Package: transmogR (via r-universe)

June 23, 2024
Type Package
Title Modify a set of reference sequences using a set of variants
Version 1.1.0

Description transmogR provides the tools needed to crate a new
reference genome or reference transcriptome, using a set of
variants. Variants can be any combination of SNPs, Insertions
and Deletions. The intended use-case is to enable creation of
variant-modified reference transcriptomes for incorporation
into transcriptomic pseudo-alignment workflows, such as salmon.

License GPL-3
Encoding UTF-8

URL https://github.com/smped/transmogR

BugReports https://github.com/smped/transmogR/issues
Depends Biostrings, GenomicRanges

Imports BSgenome, GenomelnfoDb, GenomicFeatures, ggplot2 (>= 3.5.0),
IRanges, methods, parallel, rlang, scales, stats, S4Vectors,
SummarizedExperiment, VariantAnnotation

Suggests BiocStyle, BSgenome.Hsapiens.UCSC.hg38, ComplexUpset,
extraChlIPs, InteractionSet, knitr, rmarkdown, rtracklayer,
testthat (>= 3.0.0)

biocViews Alignment, GenomicVariation, Sequencing,
Transcriptome Variant

BiocType Software

VignetteBuilder knitr

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.1

Config/testthat/edition 3

Repository https://bioc.r-universe.dev

RemoteUrl https://github.com/bioc/transmogR
RemoteRef HEAD

RemoteSha ba33d38a26a773e9f2f4002879c076dblefafe30

https://github.com/smped/transmogR
https://github.com/smped/transmogR/issues

2 genomogrify

Contents
genomogrify e 2
indelcator 4
overlapsByVar L 6
OWL L e 7
PArY . . 8
sjFromExons L. e 9
transmogrify L. e 11
upsetVarByCol o e 14
varTypes e e e e e 15

Index 17

genomogrify Mogrify a genome using a set of variants
Description
Use a set of SNPS, insertions and deletions to modify a reference genome
Usage

genomogrify(x, var, ...)

S4 method for signature 'XStringSet,GRanges'
genomogrify(

)

X)

var,

alt_col = "ALT",
mask = GRanges(),
tag = NULL,

sep = "_",
var_tags = FALSE,

var_sep = "_",
verbose = TRUE,

S4 method for signature 'BSgenome,GRanges'
genomogrify(

X,

var,

alt_col = "ALT",
mask = GRanges(),
names,

tag = NULL,

n o n

sep = "_,

genomogrify

var_tags = FALSE,

var_sep = "_",
verbose = TRUE,

)

S4 method for signature 'BSgenome,VcfFile'
genomogrify(
X,
var,
alt_col = "ALT",
mask = GRanges(),
names,
tag = NULL,
sep = ”—”)
var_tags = FALSE,
var_sep = "_",
which,
verbose = TRUE,

)

S4 method for signature 'XStringSet,VcfFile'
genomogrify(
X,
var,
alt_col = "ALT",
mask = GRanges(),
tag = NULL,
sep = "_",
var_tags = FALSE,
var_sep = "_",
which,
verbose = TRUE,

)
Arguments
X A DNAStringSet or BSgenome
var GRanges object containing the variants, or a VariantAnnotation::VcfFile
Passed to parallel::mclapply
alt_col The name of the column with var containing alternate bases
mask Optional GRanges object defining regions to be masked with an "N’
tag Optional tag to add to all sequence names which were modified

sep Separator to place between seqnames names & tag

4 indelcator
var_tags logical(1) Add tags indicating which type of variant were incorporated, with ’s’,
’1” and ’d’ representing SNPs, Insertions and Deletions respectively
var_sep Separator between any previous tags and variant tags
verbose logical(1) Print progress messages while running
names Sequence names to be mogrified
which GRanges object passed to VariantAnnotation::ScanVcfParam if using a VCF
directly
Details
This function is designed to create a variant-modified reference genome, intended to be included as
a set of decoys when using salmon in selective alignment mode. Sequence lengths will change if
InDels are included and any coordinate-based information will be lost on the output of this function.
Tags are able to be added to any modified sequence to assist identifying any changes that have been
made to a sequence.
Value
XStringSet with variant modified sequences
Examples
library(GenomicRanges)
dna <- DNAStringSet(c(chr1l = "ACGT", chr2 = "AATTT"))
var <- GRanges(c("chri1:1", "chr1:3", "chr2:1-3"))
var$ALT <- c("C", "GG", "A")
dna
genomogrify(dna, var)
genomogrify(dna, var, tag = "mod")
genomogrify(dna, var, var_tags = TRUE)
genomogrify(dna, var, mask = GRanges("chr2:1-5"), var_tags = TRUE)
indelcator Substitute InDels into one or more sequences
Description

Modify one or more sequences to include Insertions or Deletions

indelcator 5
Usage
indelcator(x, indels, ...)

S4 method for signature 'XString,GRanges'
indelcator(x, indels, exons, alt_col = "ALT", ...)

S4 method for signature 'DNAStringSet,GRanges'
indelcator(x, indels, alt_col = "ALT", mc.cores = 1, verbose = TRUE, ...)

S4 method for signature 'BSgenome,GRanges'

indelcator(x, indels, alt_col = "ALT", mc.cores = 1, names, ...)
Arguments

X Sequence of class XString

indels GRanges object with InDel locations and the alternate allele

Passed to parallel::mclapply

exons GRanges object containing exon structure for x

alt_col Column containing the alternate allele

mc.cores Number of cores to use when calling parallel::mclapply internally

verbose logical(1) Print all messages

names passed to BSgenome::getSeq when x is a BSgenome object
Details

This is a lower-level function relied on by both transmogrify() and genomogrify().

Takes an Biostrings::XString or Biostrings::XStringSet object and modifies the sequence to incor-
porate InDels. The expected types of data determine the behaviour, with the following expectations
describing how the function will incorporate data

Input Data Type Exons Required Use Case Returned
XString Y Modify a Reference Transcriptome XString
DNAStringSet N Modify a Reference Genome DNAStringSet
BSgenome N Modify a Reference Genome DNAStringSet

Value

A DNAStringSet or XString object (See Details)

See Also

transmogrify() genomogrify()

6 overlapsBy Var

Examples

Start with a DNAStringSet
library(GenomicRanges)

seq <- DNAStringSet(c(seql = "AATCTGCGC"))
Define an Insertion

var <- GRanges("seql:1")

var$ALT <- "AAA"

seq

indelcator(seq, var)

To modify a single transcript

library(GenomicFeatures)

ex <- GRanges(c("seql:1-3:+", "seql:7-9:+"))

orig <- extractTranscriptSeqs(seq, GRangesList(tx1 = ex))[["tx1"]1]
orig

indelcator(orig, var, exons = ex)

overlapsByVar Count overlaps by variant type

Description

Count how many variants of each type overlap ranges
Usage
overlapsByVar(x, var, ...)

S4 method for signature 'GRangesList,GRanges'
overlapsByVar(x, var, alt_col = "ALT", ...)

S4 method for signature 'GRanges,GRanges'

overlapsByVar(x, var, alt_col = "ALT", ...)
Arguments

X A GRangesList with features of interest

var A Granges object with variants of interest

Passed to rowSums

alt_col The column within mcols(var) which contains the alternate allele

Details

Taking any GRanges or GRangesList, count how many of each variant type overlap a region.

owl 7

Value

A vector or matrix

Examples

library(rtracklayer)
library(VariantAnnotation)
gtf <- import.gff(

system.file("extdata/gencode.v44.subset.gtf.gz", package = "transmogR")
)
grl <- splitAsList(gtf, gtf$type)
vcf <- system.file("extdata/1000GP_subset.vcf.gz", package = "transmogR")
var <- rowRanges(readVcf(vcf, param = ScanVcfParam(fixed = "ALT")))
overlapsByVar(grl, var)

owl OverWrite Letters in an XStringSet

Description

OverWrite Letters (e.g. SNPs) in an XStringSet

Usage

owl(seq, snps, ...)

S4 method for signature 'XStringSet,GRanges'
owl(seq, snps, alt_col = "ALT", ...)

S4 method for signature 'BSgenome,GRanges'

owl(seq, snps, alt_col = "ALT", names, ...)
Arguments
seq A BSgenome, DNAStringSet, RNAStringSet or other XStringSet.
snps A GRanges object with SNP positions and a column containing the alternate
allele

Passed to Biostrings::replacelLetterAt()

alt_col Column name in the mcols element of snps containing the alternate allele
names Sequence names to operate on
Details

This is a lower-level function called by transmogrify() and genomogrify (), but able to be called
by the user if needed

Note that when providing a BSgenome object, this will first be coerced to a DNAStringSet which
can be time consuming.

parY

Value

An object of the same class as the original object, but with SNPs inserted at the supplied positions

Examples

seq <- DNAStringSet(c(chr1l = "AAGC"))
snps <- GRanges("chr1:2")

snps$ALT <- "G”"

snps

seq

owl (seq, snps)

parY Get the PAR-Y Regions From a Seqinfo Object

Description

Define the Pseudo-Autosomal Regions from a Seqinfo Object
Usage
parY(x, ...)

S4 method for signature 'Seqginfo’
parY(x, ...)

S4 method for signature 'character'

parY(x, prefix = NULL, ...)
Arguments
X A Seqinfo object or any of named build. If passing a character vector, match.arg()
will be used to match the build.
Not used
prefix Optional prefix to place before chromosome names. Can only be NULL, "" or
"chr"

Details

Using a seqinfo object based on either hg38, hg19, CHM13.v2 or their variations, create a GRanges
object with the Pseudo-Autosomal Regions from the Y chromosome for that build. The length
of the Y chromosome on the seqinfo object is used to determine the correct genome build when
passing a Seqinfo object. Otherwise

An additional mcols column called PAR will indicate PAR1 and PAR2

sjFromExons

Value

A GenomicRanges object

Examples

library(GenomeInfoDb)
sq <- Seginfo(
segnames = "chrY"”, seqlengths = 59373566, genome = "hgl19_only_chrY”
)
parY(sq)

PAR regions for CHM13 are also available
sq <- Seginfo(
seqnames = "chrY"”, seqlengths = 62460029, genome = "CHM13"
)
parY(sq)

Or just call by name
parY("GRCh38", prefix = "chr")

sjFromExons Obtain Splice-Junctions from Exons and Transcripts

Description

Using GRanges defining exons and transcripts, find the splice-junctions

Usage
sjFromExons(
X ’
rank_col = c("exon_number"”, "exon_rank"),
tx_col = c("transcript_id"”, "tx_id"),
extra_cols = "all”,
don_len = 8,
acc_len = 5,
as = c("GRanges", "GInteractions"”),
)
Arguments
X GRanges object with exons and transcripts. A column indicating the position
(or rank) of each exon within the transcript must be included.
rank_col The column containing the position of each exons within the transcript
tx_col The column containing unique transcript-level identifiers

10 sjFromExons

extra_cols Can be a vector of column names to return beyond rank_col and tx_col. By
default all columns are returned (extra_cols = "all").

don_len, acc_len
Length of donor and acceptor sites respectively

as Return as a set of GenomicRanges, or with each splice junction annotated as a
Genomiclnteraction
Not used
Details

A canonical splice junction consists of a donor site and an acceptor site at each end of an intron,
with a branching site somewhere wthin the intron. Canonical donor sites are 8nt long with the
the first two bases being exonic and the next 6 being derived form intronic sequences. Canonical
acceptor sites are Snt long with the first four bases being intronic and the final base being the first
base of the next exon.

This functions uses each set of exons within a transcript to identify both donor and acceptor sites.
Branch sites are not identified.

Value

A GRanges object with requested columns, and an additional column, ’site’, annotating each region
as a donor or acceptor site.

Alternatively, by specifying as = "GlInteractions", the junctions can be returned with each splice
junction annotated as a Genomiclnteraction. This can make the set of junctions easier to interpret
for a given transcript.

Examples

library(rtracklayer)
gtf_cols <~ c(
"transcript_id"”, "transcript_name"”, "gene_id"”, "gene_name”, "exon_number
)
gtf <- import.gff(
system.file("extdata/gencode.v44.subset.gtf.gz", package = "transmogR"),

I

feature.type = "exon"”, colnames = gtf_cols
)
sj <- sjFromExons(gtf)
SJ

Or to simplify shared splice junctions across multiple transcripts
library(extraChIPs, quietly = TRUE)
chopMC(sj)

Splice Junctions can also be returned as a GInteractions object with
anchorOne as the donor & anchorTwo as the acceptor sites
sjFromExons(gtf, as = "GInteractions”)

transmogrify

transmogrify Mogrify a transcriptome using a set of variants

Description

Use a set of SNPs, insertions and deletions to modify a reference transcriptome

Usage

transmogrify(x, var, exons, ...)

S4 method for signature 'XStringSet,GRanges,GRanges'
transmogrify(
X,
var,
exons,
alt_col = "ALT",
trans_col = "transcript_id",
omit_ranges = NULL,
tag = NULL,
sep = "_",
var_tags = FALSE,
var_sep = "_",
verbose = TRUE,
mc.cores = 1,

S4 method for signature 'BSgenome,GRanges,GRanges'
transmogrify(

X,

var,

exons,

alt_col = "ALT",

trans_col = "transcript_id",

omit_ranges = NULL,

tag = NULL,

sep = "_",
var_tags = FALSE,
var_sep = "_",
verbose = TRUE,

mc.cores = 1,

S4 method for signature 'BSgenome,VcfFile,GRanges'
transmogrify(

12

X’
var,
exons,

transmogrify

alt_col = "ALT",
trans_col = "transcript_id",

omit_ranges =
tag = NULL,

non

sep =

NULL,

var_tags = FALSE,

n o n

var_sep = "_",

verbose = TRUE,

mc.cores = 1,
which,

)

S4 method for signature 'XStringSet,VcfFile,GRanges'

transmogrify(
X,
var,
exons,

alt_col = "ALT",
trans_col = "transcript_id",

omit_ranges =
tag = NULL,
sep = ll_ll
var_tags

n o n

NULL,

FALSE,

var_sep = "_",
verbose = TRUE,

mc.cores = 1,
which,

Arguments

X
var

exons
alt_col
trans_col
omit_ranges
tag

sep
var_tags

Reference genome as either a DNAStringSet or BSgenome

GRanges object containing the variants

GRanges object with ranges representing exons

Passed to parallel::mclapply

Column from var containing alternate bases

Column from ’exons’ containing the transcript_id

GRanges object containing ranges to omit, such as PAR-Y regions, for example
Optional tag to add to all sequence names which were modified

Separator to place between seqnames names & tag

logical(1) Add tags indicating which type of variant were incorporated, with ’s’,
’1” and ’d’ representing SNPs, Insertions and Deletions respectively

transmogrify 13

var_sep Separator between any previous tags and variant tags
verbose logical(1) Include informative messages, or operate silently
mc.cores Number of cores to be used when multi-threading via parallel::mclapply
which GRanges object passed to VariantAnnotation::ScanVcfParam if using a VCF
directly
Details

Produce a set of variant modified transcript sequences from a standard reference genome. Supported
variants are SNPs, Insertions and Deletions

Ranges needing to be masked, such as the Y-chromosome, or Y-PAR can be provided.

It should be noted that this is a time consuming process Inclusion of a large set of insertions
and deletions across an entire transcriptome can involve individually modifying many thousands of
transcripts, which can be a computationally demanding task. Whilst this can be parallelised using an
appropriate number of cores, this may also prove taxing for lower power laptops, and pre-emptively
closing memory hungry programs such as Slack, or internet browers may be prudent.

Value

An XStringSet

Examples

library(GenomicRanges)

library(GenomicFeatures)

seq <- DNAStringSet(c(chr1 = "ACGTAAATGG"))
exons <- GRanges(c("chr1:1-3:-", "chr1:7-9:-"))
exons$transcript_id <- c("trans1")

When using extractTranscriptSeqs -stranded exons need to be sorted by end
exons <- sort(exons, decreasing = TRUE, by = ~end)

exons

trByExon <- splitAsList(exons, exons$transcript_id)

Check the sequences
seq
extractTranscriptSeqgs(seq, trByExon)

Define some variants
var <- GRanges(c("chr1:2", "chr1:8"))
var$ALT <- c("A", "GGG")

Include the variants adding tags to indicate a SNP and indel
The exons GRanges object will be split by transcript internally
transmogrify(seq, var, exons, var_tags = TRUE)

14

upsetVarByCol

upsetVarByCol

Show Variants by Impacted Columns

Description

Produce an UpSet plot showing unique values from a given column

Usage

upsetVarByCol(

gr,
var,

alt_col = "ALT",
mcol = "transcript_id",

<

intersection_args = list(),
intersection_lab = "Intersection Size",

set_geom =

geom_bar(width = 0.6),

set_expand = 0.2,
set_counts = TRUE,
hjust_counts = 1.1,
set_lab = "Set Size",

title

Arguments
gr
var
alt_col

mcol

GRanges object with ranges representing a key feature such as exons

GRanges object with variants in a given column
Column within var containing the alternate allele
The column within gr to summarise results by

Passed to ComplexUpset::upset

intersection_args

See ComplexUpset::intersection_size for possible values

intersection_lab

set_geom
set_expand
set_counts
hjust_counts
set_lab
title

Y-axis label for the intersection panel

Passed to ComplexUpset::upset_set_size
Expand the set-size axis by this amount
logical(1) Show counts on set sizes

Horizontal adjustment of counts, if being shown

X-axis label for the set-sizes panel

Summary title to show above the intersection panel. Can be hidden by setting to

NULL

varTypes 15

Details

Take a set of variants, classify them as SNV, Insertion and Deletion, then using a GRanges object,
produce an UpSet plot showing impacted values from a given column

Value

An UpSet plot

See Also

ComplexUpset::upset

Examples

library(rtracklayer)
library(VariantAnnotation)
gtf <- import.gff(
system.file("extdata/gencode.v44.subset.gtf.gz", package = "transmogR"),
feature.type = "exon”
)
vcf <- system.file("extdata/1000GP_subset.vcf.gz", package = "transmogR")
var <- rowRanges(readVcf(vcf, param = ScanVcfParam(fixed = "ALT")))
upsetVarByCol(gtf, var)

varTypes Identify SNVs, Insertions and Deletions

Description

Identify SNVs, Insertions and Deletions within a GRanges object

Usage
varTypes(x, alt_col = "ALT", ...)
Arguments
X GenomicRanges object
alt_col Name of the column with mcols(x) which contains the alternate allele. Can be

an XStringSetList, XStringSet or character
Not used

16 varTypes

Details

Using the width of the reference and alternate alleles, classify each range as an SNV, Insertion or
Deletion.

* SNVs are expected to have REF & ALT widths of 1

* Insertions are expected to have ALT longer than REF

* Deletions are expected to have ALT shorter than REF

These are relatively permissive criteria

Value

Character vector

Examples

Load the example VCF and classify ranges

library(VariantAnnotation)

f <- system.file("extdata/1000GP_subset.vcf.gz", package = "transmogR")
vef <- readVcf(f)

gr <- rowRanges(vcf)

type <- varTypes(gr)

table(type)

gritype != "SNV"]

Index

Biostrings::replacelLetterAt(), 7 parallel::mclapply, 3, 5, 12, 13
Biostrings::XString, 5 pary, 8

Biostrings: :XStringSet, 5 parY,character-method (parY), 8
BSgenome: :getSeq, 5 parY,Seqinfo-method (parY), 8

parY-methods (parY), 8
ComplexUpset::intersection_size, 14
ComplexUpset: :upset, 14, 15 rowSums, 6
ComplexUpset: :upset_set_size, 14
sjFromExons, 9
genomogrify, 2
genomogrify(), 5,7
genomogrify,BSgenome, GRanges-method
(genomogrify), 2
genomogrify,BSgenome,VcfFile-method
(genomogrify), 2
genomogrify,XStringSet,GRanges-method
(genomogrify), 2
genomogrify,XStringSet,VcfFile-method
(genomogrify), 2
genomogrify-methods (genomogrify), 2

transmogrify, 11

transmogrify(), 5,7

transmogrify,BSgenome, GRanges, GRanges-method
(transmogrify), 11

transmogrify,BSgenome,VcfFile,GRanges-method
(transmogrify), 11

transmogrify,XStringSet,GRanges, GRanges-method
(transmogrify), 11

transmogrify,XStringSet,VcfFile,GRanges-method
(transmogrify), 11

transmogrify-methods (transmogrify), 11

indelcator, 4

) upsetVarByCol, 14
indelcator,BSgenome, GRanges-method

(indelcator), 4 VariantAnnotation: :ScanVcfParam, 4, 13
indelcator,DNAStringSet, GRanges-method VariantAnnotation::VcfFile, 3
(indelcator), 4 varTypes, 15

indelcator,XString, GRanges-method
(indelcator), 4

match.arg(), 8

overlapsByVar, 6
overlapsByVar,GRanges,GRanges-method
(overlapsByVar), 6
overlapsByVar,GRangesList,GRanges-method
(overlapsByVar), 6
overlapsByVar-methods (overlapsByVar), 6
owl, 7
owl,BSgenome, GRanges-method (owl), 7
owl,XStringSet,GRanges-method (owl), 7

17

	genomogrify
	indelcator
	overlapsByVar
	owl
	parY
	sjFromExons
	transmogrify
	upsetVarByCol
	varTypes
	Index

