Title: | Transcriptional Regulatory Inference from Genetics of Gene ExpRession |
---|---|
Description: | This R package provides tools for the statistical analysis of integrative genomic data that involve some combination of: genotypes, high-dimensional intermediate traits (e.g., gene expression, protein abundance), and higher-order traits (phenotypes). The package includes functions to: (1) construct global linkage maps between genetic markers and gene expression; (2) analyze multiple-locus linkage (epistasis) for gene expression; (3) quantify the proportion of genome-wide variation explained by each locus and identify eQTL hotspots; (4) estimate pair-wise causal gene regulatory probabilities and construct gene regulatory networks; and (5) identify causal genes for a quantitative trait of interest. |
Authors: | Lin S. Chen <[email protected]>, Dipen P. Sangurdekar <[email protected]> and John D. Storey <[email protected]> |
Maintainer: | John D. Storey <[email protected]> |
License: | GPL-3 |
Version: | 1.53.0 |
Built: | 2024-11-19 04:42:49 UTC |
Source: | https://github.com/bioc/trigger |
Graphical display of genomewide linkage map, multi-locus linkage or eQTL variation
## S4 method for signature 'trigger,missing' plot(x,y,type = c("link", "mlink", "eqtl"), cutoff = 3.3e-4, qcut = 0.1, bin.size = NULL)
## S4 method for signature 'trigger,missing' plot(x,y,type = c("link", "mlink", "eqtl"), cutoff = 3.3e-4, qcut = 0.1, bin.size = NULL)
x |
An object of class |
y |
Ignore option, not used. |
type |
An argument describing the type of plot. Select from |
cutoff |
Threshold value for |
qcut |
Q-value threshold for |
bin.size |
Optional for |
Lin S. Chen [email protected], Dipen P. Sangurdekar [email protected] and John D. Storey [email protected]
trigger.link
, trigger.mlink
and trigger.eigenR2
## Not run: data(yeast) attach(yeast) triggerobj <- trigger.build(marker=marker, exp=exp, marker.pos=marker.pos, exp.pos=exp.pos) triggerobj <- trigger.link(triggerobj, gender=NULL, norm=TRUE) plot(triggerobj,type = "link", cutoff=1e-5) triggerobj <- trigger.eigenR2(triggerobj, adjust=FALSE) plot(triggerobj, type = "eigenR2") triggerobj<- trigger.mlink(triggerobj, B=5, seed=123) plot(triggerobj, qcut=0.1, bin.size=NULL) detach(yeast) ## End(Not run)
## Not run: data(yeast) attach(yeast) triggerobj <- trigger.build(marker=marker, exp=exp, marker.pos=marker.pos, exp.pos=exp.pos) triggerobj <- trigger.link(triggerobj, gender=NULL, norm=TRUE) plot(triggerobj,type = "link", cutoff=1e-5) triggerobj <- trigger.eigenR2(triggerobj, adjust=FALSE) plot(triggerobj, type = "eigenR2") triggerobj<- trigger.mlink(triggerobj, B=5, seed=123) plot(triggerobj, qcut=0.1, bin.size=NULL) detach(yeast) ## End(Not run)
trigger
is a class of objects to store and analyze data for Integrative Genomic Analysis. Use trigger.build
to generate new objects of the class from input data.
The positions in marker.pos
and exp.pos
matrix should be in the same units (e.g., base pair, kb, or cM).
An object of S4 class trigger
containing the marker genotype matrix (a matrix of 1,2 for haploid genotypes, or 1,2,3 for diploid genotypes), expression matrix, marker position matrix and gene/trait position matrix with ordered coordinates in respective slots.
Use slot(objectname, varname)
to retrieve individual variables from the object . Use print
to see the first 10 rows and columns of the expression and marker matrix.
exp
:A numeric matrix with m
rows and n
columns, containing the gene expression (or intermediate trait) data.
exp.pos
:A matrix with m
rows and 3 columns containing the chromosome number, gene start and gene end for all the genes in the gene expression matrix. The rows of exp.pos
should match those of exp
.
marker
:A matrix with p
rows and n
columns, containing genotyping information.
marker.pos
:A matrix with p
rows and 2 columns containing the chromosome number and SNP position for all the genes in the gene expression matrix. The rows of exp.pos
should match those of exp
.
stat
:A matrix of pair-wise likelihood ratio statistics for linkage analysis, with genes in rows and markers in columns.
pvalue
:A matrix of parametric pvalues corresponding to statistics in the stat
matrix.
mlink
:A list containing the results of Multi-locus linkage analysis. See trigger.mlink
for details.
eqtl.R2
:A vector containing the proportion of genome-wide variation explained by each observed locus (eQTL).See trigger.eigenR2
for details.
loc.obj
:A list containing the results of local-linkage probability estimation. See trigger.loclink
for details.
Lin S. Chen [email protected], Dipen P. Sangurdekar [email protected] and John D. Storey [email protected]
trigger.build
, trigger.link
, trigger.mlink
, trigger.eigenR2
, trigger.net
and trigger.trait
This function takes high-dimensional expression data and genotype data with each of their position data in the genome and creates a trigger
object for subsequent analysis.
trigger.build(exp = exp,exp.pos = exp.pos, marker = marker, marker.pos = marker.pos)
trigger.build(exp = exp,exp.pos = exp.pos, marker = marker, marker.pos = marker.pos)
exp |
A gene (or intermediate trait) by individual matrix of expression data. |
exp.pos |
A matrix containing the position information for genes (intermediate traits). The first column is the chromosome name of the gene. The second column is the starting coordinate of the gene, and the third column is the ending coordinate. Each row corresponds to one gene/trait in the |
marker |
A marker genotype by individual matrix. |
marker.pos |
A matrix containing the position information for markers. The first column is the chromosome name of the marker. We recommend to use integers for autosomal chromosomes and "X" for sex chromosome. The second column is the position of the marker on the chromosome. Each row corresponds to one marker in the |
The positions in marker.pos
and exp.pos
matrix should be in the same units (e.g., base pair, kb, or cM).
An object of S4 class trigger
containing the marker genotype matrix (a matrix of 1,2 for haploid genotypes, or 1,2,3 for diploid genotypes), expression matrix, marker position matrix and gene/trait position matrix with ordered coordinates in respective slots. Use slot(objectname, varname)
to retrieve individual variables from the object. Use print
to see the first 10 rows and columns of the expression and marker matrix.
Lin S. Chen [email protected], Dipen P. Sangurdekar [email protected] and John D. Storey [email protected]
trigger.link
, trigger.mlink
, trigger.eigenR2
, trigger.net
and trigger.trait
## Not run: data(yeast) attach(yeast) triggerobj <- trigger.build(marker = marker, exp = exp, marker.pos = marker.pos, exp.pos = exp.pos) print(triggerobj) ## End(Not run)
## Not run: data(yeast) attach(yeast) triggerobj <- trigger.build(marker = marker, exp = exp, marker.pos = marker.pos, exp.pos = exp.pos) print(triggerobj) ## End(Not run)
Estimate eqtl-R2, the proportion of genome-wide variation explained by each eQTL and identify linkage hotspots.
## S4 method for signature 'trigger' trigger.eigenR2(triggerobj, adjust = FALSE, meanR2 = FALSE)
## S4 method for signature 'trigger' trigger.eigenR2(triggerobj, adjust = FALSE, meanR2 = FALSE)
triggerobj |
An object of class |
adjust |
Logical. If |
meanR2 |
Logical. If |
An updated object of class trigger
with a slot loc.obj
containing the proportion of genome-wide variation explained by each observed locus (eQTL). Use slot(triggerobj, "eigenR2")
to retrieve the eqtl-R2 values as a vector.
Lin S. Chen [email protected], Dipen P. Sangurdekar [email protected] and John D. Storey [email protected]
Chen L.S. and Storey J.D. (2008) Eigen-R2 for dissecting variation in high-dimensional studies. Bioinformatics 24(19): 2260–2262.
## Not run: data(yeast) attach(yeast) triggerobj <- trigger.build(marker = marker, exp = exp, marker.pos = marker.pos, exp.pos = exp.pos) triggerobj <- trigger.eigenR2(triggerobj, adjust = FALSE) plot(triggerobj, type = "eigenR2") eqtlR2 <- slot(triggerobj, "eigenR2") detach(yeast) ## End(Not run)
## Not run: data(yeast) attach(yeast) triggerobj <- trigger.build(marker = marker, exp = exp, marker.pos = marker.pos, exp.pos = exp.pos) triggerobj <- trigger.eigenR2(triggerobj, adjust = FALSE) plot(triggerobj, type = "eigenR2") eqtlR2 <- slot(triggerobj, "eigenR2") detach(yeast) ## End(Not run)
trigger.export2cross
exports trigger
data from triggerobj
to a cross
format for Trait-Trigger analysis. See trigger.trait
for details.
## S4 method for signature 'trigger' trigger.export2cross(triggerobj, plotarg = TRUE, verbose = TRUE, warning = FALSE)
## S4 method for signature 'trigger' trigger.export2cross(triggerobj, plotarg = TRUE, verbose = TRUE, warning = FALSE)
triggerobj |
An object of class |
plotarg |
Logical. If |
verbose |
Logical. If |
warning |
Logical. If |
The trigger.export2cross
command writes a csv
format file “geno_trait_data.csv” to the working directory and reads it using the read.cross
command.
An object of class cross from the R/qtl
package.
Lin S. Chen [email protected], Dipen P. Sangurdekar [email protected] and John D. Storey [email protected]
Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19: 889–890.
data(yeast) attach(yeast) triggerobj <- trigger.build(marker = marker, exp = exp, marker.pos = marker.pos, exp.pos = exp.pos) crossfile <- trigger.export2cross(triggerobj, plotarg = TRUE, verbose = TRUE, warning = FALSE) tt.pval <- trigger.trait(triggerobj, trait = "DSE1", cross = crossfile) causal.reg <- names(which(p.adjust(tt.pval, method = "fdr")<.05)) detach(yeast)
data(yeast) attach(yeast) triggerobj <- trigger.build(marker = marker, exp = exp, marker.pos = marker.pos, exp.pos = exp.pos) crossfile <- trigger.export2cross(triggerobj, plotarg = TRUE, verbose = TRUE, warning = FALSE) tt.pval <- trigger.trait(triggerobj, trait = "DSE1", cross = crossfile) causal.reg <- names(which(p.adjust(tt.pval, method = "fdr")<.05)) detach(yeast)
A method of class trigger
for genomewide Expression-trait QTL analysis. This function estimates the linkage statistic and parametric p-value for each gene expression to every locus in the genome.
## S4 method for signature 'trigger' trigger.link(triggerobj, gender = NULL, norm = TRUE)
## S4 method for signature 'trigger' trigger.link(triggerobj, gender = NULL, norm = TRUE)
triggerobj |
An object of class |
gender |
Optional. When computing linkage statistics involving markers on sex chromosome, |
norm |
Logical. If |
An updated object of class trigger
containing slots:
stat |
A matrix of pair-wise likelihood ratio statistics for linkage analysis, with genes in rows and markers in columns. |
pvalue |
A matrix of parametric pvalues corresponding to statistics in the |
Use slot(triggerobj, "stat")
and slot(triggerobj, "pvalue")
to retrieve the values.
Lin S. Chen [email protected], Dipen P. Sangurdekar [email protected] and John D. Storey [email protected]
plot and trigger.mlink
## Not run: data(yeast) attach(yeast) triggerobj <- trigger.build(marker = marker, exp = exp, marker.pos = marker.pos, exp.pos = exp.pos) triggerobj <- trigger.link(triggerobj, gender = NULL, norm = TRUE) plot(triggerobj,type = "link", cutoff = 1e-5) stat = slot(triggerobj, "stat"); pvalue = slot(triggerobj, "pvalue") detach(yeast) ## End(Not run)
## Not run: data(yeast) attach(yeast) triggerobj <- trigger.build(marker = marker, exp = exp, marker.pos = marker.pos, exp.pos = exp.pos) triggerobj <- trigger.link(triggerobj, gender = NULL, norm = TRUE) plot(triggerobj,type = "link", cutoff = 1e-5) stat = slot(triggerobj, "stat"); pvalue = slot(triggerobj, "pvalue") detach(yeast) ## End(Not run)
A method of class trigger
to identify the best local-linkage marker for each gene and compute the local linkage probabilities.
## S4 method for signature 'trigger' trigger.loclink(triggerobj, gender = NULL, window.size = 30000)
## S4 method for signature 'trigger' trigger.loclink(triggerobj, gender = NULL, window.size = 30000)
triggerobj |
An object of class |
gender |
Optional. When computing linkage statistics involving markers on sex chromosome, |
window.size |
Optional. The size of a window that places the putative regulator gene in the center. Every marker within the window is a candidate marker for local-linkage to the regulator gene. |
An updated object of class trigger
containing a slot loc.obj
with fields:
prob.loc |
The estimated local-linkage probability for each putative regulator gene. |
loc.idx |
The indices of the best local marker for each putative regulator gene. |
Use slot(triggerobj, "loc.obj")
to retrieve the list.
Lin S. Chen [email protected], Dipen P. Sangurdekar [email protected] and John D. Storey [email protected]
Chen L.S., Emmert-Streib F., and Storey J.D. (2007) Harnessing naturally randomized transcription to infer regulatory relationships among genes. Genome Biology, 8: R219.
## Not run: data(yeast) attach(yeast) triggerobj <- trigger.build(marker = marker, exp = exp, marker.pos = marker.pos, exp.pos = exp.pos) triggerobj <- trigger.loclink(triggerobj, window.size = 30000) trigger.obj <- trigger.net(triggerobj, Bsec = 100) detach(yeast) ## End(Not run)
## Not run: data(yeast) attach(yeast) triggerobj <- trigger.build(marker = marker, exp = exp, marker.pos = marker.pos, exp.pos = exp.pos) triggerobj <- trigger.loclink(triggerobj, window.size = 30000) trigger.obj <- trigger.net(triggerobj, Bsec = 100) detach(yeast) ## End(Not run)
Multi-locus linkage (epistasis) analysis.
## S4 method for signature 'trigger' trigger.mlink(triggerobj, prob.cut = 0.9, gender = NULL, idx = NULL, B = 5, seed = 123)
## S4 method for signature 'trigger' trigger.mlink(triggerobj, prob.cut = 0.9, gender = NULL, idx = NULL, B = 5, seed = 123)
triggerobj |
An object of class |
prob.cut |
Probability threshold for primary linkage. |
gender |
Optional. When computing linkage statistics involving markers on sex chromosome, |
idx |
The indices for genes to be computed for multi-locus linkage. |
B |
The number of null iterations to perform. |
seed |
Optional. A numeric seed for reproducible results. |
When data set is large, one can the option idx
to select a subset of genes in each computation and parallel-computes the genome-wide multi-locus linkage. Since the function computes the linkage probability by borrowing information across genes, at least more than 100 genes should be selected in applying this function. If idx=NULL
, all the genes in the input data will be computed for multi-locus linkage.
The current version of the function could only compute two-locus joint linkage (epistasis).
An updated object of class trigger
containing a slot trigger.mlink
with fields:
qtl |
The major and secondary QTLs for each selected gene. |
prob |
The posterior probability of linkage for major QTL, secondary QTL, and the joint posterior probability of multi-locus linkage. |
qvalue |
Q-value estimates for joint multi-locus linkage probabilities. |
Use slot(triggerobj, "mlink")
to retrieve the list.
Lin S. Chen [email protected], Dipen P. Sangurdekar [email protected] and John D. Storey [email protected]
Brem R.B., Storey J.D., Whittle J., and Kruglyak L. (2005) Genetic interactions between polymorphisms that affect gene expression in yeast. Nature, 436(7051): 701–703.
Storey J.D., Akey J.M., and Kruglyak L. (2005) Multiple locus linkage analysis of genomewide expression in yeast. PLoS Biology, 3(8): 1380–1390.
trigger.link and plot
## Not run: data(yeast) attach(yeast) triggerobj <- trigger.build(marker = marker,exp = exp, marker.pos = marker.pos, exp.pos = exp.pos) ## Genome-wide multiple locus linkage analysis triggerobj <- trigger.mlink(triggerobj, B = 10, idx = NULL, seed = 123) plot(triggerobj, type = "trigger.mlink", qcut=0.1, bin.size=NULL) mlink = slot(triggerobj, "trigger.mlink") detach(yeast) ## End(Not run)
## Not run: data(yeast) attach(yeast) triggerobj <- trigger.build(marker = marker,exp = exp, marker.pos = marker.pos, exp.pos = exp.pos) ## Genome-wide multiple locus linkage analysis triggerobj <- trigger.mlink(triggerobj, B = 10, idx = NULL, seed = 123) plot(triggerobj, type = "trigger.mlink", qcut=0.1, bin.size=NULL) mlink = slot(triggerobj, "trigger.mlink") detach(yeast) ## End(Not run)
Network-Trigger analysis estimates the joint posterior probability of causal regulation for each pair of genes in the genome. These probabilities can further be used to construct a gene regulatory network.
## S4 method for signature 'trigger' trigger.net(triggerobj, gender = NULL, idx = NULL, Bsec = 100, prob.cut = 0.7, include.loc = TRUE, seed = 123, inputfile = NULL)
## S4 method for signature 'trigger' trigger.net(triggerobj, gender = NULL, idx = NULL, Bsec = 100, prob.cut = 0.7, include.loc = TRUE, seed = 123, inputfile = NULL)
triggerobj |
An object of class |
gender |
Optional. When computing statistics involving markers on sex chromosome, |
idx |
Optional. One can specify the indices of selected genes as putative regulators. By default, all the genes will be selected as putative regulators. |
Bsec |
Number of iterations to perform when estimating null statistics for secondary-linkage and conditional independence. |
prob.cut |
Probability threshold. The joint regulatory probabilities of a regulator to all the other genes will be set to zero if the local-linkage probability of the regulator is below the threshold; default |
include.loc |
Logical. If |
seed |
Optional. A numeric seed for reproducible results. |
inputfile |
Optional. If provided, reads in the probability matrix from working directory. |
The option idx
contains the indices of putative regulator genes. When the data set is large, one can use this option by selecting a subset of genes as putative regulators in one computation and parallel-computes the genome-wide regulatory probability. If idx=NULL
, all the genes will be computed for probability of regulation to other genes in the data.
If include.loc = TRUE
, the joint posterior probability of regulation is the product of local-linkage, secondary-linkage and conditional independence. Otherwise, it is the product of secondary-linkage and conditional independence. The local-linkage is not a necessary condition for calculating regulation probability. If the probability of local-linkage is considered, the joint probability of regulation is more conservative. See references for details.
A matrix of genome-wide regulatory probabilities with putative regulators in rows and regulated genes in columns. Note that the matrix is not symmetric. If gene i is estimated to be causal for gene j with high probability, the reverse is not true.
Lin S. Chen [email protected], Dipen P. Sangurdekar [email protected] and John D. Storey [email protected]
Chen L.S., Emmert-Streib F., and Storey J.D. (2007) Harnessing naturally randomized transcription to infer regulatory relationships among genes. Genome Biology, 8: R219.
trigger.loclink
, trigger.netPlot2ps
and trigger.trait
## Not run: data(yeast) attach(yeast) triggerobj <- trigger.build(marker = marker, exp = exp, marker.pos = marker.pos, exp.pos = exp.pos) triggerobj <- nettrig.loc(triggerobj, window.size = 30000) trig.prob <- trigger.net(triggerobj, Bsec = 100) netPlot2ps(trig.prob) detach(yeast) ## End(Not run)
## Not run: data(yeast) attach(yeast) triggerobj <- trigger.build(marker = marker, exp = exp, marker.pos = marker.pos, exp.pos = exp.pos) triggerobj <- nettrig.loc(triggerobj, window.size = 30000) trig.prob <- trigger.net(triggerobj, Bsec = 100) netPlot2ps(trig.prob) detach(yeast) ## End(Not run)
Write the network from a trigger probability matrix to a postscript file.
## S4 method for signature 'trigger' trigger.netPlot2ps(triggerobj, trig.prob, filenam = NULL, pcut = 0.95, layout = c("radial", "energy-minimized", "circular","hierarchical"), node.color = NULL, edge.color = NULL, node.shape = NULL, nreg = 20)
## S4 method for signature 'trigger' trigger.netPlot2ps(triggerobj, trig.prob, filenam = NULL, pcut = 0.95, layout = c("radial", "energy-minimized", "circular","hierarchical"), node.color = NULL, edge.color = NULL, node.shape = NULL, nreg = 20)
triggerobj |
An object of class |
trig.prob |
A network-Trigger regulatory probability matrix with putative regulator genes in rows and putative regulated genes in columns. See |
filenam |
The output file name, without extension. If the name is not specified, the network will be write to the files |
pcut |
Threshold value for regulatory probabilities. The probabilities above the threshold are called significant and the corresponding regulatory relationships are plotted. |
layout |
The layout of the output network. One can choose from " |
node.color |
The color of the nodes (genes). The default color is green. |
edge.color |
The color of the edges. The default color is blue. |
node.shape |
The shape of nodes (genes) if the number of regulatory relationships is below 1000. If that number is above 1000, the shape of nodes will be |
nreg |
The number of top regulators to be selected. These selected top regulators will be plotted in red ellipses with their gene names labeled inside. |
To use this function, please install the software Graphviz
, which is available at http://www.graphviz.org/. For large networks, layout "radial
" or "energy-minimized
" is recommended. If the total number of significant regulatory relationships (directed edges) of the network is below 1000, we plot each node (gene) as a "box
" with its name labeled inside. Otherwise, we plot each gene as a "dot
" without name labeled to facilitate visualization. The top nreg
(by default nreg = 20
) regulators will be plotted in red ellipses labeled with their names.
See manual of Graphviz
for other available colors and shapes of nodes.
Lin S. Chen [email protected], Dipen P. Sangurdekar [email protected] and John D. Storey [email protected]
trigger.link and trigger.mlink
## Not run: data(yeast) attach(yeast) triggerobj <- trigger.build(marker = marker, exp = exp, marker.pos = marker.pos, exp.pos = exp.pos) triggerobj <- trigger.loclink(triggerobj, window.size = 30000) trig.prob <- trigger.net(triggerobj, Bsec = 100) trigger.netPlot2ps(trig.prob, pcut = 0.95, layout = "e", filenam = "net95", nreg = 20) detach(yeast) ## End(Not run)
## Not run: data(yeast) attach(yeast) triggerobj <- trigger.build(marker = marker, exp = exp, marker.pos = marker.pos, exp.pos = exp.pos) triggerobj <- trigger.loclink(triggerobj, window.size = 30000) trig.prob <- trigger.net(triggerobj, Bsec = 100) trigger.netPlot2ps(trig.prob, pcut = 0.95, layout = "e", filenam = "net95", nreg = 20) detach(yeast) ## End(Not run)
Trait-Trigger identifies, for a given trait of interest, causal gene regulator(s) that makes the trait conditionally independent of the QTL and their estimated p-values of causal regulation. These probabilities can further be used to construct a gene regulatory network.
## S4 method for signature 'trigger' trigger.trait(triggerobj, trait, cross, thr, n.sv = NULL, addplot = TRUE)
## S4 method for signature 'trigger' trigger.trait(triggerobj, trait, cross, thr, n.sv = NULL, addplot = TRUE)
triggerobj |
|
trait |
Trait for which causal regulator is to be found. It can either be a gene-name for a gene expression trait present in |
cross |
An object of class |
thr |
LOD threshold to search for locally linked putative causal genes (default 3). |
n.sv |
Number of surrogate variables used to model the local heterogeneity. If not set, it is computed from the expression data. |
addplot |
If |
A vector of p-values associated with each tested causal regulator.
Lin S. Chen [email protected], Dipen P. Sangurdekar [email protected] and John D. Storey [email protected]
Chen L.S., Emmert-Streib F., and Storey J.D. (2007) Harnessing naturally randomized transcription to infer regulatory relationships among genes. Genome Biology, 8: R219.
Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19: 889–890.
trigger.loclink
and trigger.export2cross
## Not run: data(yeast) attach(yeast) triggerobj <- trigger.build(marker = marker, exp = exp, marker.pos = marker.pos, exp.pos = exp.pos) crossfile <- trigger.export2cross(triggerobj) tt.pval <- trigger.trait(triggerobj, trait = "DSE1", cross = crossfile) causal.reg <- names(which(p.adjust(tt.pval, method = "fdr")<.05)) detach(yeast) ## End(Not run)
## Not run: data(yeast) attach(yeast) triggerobj <- trigger.build(marker = marker, exp = exp, marker.pos = marker.pos, exp.pos = exp.pos) crossfile <- trigger.export2cross(triggerobj) tt.pval <- trigger.trait(triggerobj, trait = "DSE1", cross = crossfile) causal.reg <- names(which(p.adjust(tt.pval, method = "fdr")<.05)) detach(yeast) ## End(Not run)
A yeast data set for integrative genomic analysis.
The data set contains information on 112 F1 segregants from a yeast genetic cross of BY and RM strains.
The list consists of:
marker:
A 3244 x 112 genotype matrix with marker genotypes in rows and arrays in columns.
exp:
A 6216 x 112 gene expression matrix with genes in rows and arrays in columns.
marker.pos:
A matrix of marker position information.
exp.pos:
A matrix of gene position information.
Brem R.B., Storey J.D., Whittle J., and Kruglyak L. (2005) Genetic interactions between polymorphisms that affect gene expression in yeast. Nature, 436(7051): 701–703.
Storey J.D., Akey J.M., and Kruglyak L. (2005) Multiple locus linkage analysis of genomewide expression in yeast. PLoS Biology, 3(8): 1380–1390.