Results from the univariate regressions performed using can be combined in a post-processing step to perform multivariate hypothesis testing. In this example, we fit on transcript-level counts and then perform multivariate hypothesis testing by combining transcripts at the gene-level. This is done with the function.
Read in transcript counts from the package.
library(readr)
library(tximport)
library(tximportData)
# specify directory
path <- system.file("extdata", package = "tximportData")
# read sample meta-data
samples <- read.table(file.path(path, "samples.txt"), header = TRUE)
samples.ext <- read.table(file.path(path, "samples_extended.txt"), header = TRUE, sep = "\t")
# read assignment of transcripts to genes
# remove genes on the PAR, since these are present twice
tx2gene <- read_csv(file.path(path, "tx2gene.gencode.v27.csv"))
tx2gene <- tx2gene[grep("PAR_Y", tx2gene$GENEID, invert = TRUE), ]
# read transcript-level quatifictions
files <- file.path(path, "salmon", samples$run, "quant.sf.gz")
txi <- tximport(files, type = "salmon", txOut = TRUE)
# Create metadata simulating two conditions
sampleTable <- data.frame(condition = factor(rep(c("A", "B"), each = 3)))
rownames(sampleTable) <- paste0("Sample", 1:6)
Perform standard analysis at the transcript-level
library(variancePartition)
library(edgeR)
# Prepare transcript-level reads
dge <- DGEList(txi$counts)
design <- model.matrix(~condition, data = sampleTable)
isexpr <- filterByExpr(dge, design)
dge <- dge[isexpr, ]
dge <- calcNormFactors(dge)
# Estimate precision weights
vobj <- voomWithDreamWeights(dge, ~condition, sampleTable)
# Fit regression model one transcript at a time
fit <- dream(vobj, ~condition, sampleTable)
fit <- eBayes(fit)
Combine the transcript-level results at the gene-level. The mapping between transcript and gene is stored in as a list.
# Prepare transcript to gene mapping
# keep only transcripts present in vobj
# then convert to list with key GENEID and values TXNAMEs
keep <- tx2gene$TXNAME %in% rownames(vobj)
tx2gene.lst <- unstack(tx2gene[keep, ])
# Run multivariate test on entries in each feature set
# Default method is "FE.empirical", but use "FE" here to reduce runtime
res <- mvTest(fit, vobj, tx2gene.lst, coef = "conditionB", method = "FE")
# truncate gene names since they have version numbers
# ENST00000498289.5 -> ENST00000498289
res$ID.short <- gsub("\\..+", "", res$ID)
Perform gene set analysis using on the gene-level test statistics.
# must have zenith > v1.0.2
library(zenith)
library(GSEABase)
gs <- get_MSigDB("C1", to = "ENSEMBL")
df_gsa <- zenithPR_gsa(res$stat, res$ID.short, gs, inter.gene.cor = .05)
head(df_gsa)
## NGenes Correlation delta se p.less p.greater PValue
## M14982_chr7p13 25 0.05 7.906128 2.082903 0.999926118 7.388155e-05 0.0001477631
## M5824_chr11p13 30 0.05 -6.028272 2.007216 0.001337443 9.986626e-01 0.0026748867
## M7314_chr4p14 25 0.05 -5.077180 2.084132 0.007428521 9.925715e-01 0.0148570424
## M3783_chr2q37 71 0.05 3.749809 1.768579 0.982999226 1.700077e-02 0.0340015489
## M6742_chr2q36 20 0.05 -4.344151 2.194043 0.023861861 9.761381e-01 0.0477237227
## M14543_chr18q22 17 0.05 4.325680 2.286441 0.970737601 2.926240e-02 0.0585247982
## Direction FDR Geneset coef
## M14982_chr7p13 Up 0.03664525 M14982_chr7p13 zenithPR
## M5824_chr11p13 Down 0.33168596 M5824_chr11p13 zenithPR
## M7314_chr4p14 Down 0.99873228 M7314_chr4p14 zenithPR
## M3783_chr2q37 Up 0.99873228 M3783_chr2q37 zenithPR
## M6742_chr2q36 Down 0.99873228 M6742_chr2q36 zenithPR
## M14543_chr18q22 Up 0.99873228 M14543_chr18q22 zenithPR
## R version 4.4.2 (2024-10-31)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.1 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so; LAPACK version 3.12.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8
## [4] LC_COLLATE=C LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C
## [10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: Etc/UTC
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] org.Hs.eg.db_3.20.0 msigdbr_7.5.1 GSEABase_1.69.0
## [4] graph_1.85.0 annotate_1.85.0 XML_3.99-0.17
## [7] AnnotationDbi_1.69.0 IRanges_2.41.0 S4Vectors_0.45.1
## [10] Biobase_2.67.0 BiocGenerics_0.53.2 generics_0.1.3
## [13] zenith_1.9.0 tximportData_1.34.0 tximport_1.35.0
## [16] readr_2.1.5 edgeR_4.5.0 pander_0.6.5
## [19] variancePartition_1.37.1 BiocParallel_1.41.0 limma_3.63.2
## [22] ggplot2_3.5.1 knitr_1.49 rmarkdown_2.29
##
## loaded via a namespace (and not attached):
## [1] sys_3.4.3 jsonlite_1.8.9 magrittr_2.0.3
## [4] farver_2.1.2 nloptr_2.1.1 zlibbioc_1.52.0
## [7] vctrs_0.6.5 memoise_2.0.1 minqa_1.2.8
## [10] RCurl_1.98-1.16 progress_1.2.3 S4Arrays_1.7.1
## [13] htmltools_0.5.8.1 curl_6.0.0 broom_1.0.7
## [16] SparseArray_1.7.1 sass_0.4.9 KernSmooth_2.23-24
## [19] bslib_0.8.0 pbkrtest_0.5.3 plyr_1.8.9
## [22] cachem_1.1.0 buildtools_1.0.0 lifecycle_1.0.4
## [25] iterators_1.0.14 pkgconfig_2.0.3 Matrix_1.7-1
## [28] R6_2.5.1 fastmap_1.2.0 GenomeInfoDbData_1.2.13
## [31] rbibutils_2.3 MatrixGenerics_1.19.0 digest_0.6.37
## [34] numDeriv_2016.8-1.1 colorspace_2.1-1 GenomicRanges_1.59.0
## [37] RSQLite_2.3.7 filelock_1.0.3 labeling_0.4.3
## [40] RcppZiggurat_0.1.6 fansi_1.0.6 abind_1.4-8
## [43] httr_1.4.7 compiler_4.4.2 bit64_4.5.2
## [46] aod_1.3.3 withr_3.0.2 backports_1.5.0
## [49] DBI_1.2.3 gplots_3.2.0 MASS_7.3-61
## [52] DelayedArray_0.33.1 corpcor_1.6.10 gtools_3.9.5
## [55] caTools_1.18.3 tools_4.4.2 remaCor_0.0.18
## [58] glue_1.8.0 nlme_3.1-166 grid_4.4.2
## [61] reshape2_1.4.4 snow_0.4-4 gtable_0.3.6
## [64] tzdb_0.4.0 tidyr_1.3.1 hms_1.1.3
## [67] utf8_1.2.4 XVector_0.47.0 pillar_1.9.0
## [70] stringr_1.5.1 babelgene_22.9 vroom_1.6.5
## [73] splines_4.4.2 dplyr_1.1.4 BiocFileCache_2.15.0
## [76] lattice_0.22-6 bit_4.5.0 tidyselect_1.2.1
## [79] locfit_1.5-9.10 maketools_1.3.1 Biostrings_2.75.1
## [82] SummarizedExperiment_1.37.0 RhpcBLASctl_0.23-42 xfun_0.49
## [85] statmod_1.5.0 matrixStats_1.4.1 KEGGgraph_1.67.0
## [88] stringi_1.8.4 UCSC.utils_1.3.0 yaml_2.3.10
## [91] boot_1.3-31 evaluate_1.0.1 codetools_0.2-20
## [94] tibble_3.2.1 Rgraphviz_2.51.0 cli_3.6.3
## [97] RcppParallel_5.1.9 xtable_1.8-4 Rdpack_2.6.1
## [100] munsell_0.5.1 jquerylib_0.1.4 Rcpp_1.0.13-1
## [103] GenomeInfoDb_1.43.0 EnvStats_3.0.0 dbplyr_2.5.0
## [106] png_0.1-8 Rfast_2.1.0 parallel_4.4.2
## [109] blob_1.2.4 prettyunits_1.2.0 bitops_1.0-9
## [112] lme4_1.1-35.5 mvtnorm_1.3-2 lmerTest_3.1-3
## [115] scales_1.3.0 purrr_1.0.2 crayon_1.5.3
## [118] fANCOVA_0.6-1 rlang_1.1.4 EnrichmentBrowser_2.37.0
## [121] KEGGREST_1.47.0
<>