Package 'uSORT'

Title: uSORT: A self-refining ordering pipeline for gene selection
Description: This package is designed to uncover the intrinsic cell progression path from single-cell RNA-seq data. It incorporates data pre-processing, preliminary PCA gene selection, preliminary cell ordering, feature selection, refined cell ordering, and post-analysis interpretation and visualization.
Authors: Mai Chan Lau, Hao Chen, Jinmiao Chen
Maintainer: Hao Chen <[email protected]>
License: Artistic-2.0
Version: 1.33.0
Built: 2025-01-17 07:26:30 UTC
Source: https://github.com/bioc/uSORT

Help Index


A wrapper function for autoSPIN sorting method

Description

A wrapper function for autoSPIN method which implements optimized local refinement using the selected SPIN sorting method, i.e. STS or Neighborhood.

Usage

autoSPIN(data, data_type = c("linear", "cyclical"),
  sorting_method = c("STS", "neighborhood"), alpha = 0.2, sigma_width = 1,
  no_randomization = 20, window_perc_range = c(0.1, 0.9),
  window_size_incre_perct = 0.05)

Arguments

data

An log2 transformed expresssion matrix containing n-rows of cells and m-cols of genes.

data_type

A character string indicating the type of progression, i.e. 'linear' (strictly linear) or 'cyclical' (cyclically linear).

sorting_method

A character string indicating the choice of SPIN sorting method, i.e. 'STS' (Side-to-Side) or 'Neighborhood'.

alpha

A fraction value denoting the size of locality used for calculating the summed local variance.

sigma_width

An integer number denoting the degree of spread of the gaussian distribution which is used for computing weight matrix for Neighborhood sorting method.

no_randomization

An integer number indicating the number of repeated sorting, each of which uses randomly selected initial cell position.

window_perc_range

A fraction value indicating the range of window size to be examined during local refinement.

window_size_incre_perct

A fraction value indicating the step size at each iteration for incrementing window size.

Value

A data frame containing single column of ordered sample IDs.

Examples

set.seed(15)
da <- iris[sample(150, 150, replace = FALSE), ]
rownames(da) <- paste0('spl_',seq(1,nrow(da)))
d <- da[,1:4]
dl <- da[,5,drop=FALSE]
res <- autoSPIN(data = d)
dl <- dl[match(res$SampleID,rownames(dl)),]
annot <- data.frame(id = seq(1,nrow(res)), label=dl, stringsAsFactors = FALSE)
#ggplot(annot, aes(x=id, y=id, colour = label)) + geom_point() + theme_bw()

A modified monocle's function

Description

A modified monocle's function for 'compareModels' which identifies and removes genes whose reduced_models is better than full_models in term of likelihood

Usage

clusterGenes1(expr_matrix, krange, method = function(x) {     as.dist((1 -
  cor(t(x)))/2) }, ...)

Arguments

expr_matrix

Expression matrix.

krange

krange.

method

method function.

...

Other parameters.

Value

test_res a dataframe containing status of modeling and adjusted p-value

Author(s)

MaiChan Lau


A modified monocle's function

Description

A modified monocle's function for 'compareModels' which identifies and removes genes whose reduced_models is better than full_models in term of likelihood

Usage

compareModels1(full_models, reduced_models)

Arguments

full_models

a Monocle's vgam full model

reduced_models

a Monocle's vgam reduced/ null model

Value

test_res a dataframe containing status of modeling and adjusted p-value

Author(s)

MaiChan Lau


A modified monocle's helper function

Description

A modified monocle's function for 'diff_test_helper1' which includes more attempts on finding models and also compute max. magnitude change in expression values predicted by GLM model

Usage

diff_test_helper1(x, fullModelFormulaStr, reducedModelFormulaStr,
  expressionFamily, lowerDetectionLimit = 0.1, type_ordering = "linear")

Arguments

x

an expression data

fullModelFormulaStr

a Monocle's model structure

reducedModelFormulaStr

a Monocle's model structure

expressionFamily

a Monocle's family character

lowerDetectionLimit

a threshold value

type_ordering

a character indicating the type of underlying cell progression, i.e. linear or circular

Value

test_res a dataframe containing status of modeling and adjusted p-value

Author(s)

MaiChan Lau


differential gene test

Description

modified from FludigmSC pacakge

Usage

differentialGeneTest1(cds,
  fullModelFormulaStr = "expression~sm.ns(Pseudotime, df=3)",
  reducedModelFormulaStr = "expression~1", cores = 1)

Arguments

cds

Input object.

fullModelFormulaStr

Full model formula.

reducedModelFormulaStr

Reduced model formula.

cores

Number of cores will be used.

Value

test results


A distance function A distance function computes cell-to-cell distance matrix.

Description

A distance function A distance function computes cell-to-cell distance matrix.

Usage

distance.function(expr, method = c("Euclidean", "Correlation", "eJaccard",
  "none"))

Arguments

expr

An expresssion matrix containing n-rows of cells and m-cols of genes.

method

A character string indicating the distance function.

Value

A matrix containing n-by-n cell distance.


A feature/ gene selection function

Description

A feature/ gene selection function (1) removes sparsely expressed genes, (2) identifies differentially expressed genes based on preliminary cell ordering, (3) removes highly dispersed genes from the identified DEGs, (4) further picks genes which are expected to have large expression difference on the 2 extreme ends of preliminary cell ordering

Usage

driving_force_gene_selection(cds, scattering.cutoff.prob = 0.75,
  driving.force.cutoff = NULL, qval_cutoff = 0.05, min_expr = 0.1,
  data_type = c("linear", "cyclical"), nCores = 1)

Arguments

cds

a Monocle's CellDataSet object

scattering.cutoff.prob

probability used for removing largely dispersed genes

driving.force.cutoff

a value used for removing genes which do not change much along cell progress along cell progress path

qval_cutoff

a user-defined adjusted p-value below which genes are retained

min_expr

the minimum expression value

data_type

a character indicating the type of underlying cell progression, i.e. linear or cyclical.

nCores

Number of cores to use.

Value

integer

Author(s)

MaiChan Lau

Examples

dir <- system.file('extdata', package='uSORT')
file <- list.files(dir, pattern='.txt$', full=TRUE)
#exprs <- uSORT_preProcess(exprs_file = file)
#exp_raw <- t(exprs$exprs_raw)
#exp_trimmed <- t(exprs$exprs_log_trimed)
#cds <- uSORT:::EXP_to_CellDataSet(exp_trimmed, exp_raw)
#driver_genes <- driving_force_gene_selection(cds = cds)

A elbow detection function

Description

A elbow detection function detects the elbow/knee of a given vector of values. Values will be sorted descendingly before detection, and the ID of those values above the elbow will be returned.

Usage

elbow_detection(scores, if_plot = FALSE)

Arguments

scores

A vector of numeric scores.

if_plot

Boolean determine if plot the results.

Value

a vector of selected elements IDs

Examples

scores <- c(10, 9 ,8, 6, 3, 2, 1, 0.1)
elbow_detection(scores, if_plot = TRUE)

A function for constructing a Monocle's CellDataSet object from an expression matrix

Description

A function for constructing a Monocle's CellDataSet object from an expression matrix

Usage

EXP_to_CellDataSet(log2_exp = NULL, expression_data_raw = NULL, lod = 1)

Arguments

log2_exp

An log2 transformed expresssion matrix containing n-rows of cells and m-cols of genes.

expression_data_raw

A data frame containing raw expression values, with rownames of cells and colnames of genes.

lod

A value of limit of detection in the unit of TPM/CPM/RPKM.

Value

A CellDataSet object.


A gene detection function

Description

A gene detection function computes the fraction of genes detected in each cell, reproduced from FluidigmSC package.

Usage

fluidigmSC_analyzeGeneDetection(expression_data, threshold = 1)

Arguments

expression_data

A data frame containing raw expression values, with rownames of genes and colnames of cells.

threshold

A limit of detection in the unit of TPM/CPM/RPMK.

Value

A data frame containing a column of number of genes detected, and a column of the corresponding percentage of gene detection, rownames of cells.


An outlier detection function

Description

An outlier detection function identifies cells with median expression below that of the bulk, reproduced from FluidigmSC package.

Usage

fluidigmSC_identifyExpOutliers(log2ex_data, expression_data_raw, threshold,
  step, fine_step, num_fine_test, pct_goodsample_threshold = 0.5,
  quantile_threshold = 0.95, low_quantile_threshold = 0.25,
  min_gene_number = 25, lod)

Arguments

log2ex_data

A data frame containing log2 tranformed expression values, with rownames of genes and colnames of cells.

expression_data_raw

A data frame containing raw expression values, with rownames of genes and colnames of cells.

threshold

A value in raw expression used as the starting threshold value.

step

An integer number indicating the increment of threshold value at each iteration.

fine_step

An integer number indicating the increment of threshold value at each iteration, at the refining stage.

num_fine_test

An integer number indicating the number of iteration of the refining stage.

pct_goodsample_threshold

A fraction value indicating the minimum percentage of samples on which the representative genes are detectable.

quantile_threshold

A probability of gene detection rate above which a sample is considered as good sample.

low_quantile_threshold

A probability of average gene expression value below which a sample is taken as an outlier.

min_gene_number

An integer indicating the minimum size of representative genes.

lod

A value of limit of detection in the unit of TPM/CPM/RPKM.

Value

A vector of character stating the IDs of outlier cells.


A gene finding function

Description

A gene finding function looking for genes in the target set x from the source set y, reproduced from FluidigmSC package.

Usage

fluidigmSC_isElementIgnoreCase(x, y, ignore_case = TRUE)

Arguments

x

A vector of characters representing gene names (target genes).

y

A vector of characters representing gene names (source genes).

ignore_case

Boolean, if TRUE ignores letter case.

Value

A vector of characters representing gene names.


An expression reading function

Description

An expression reading function which imports expression data from .txt file, and then computes log2 transformed data, reproduced from FluidigmSC package.

Usage

fluidigmSC_readLinearExp(exp_file = TRUE, lod = 1)

Arguments

exp_file

Input file name in txt format, with rownames of cells and colnames of genes.

lod

A value of limit of detection in the unit of TPM/CPM/RPKM. It will be used as the starting value for outlier cell detection and the basis for removing scarce genes.

Value

A list containing expression_data_raw(data frame), log2ex_data(data frame), and log2ex_avg_data(data frame).


A gene trimming function

Description

A gene trimming function removes genes whose average expression value is below the log2(threshold), and also present in at least 10

Usage

fluidigmSC_removeGenesByLinearExpForAllType(log2ex_data, log2ex_avg_data,
  threshold)

Arguments

log2ex_data

A data frame containing log2 tranformed expression values, with rownames of genes and colnames of cells.

log2ex_avg_data

A data frame containing log2 tranformed average expression values for individual gene.

threshold

A limit of detection in the unit of TPM/CPM/RPMK.

Value

A vector of character containing gene names of those passed the filtering.


A gene trimming function

Description

A gene trimming function removes genes whose average expression value is below the log2(threshold); reproduced from FluidigmSC package.

Usage

fluidigmSC_removeGenesByLinearExpForAllType_log2(log2ex_data, threshold)

Arguments

log2ex_data

A data frame containing log2 tranformed expression values, with rownames of genes and colnames of cells.

threshold

A limit of detection in the unit of TPM/CPM/RPMK.

Value

A vector of character containing gene names of those passed the filtering.


A wrapper function for Monocle sorting method

Description

A wrapper function for Monocle sorting method

Usage

monocle_wrapper(log2_exp, expression_data_raw, lod = 1)

Arguments

log2_exp

An log2 transformed expresssion matrix containing n-rows of cells and m-cols of genes.

expression_data_raw

A data frame containing raw expression values, with rownames of cells and colnames of genes.

lod

A value of limit of detection in the unit of TPM/CPM/RPKM.

Value

A data frame containing single column of ordered sample IDs.

Examples

set.seed(15)
da <- iris[sample(150, 150, replace = FALSE), ]
rownames(da) <- paste0('spl_',seq(1,nrow(da)))
d <- da[,1:4]
dl <- da[,5,drop=FALSE]
#res <- monocle_wrapper(log2_exp = d, expression_data_raw = d)
#dl <- dl[match(res,rownames(dl)),]
#annot <- data.frame(id = seq(1,length(res)), label=dl, stringsAsFactors = FALSE)
#ggplot(annot, aes(x=id, y=id, colour = label)) + geom_point() + theme_bw()

A sorting function using the Neighborhood algorithm

Description

A sorting function using the Neighborhood algorithm

Usage

neighborhood_sorting(d, weights_mat = NULL, max_iter = 100)

Arguments

d

A matrix containing n-by-n cell distance.

weights_mat

A weight matrix of size n-by-n.

max_iter

An integer number indicating the maximum number of iteration if sorting does not converge.

Value

A list containing ordering(a vector of re-ordered sequence) and cost(a numeric value).


A wrapper function for Neighborhood sorting.

Description

A wrapper function for Neighborhood sorting as proposed in [Tsafrir et al. 2005].

Usage

neighborhood_sorting_wrapper(expr, sigma_width = 1, no_randomization = 10)

Arguments

expr

An expresssion matrix containing n-rows of cells and m-cols of genes.

sigma_width

An integer number determining the degree of spread of the gaussian distribution which is used for computing weight matrix for Neighborhood sorting method.

no_randomization

An integer number indicating the number of repeated sorting, each of which uses a randomaly selected initial cell ordering.

Value

A list containing permutated.expr(data frame) and best.cost(a numeric value).


A cost computation function for Neighborhood algorithm

Description

A cost computation function for Neighborhood algorithm

Usage

neighborhood_sortingcost(expr = NULL, sigma_width = 1,
  method = c("Euclidean", "Correlation", "eJaccard", "none"))

Arguments

expr

An expresssion matrix containing n-rows of cells and m-cols of genes.

sigma_width

An integer number determining the degree of spread of the gaussian distribution which is used for computing weight matrix for Neighborhood sorting method.

method

A character string indicating the distance function.

Value

A numeric value of sorting cost.

Examples

set.seed(15)
da <- iris[sample(150, 150, replace = FALSE), ]
d <- da[,1:4]
randomOrdering_cost <- neighborhood_sortingcost(d, method= 'Euclidean')
randomOrdering_cost

da <- iris
d <- da[,1:4]
properOrdering_cost <- neighborhood_sortingcost(d, method= 'Euclidean')
properOrdering_cost

Gene selection using PCA technique

Description

Gene selection using PCA technique

Usage

pca_gene_selection(data)

Arguments

data

A matrix of data.frame with row.name of cells, and col.name of genes

Value

a vector of the names of selected genes.

Examples

dir <- system.file('extdata', package='uSORT')
file <- list.files(dir, pattern='.txt$', full=TRUE)
exprs <- uSORT_preProcess(exprs_file = file)
exp_trimmed <- t(exprs$exprs_log_trimed)
PCA_selected_genes <- pca_gene_selection(exp_trimmed)

R inplementation of wanderlust

Description

R inplementation of wanderlust

Usage

Rwanderlust(data, s, l = 15, k = 15, num_graphs = 1,
  num_waypoints = 250, waypoints_seed = 123, flock_waypoints = 2,
  metric = "euclidean", voting_scheme = "exponential",
  band_sample = FALSE, partial_order = NULL, verbose = TRUE)

Arguments

data

Input data matrix.

s

Starting point ID.

l

l nearest neighbours.

k

k nearest neighbours, k < l.

num_graphs

Number of repreated graphs.

num_waypoints

Number of waypoints to guide the trajectory detection.

waypoints_seed

The seed for reproducing the results.

flock_waypoints

The number of times for flocking the waypoints, default is 2.

metric

Distance calculation metric for nearest neighbour detection.

voting_scheme

The scheme of voting.

band_sample

Boolean, if band the sample

partial_order

default NULL

verbose

Boolean, if print the details

Value

a list containing Trajectory, Order, Waypoints

Author(s)

Hao Chen

Examples

set.seed(15)
shuffled_iris <- iris[sample(150, 150, replace = FALSE), ]
data <- shuffled_iris[,1:4]
data_label <- shuffled_iris[,5]
wishbone <- Rwanderlust(data = data, num_waypoints = 100, waypoints_seed = 2)
pd1 <- data.frame(id = wishbone$Trajectory, label=data_label, stringsAsFactors = FALSE)
pd2 <- data.frame(id = seq_along(row.names(data)), label=data_label, stringsAsFactors = FALSE)
#ggplot(pd1, aes(x=id, y=id, colour = label)) + geom_point() + theme_bw()
#ggplot(pd2, aes(x=id, y=id, colour = label)) + geom_point() + theme_bw()

An expression scattering measurement function

Description

An expression scattering measurement function computes the level of scattering for individual genes along the cell ordering

Usage

scattering_quantification_per_gene(CDS = NULL)

Arguments

CDS

a Monocle's CellDataSet object

Value

integer

Author(s)

MaiChan Lau


GUI for sorting method paramters

Description

The parameters appeared on GUI are based on input method, this function is called by uSORT_parameters_GUI. For internal use only.

Usage

sorting_method_parameter_GUI(method = c("autoSPIN", "sWanderlust", "monocle",
  "Wanderlust", "SPIN", "none"))

Arguments

method

method name.

Value

a list of parameters.

Author(s)

Hao Chen


A wrapper function for SPIN sorting method

Description

A wrapper function for SPIN method provides a R version of SPIN [Tsafrir et al. 2005].

Usage

SPIN(data, sorting_method = c("STS", "neighborhood"), sigma_width = 1)

Arguments

data

An log2 transformed expresssion matrix containing n-rows of cells and m-cols of genes.

sorting_method

A character string indicating the choice of sorting method, i.e. 'STS' (Side-to-Side) or 'Neighborhood'.

sigma_width

An integer number determining the degree of spread of the gaussian distribution which is used for computing weight matrix for Neighborhood sorting method.

Value

A data frame containing single column of ordered sample IDs.

Examples

set.seed(15)
da <- iris[sample(150, 150, replace = FALSE), ]
rownames(da) <- paste0('spl_',seq(1,nrow(da)))
d <- da[,1:4]
dl <- da[,5,drop=FALSE]
res <- SPIN(data = d)
dl <- dl[match(res$SampleID,rownames(dl)),]
annot <- data.frame(id = seq(1,nrow(res)), label=dl, stringsAsFactors = FALSE)
#ggplot(annot, aes(x=id, y=id, colour = label)) + geom_point() + theme_bw()

A sorting function using the Side-to-Side (STS) algorithm

Description

A sorting function using the Side-to-Side (STS) algorithm

Usage

STS_sorting(d, max_iter = 10)

Arguments

d

A matrix containing n-by-n cell distance.

max_iter

An integer number indicating the maximum number of iteration if sorting does not converge.

Value

A list containing ordering(a vector of re-ordered sequence) and cost(a numeric value).


A wrapper function for Side-to-Side (STS) sorting.

Description

A wrapper function for Side-to-Side (STS) sorting as proposed in [Tsafrir et al. 2005].

Usage

STS_sorting_wrapper(expr, no_randomization = 10)

Arguments

expr

An expresssion matrix containing n-rows of cells and m-cols of genes.

no_randomization

An integer number indicating the number of repeated sorting, each of which uses a randomaly selected initial cell ordering.

Value

A list containing permutated.expr(data frame) and best.cost(a numeric value).


A cost computation function for Side-to-Side (STS) algorithm

Description

A cost computation function for Side-to-Side (STS) algorithm

Usage

STS_sortingcost(expr = NULL, method = c("Euclidean", "Correlation",
  "eJaccard", "none"))

Arguments

expr

An expresssion matrix containing n-rows of cells and m-cols of genes.

method

A character string indicating the distance function.

Value

A numeric value of sorting cost.

Examples

set.seed(15)
da <- iris[sample(150, 150, replace = FALSE), ]
d <- da[,1:4]
randomOrdering_cost <- STS_sortingcost(d, method= 'Euclidean')
randomOrdering_cost

da <- iris
d <- da[,1:4]
properOrdering_cost <- STS_sortingcost(d, method= 'Euclidean')
properOrdering_cost

A summed local variance function

Description

A summed local variance function

Usage

summed_local_variance(expr = NULL, alpha = NULL, data_type = "linear")

Arguments

expr

An expresssion matrix containing n-rows of cells and m-cols of genes.

alpha

A fraction value indicating the size of window for local variance measurement.

data_type

A character string indicating the type of progression, i.e. 'linear' (strictly linear) or 'cyclical' (cyclically linear).

Value

A numeric value of the summed local variance.


A summed local variance function for cyclical linear data type

Description

A summed local variance function for cyclical linear data type

Usage

summed_local_variance_cyclical(d, alpha = 0.3)

Arguments

d

A cell-to-cell distance matrix.

alpha

A fraction value indicating the size of window for local variance measurement.

Value

A numeric value of the summed local variance.


A summed local variance function for strictly linear data type

Description

A summed local variance function for strictly linear data type

Usage

summed_local_variance_linear(d, alpha = 0.3)

Arguments

d

A cell-to-cell distance matrix.

alpha

A fraction value indicating the size of window for local variance measurement.

Value

A numeric value of the summed local variance.


sWanderlust

Description

autoSPIN guided wanderlust. Specifically, we use autoSPIN to help find the starting point for wanderlust.

Usage

sWanderlust(data, data_type = c("linear", "cyclical"),
  SPIN_option = c("STS", "neighborhood"), alpha = 0.2, sigma_width = 1,
  diffusionmap_components = 4, l = 15, k = 15, num_waypoints = 150,
  flock_waypoints = 2, waypoints_seed = 2711)

Arguments

data

data Input data matrix.

data_type

The data type which guides the autoSPIN sorting, including linear, cyclical.

SPIN_option

SPIN contains two options including STS(default), neighborhood.

alpha

alpha parameter for autoSPIN, default is 0.2.

sigma_width

Sigma width parameter for SPIN, default is 1.

diffusionmap_components

Number of components from diffusion map used for wanderlust analysis, default is 4.

l

Number of nearest neighbors, default is 15.

k

Number of nearest neighbors for repeating graphs, default is 15, should be less than or equal to l.

num_waypoints

Number of waypoint used for wanderlust, default is 150.

flock_waypoints

The number of times for flocking the waypoints, default is 2.

waypoints_seed

The seed for reproducing the results.

Value

a vector of the sorted oder.

Author(s)

Hao Chen

Examples

set.seed(15)
shuffled_iris <- iris[sample(150, 150, replace = FALSE), ]
data <- shuffled_iris[,1:4]
data_label <- shuffled_iris[,5]
wishbone <- sWanderlust(data = data, num_waypoints = 100)

determining initial trajectory and landmarks

Description

determining initial trajectory and landmarks

Usage

trajectory_landmarks(knn, data, s, partial_order = NULL, waypoints = 250,
  waypoints_seed = 123, metric = "euclidean", flock_waypoints = 2,
  band_sample = FALSE)

Arguments

knn

A sparse matrix of knn.

data

data.

s

The ID of starting point.

partial_order

A vector of IDs specified as recommended waypoints, NULL to ignore.

waypoints

Either the number of waypoints, or specify the waypoint IDs.

waypoints_seed

Random sampling seed, for reproducible results.

metric

Distance calculation metric for nearest neighbour detection.

flock_waypoints

Iteration of using nearest points around waypoint to adjust its position.

band_sample

if give more chance to nearest neighbours of starting point in randomly waypoints selection.

Value

a list


uSORT: A self-refining ordering pipeline for gene selection

Description

This package is designed to uncover the intrinsic cell progression path from single-cell RNA-seq data.

The main function of uSORT-pacakge which provides a workflow of sorting scRNA-seq data.

Usage

uSORT(exprs_file, log_transform = TRUE, remove_outliers = TRUE,
  preliminary_sorting_method = c("autoSPIN", "sWanderlust", "monocle",
  "Wanderlust", "SPIN", "none"), refine_sorting_method = c("autoSPIN",
  "sWanderlust", "monocle", "Wanderlust", "SPIN", "none"),
  project_name = "uSORT", result_directory = getwd(), nCores = 1,
  save_results = TRUE, reproduce_seed = 1234,
  scattering_cutoff_prob = 0.75, driving_force_cutoff = NULL,
  qval_cutoff_featureSelection = 0.05, pre_data_type = c("linear",
  "cyclical"), pre_SPIN_option = c("STS", "neighborhood"),
  pre_SPIN_sigma_width = 1, pre_autoSPIN_alpha = 0.2,
  pre_autoSPIN_randomization = 20, pre_wanderlust_start_cell = NULL,
  pre_wanderlust_dfmap_components = 4, pre_wanderlust_l = 15,
  pre_wanderlust_num_waypoints = 150, pre_wanderlust_waypoints_seed = 2711,
  pre_wanderlust_flock_waypoints = 2, ref_data_type = c("linear",
  "cyclical"), ref_SPIN_option = c("STS", "neighborhood"),
  ref_SPIN_sigma_width = 1, ref_autoSPIN_alpha = 0.2,
  ref_autoSPIN_randomization = 20, ref_wanderlust_start_cell = NULL,
  ref_wanderlust_dfmap_components = 4, ref_wanderlust_l = 15,
  ref_wanderlust_num_waypoints = 150, ref_wanderlust_flock_waypoints = 2,
  ref_wanderlust_waypoints_seed = 2711)

Arguments

exprs_file

Input file name in txt format, with rownames of cells and colnames of genes.

log_transform

Boolean, if log transform the data.

remove_outliers

Boolean, if remove the outliers.

preliminary_sorting_method

Method name for preliminary sorting, including autoSPIN, sWanderlust, monocle, Wanderlust, SPIN, or none.

refine_sorting_method

Method name for refined sorting, including autoSPIN, sWanderlust, monocle, Wanderlust, SPIN, or none.

project_name

A character name as the prefix of the saved result file.

result_directory

The directory indicating where to save the results.

nCores

Number of cores that will be employed for drive gene selection (parallel computing), default is 1.

save_results

Boolean determining if save the results.

reproduce_seed

A seed used for reproducing the result.

scattering_cutoff_prob

Scattering cutoff value probability for gene selection, default 0.75.

driving_force_cutoff

Driving force cutoff value for gene selection, default NULL(automatically).

qval_cutoff_featureSelection

Q value cutoff for gene selection, default 0.05.

pre_data_type

The data type which guides the autoSPIN sorting, including linear, cyclical.

pre_SPIN_option

SPIN contains two options including STS(default), neighborhood.

pre_SPIN_sigma_width

Sigma width parameter for SPIN, default is 1.

pre_autoSPIN_alpha

alpha parameter for autoSPIN, default is 0.2.

pre_autoSPIN_randomization

Number of randomizations for autoSPIN, default is 20.

pre_wanderlust_start_cell

The name of starting cell for wanderlust, default is the first cell from the data.

pre_wanderlust_dfmap_components

Number of components from diffusion map used for wanderlust analysis, default is 4.

pre_wanderlust_l

Number of nearest neighbors used for wanderlust, default is 15.

pre_wanderlust_num_waypoints

Number of waypoint used for wanderlust, default is 150.

pre_wanderlust_waypoints_seed

The seed for reproducing the wanderlust results.

pre_wanderlust_flock_waypoints

The number of times for flocking the waypoints, default is 2.

ref_data_type

The data type which guides the autoSPIN sorting, including linear, cyclical.

ref_SPIN_option

SPIN contains two options including STS(default), neighborhood.

ref_SPIN_sigma_width

Sigma width parameter for SPIN, default is 1.

ref_autoSPIN_alpha

alpha parameter for autoSPIN, default is 0.2.

ref_autoSPIN_randomization

Number of randomizations for autoSPIN, default is 20.

ref_wanderlust_start_cell

The name of starting cell for wanderlust, default is the first cell from the data.

ref_wanderlust_dfmap_components

Number of components from diffusion map used for wanderlust analysis, default is 4.

ref_wanderlust_l

Number of nearest neighbors used for wanderlust, default is 15.

ref_wanderlust_num_waypoints

Number of waypoint used for wanderlust, default is 150

ref_wanderlust_flock_waypoints

The number of times for flocking the waypoints, default is 2.

ref_wanderlust_waypoints_seed

The seed for reproducing the wanderlust results.

Details

This package incorporates data pre-processing, preliminary PCA gene selection, preliminary cell ordering, feature selection, refined cell ordering, and post-analysis interpretation and visualization. The uSORT workflow can be implemented through calling the main function or the GUI. uSORT.

Value

results object (a list)

See Also

uSORT-package, uSORT_GUI

Examples

dir <- system.file('extdata', package='uSORT')
file <- list.files(dir, pattern='.txt$', full=TRUE)
#remove the # symbol of the following codes to test
#uSORT_results <- uSORT(exprs_file = file, project_name = "test",
# preliminary_sorting_method = "autoSPIN",
# refine_sorting_method = "sWanderlust",
# save_results = FALSE)

The user friendly GUI for uSORT-package

Description

This GUI provides an easy way for applying the uSORT package.

Usage

uSORT_GUI()

Value

the GUI for uSORT-package

Author(s)

Hao Chen

References

http://JinmiaoChenLab.github.io/uSORT/

See Also

uSORT-package, uSORT

Examples

interactive()
#if(interactive()) uSORT_GUI()  # remove the hash symbol to run

The GUI for inputting paramters for uSORT

Description

This is a function for generating the GUI for uSORT, it's called by uSORT_GUI. For internal use only.

Usage

uSORT_parameters_GUI()

Value

a list of parameters.

Author(s)

Hao Chen


A data loading and pre-processing function

Description

A data loading and pre-processing function which firstly identifies outlier cells and scarcely expressed genes.

Usage

uSORT_preProcess(exprs_file, log_transform = TRUE, remove_outliers = TRUE,
  lod = 1)

Arguments

exprs_file

Input file name in txt format, with rownames of cells and colnames of genes.

log_transform

Boolean, if TRUE log transform the data.

remove_outliers

Boolean, if TRUE remove the outliers.

lod

A value of limit of detection in the unit of TPM/CPM/RPKM. It will be used as the starting value for outlier cell detection and the basis for removing scarce genes.

Value

A list containing exprs_raw(data frame) and exprs_log_trimed(data.frame).

Examples

dir <- system.file('extdata', package='uSORT')
file <- list.files(dir, pattern='.txt$', full=TRUE)
exprs <- uSORT_preProcess(exprs_file = file)

wrapper of all avaliable sorting methods in uSORT

Description

Sorting methods include autoSPIN, sWanderlust, monocle, Wanderlust, SPIN. Any of the sorting method can be called directly using this funciton.

Usage

uSORT_sorting_wrapper(data, data_raw, method = c("autoSPIN", "sWanderlust",
  "monocle", "Wanderlust", "SPIN", "none"), data_type = c("linear",
  "cyclical"), SPIN_option = c("STS", "neighborhood"), SPIN_sigma_width = 1,
  autoSPIN_alpha = 0.2, autoSPIN_randomization = 20,
  wanderlust_start_cell = NULL, wanderlust_dfmap_components = 4,
  wanderlust_l = 15, wanderlust_num_waypoints = 150,
  wanderlust_waypoints_seed = 2711, wanderlust_flock_waypoints = 2)

Arguments

data

Input preprocessed data matrix with row.name of cells and col.name of genes.

data_raw

Input raw data matrix with row.name of cells and col.name of genes, for monocle method.

method

The name of the sorting method to use, including autoSPIN, sWanderlust, monocle, Wanderlust, SPIN and none.

data_type

The type of the data, either linear or cyclical.

SPIN_option

The runing option of SPIN, STS or neighborhood.

SPIN_sigma_width

Sigma width for SPIN.

autoSPIN_alpha

alpha for autoSPIN.

autoSPIN_randomization

Number of randomization for autoSPIN.

wanderlust_start_cell

The id of the starting cell for wanderlust.

wanderlust_dfmap_components

The number of components from diffusionmap for wanderlust.

wanderlust_l

The number of nearest neighbors used for wanderlust.

wanderlust_num_waypoints

The number of waypoints for wanderlust.

wanderlust_waypoints_seed

The seed for reproducible analysis.

wanderlust_flock_waypoints

The bumber of flock times for wanderlust.

Value

return the order of sorting results.

Examples

dir <- system.file('extdata', package='uSORT')
file <- list.files(dir, pattern='.txt$', full=TRUE)
exprs <- uSORT_preProcess(exprs_file = file)
exp_trimmed <- t(exprs$exprs_log_trimed)
PCA_selected_genes <- pca_gene_selection(exp_trimmed)
exp_PCA_genes <- exp_trimmed[, PCA_selected_genes]
#order <- uSORT_sorting_wrapper(data = exp_PCA_genes, method = 'autoSPIN')

Resluts parsing for uSORT

Description

Save result object into a RData file. Save cell to cell distance heatmap for both preliminary and refined results. Creat plot of driver gene profiles on final ordering using heatmap.

Usage

uSORT_write_results(uSORT_results, project_name, result_directory)

Arguments

uSORT_results

Result object from uSort function, a list.

project_name

A prefix for the saving files.

result_directory

The path where to save the results.

Value

save the results.

Examples

dir <- system.file('extdata', package='uSORT')
file <- list.files(dir, pattern='.txt$', full=TRUE)
#remove the # symbol of the following codes to test
#uSORT_results <- uSORT(exprs_file = file,
# project_name = 'test',
# preliminary_sorting_method = 'autoSPIN',
# refine_sorting_method = 'sWanderlust',
# save_results = FALSE)
#uSORT_write_results(uSORT_results,
# project_name = 'test',
# result_directory = getwd())

A utility function for scattering_quantification_per_gene

Description

A utility function for scattering_quantification_per_gene which computes the degree of scattering for single gene, whereby the value is computed by summing over the local values of smaller local windows

Usage

variability_per_gene(logExp = NULL, min_expr = 0.1,
  window_size_perct = 0.1, nonZeroExpr_perct = 0.1)

Arguments

logExp

a log-scale expression vector of a gene

min_expr

a minimum expression value

window_size_perct

a window size (in dispersion level

nonZeroExpr_perct

a minimum amount of cells (in expression, otherwise the associated window will be assigned to 0 disperson value

Value

integer

Author(s)

MaiChan Lau


a wrapper of wanderlust for sWanderlust

Description

a wrapper of wanderlust for sWanderlust

Usage

wanderlust_wrapper(data, s, diffusionmap_components = 4, l = 15, k = 15,
  num_graphs = 1, num_waypoints = 150, waypoints_seed = 123,
  flock_waypoints = 2)

Arguments

data

Input data matrix.

s

The ID of starting point.

diffusionmap_components

Number of components from diffusion map used for wanderlust analysis, default is 4.

l

Number of nearest neighbors, default is 15.

k

Number of nearest neighbors for repeating graphs, default is 15, should be less than or equal to l.

num_graphs

Number of repreated graphs.

num_waypoints

Number of waypoint used for wanderlust, default is 150.

waypoints_seed

The seed for reproducing the results.

flock_waypoints

The number of times for flocking the waypoints, default is 2.

Value

sorted order.

Author(s)

Hao Chen