviz(vv)
data(vel) curr <- vel$current proj <- vel$projected vv <- buildVeloviz(curr = curr, proj = proj, normalize.depth = TRUE, use.ods.genes = TRUE, alpha = 0.05, pca = TRUE, nPCs = 20, center = TRUE, scale = TRUE, k = 5, similarity.threshold = 0.25, distance.weight = 1, distance.threshold = 0.5, weighted = TRUE, verbose = FALSE) plotVeloviz(vv)
Computes composite distances between all cell pairs and returns k-nearest neighbors and edge weights needed to build VeloViz graph.
projectedNeighbors( observed, projected, k, distance_metric = "L2", similarity_metric = "cosine", distance_weight = 1, distance_threshold = 1, similarity_threshold = -1 )
projectedNeighbors( observed, projected, k, distance_metric = "L2", similarity_metric = "cosine", distance_weight = 1, distance_threshold = 1, similarity_threshold = -1 )
observed |
PCs (rows) x cells (columns) matrix of observed transcriptional state projected into PC space |
projected |
PCs (rows) x cells (columns) matrix of projected transcriptional states. Cells should be in same order as in |
k |
Number of nearest neighbors to assign each cell |
distance_metric |
Method to compute distance component of composite distance. "L1" or "L2", default = "L2" |
similarity_metric |
Method to compute similarity between velocity and cell transition matrices. "cosine" or "pearson", default = "cosine" |
distance_weight |
Weight of distance component of composite distance, default = 1 |
distance_threshold |
quantile threshold for distance component above which to remove edges, default = 1 i.e. no edges removed |
similarity_threshold |
similarity threshold below which to remove edges, default = -1 i.e. no edges removed |
kNNs
cells (rows) x k (columns) matrix of indices of each cell's nearest neighbors computed based on composite distance. Edges removed based on distance or similarity threshold will be NA.
edge_weights
cells (rows) x k (columns) matrix of edge weights computed based on composite distance. Edges removed based on distance or similarity threshold will be NA.
all_dists
cells x cells matrix of all pairwise composite distances
dist_comp
components of composite distance: invDist
distance component, negSim
similarity component
data(vel) curr <- vel$current proj <- vel$projected projectedNeighbors(curr, proj, 10)
data(vel) curr <- vel$current proj <- vel$projected projectedNeighbors(curr, proj, 10)
svds
from RSpectra
Reduce dimension using Principal Components Analysis via svds
from RSpectra
reduceDimensions( matnorm, center = TRUE, scale = TRUE, max.ods.genes = 2000, nPCs = 50, verbose = TRUE, plot = FALSE, details = FALSE )
reduceDimensions( matnorm, center = TRUE, scale = TRUE, max.ods.genes = 2000, nPCs = 50, verbose = TRUE, plot = FALSE, details = FALSE )
matnorm |
matrix on which to perform PCA |
center |
logical to mean center gene expression before PCA, default = TRUE |
scale |
logical to scale gene expression variance before PCA, default = TRUE |
max.ods.genes |
number of most highly expressed overdispersed genes to include, default = 2000 |
nPCs |
number of principal components to reduce to return, default = 50 |
verbose |
logical for verbosity setting, default = TRUE |
plot |
plot singular values vs number of components |
details |
logical to return pca object, default = FALSE |
matrix of cell scores in nPCs components
data(vel) curr <- vel$current curr.norm <- normalizeDepth(curr) curr.norm <- log10(curr.norm+1) reduceDimensions(curr.norm, nPCs=3)
data(vel) curr <- vel$current curr.norm <- normalizeDepth(curr) curr.norm <- log10(curr.norm+1) reduceDimensions(curr.norm, nPCs=3)
output of velocyto.R::gene.relative.velocity.estimates for 40 cell subset of MERFISH data. Used to run examples
vel
vel
list of 1:
velocity output containing current observed ("current") and predicted future ("projected") estimates
https://www.pnas.org/content/116/39/19490
Package for creating RNA velocity informed embeddings for single cell transcriptomics