Downsampling

library(tidytof)
library(dplyr)
library(ggplot2)

count <- dplyr::count

Often, high-dimensional cytometry experiments collect tens or hundreds or millions of cells in total, and it can be useful to downsample to a smaller, more computationally tractable number of cells - either for a final analysis or while developing code.

To do this, {tidytof} implements the tof_downsample() verb, which allows downsampling using 3 methods: downsampling to an integer number of cells, downsampling to a fixed proportion of the total number of input cells, or downsampling to a fixed cellular density in phenotypic space.

Downsampling with tof_downsample()

Using {tidytof}’s built-in dataset phenograph_data, we can see that the original size of the dataset is 1000 cells per cluster, or 3000 cells in total:

data(phenograph_data)

phenograph_data |>
    dplyr::count(phenograph_cluster)
#> # A tibble: 3 × 2
#>   phenograph_cluster     n
#>   <chr>              <int>
#> 1 cluster1            1000
#> 2 cluster2            1000
#> 3 cluster3            1000

To randomly sample 200 cells per cluster, we can use tof_downsample() using the “constant” method:

phenograph_data |>
    # downsample
    tof_downsample(
        group_cols = phenograph_cluster,
        method = "constant",
        num_cells = 200
    ) |>
    # count the number of downsampled cells in each cluster
    count(phenograph_cluster)
#> # A tibble: 3 × 2
#>   phenograph_cluster     n
#>   <chr>              <int>
#> 1 cluster1             200
#> 2 cluster2             200
#> 3 cluster3             200

Alternatively, if we wanted to sample 50% of the cells in each cluster, we could use the “prop” method:

phenograph_data |>
    # downsample
    tof_downsample(
        group_cols = phenograph_cluster,
        method = "prop",
        prop_cells = 0.5
    ) |>
    # count the number of downsampled cells in each cluster
    count(phenograph_cluster)
#> # A tibble: 3 × 2
#>   phenograph_cluster     n
#>   <chr>              <int>
#> 1 cluster1             500
#> 2 cluster2             500
#> 3 cluster3             500

And finally, we might also be interested in taking a slightly different approach to downsampling that reduces the number of cells not to a fixed constant or proportion, but to a fixed density in phenotypic space. For example, the following scatterplot demonstrates that there are certain areas of phenotypic density in phenograph_data that contain more cells than others along the cd34/cd38 axes:

rescale_max <-
    function(x, to = c(0, 1), from = range(x, na.rm = TRUE)) {
        x / from[2] * to[2]
    }

phenograph_data |>
    # preprocess all numeric columns in the dataset
    tof_preprocess(undo_noise = FALSE) |>
    # plot
    ggplot(aes(x = cd34, y = cd38)) +
    geom_hex() +
    coord_fixed(ratio = 0.4) +
    scale_x_continuous(limits = c(NA, 1.5)) +
    scale_y_continuous(limits = c(NA, 4)) +
    scale_fill_viridis_c(
        labels = function(x) round(rescale_max(x), 2)
    ) +
    labs(
        fill = "relative density"
    )

To reduce the number of cells in our dataset until the local density around each cell in our dataset is relatively constant, we can use the “density” method of tof_downsample:

phenograph_data |>
    tof_preprocess(undo_noise = FALSE) |>
    tof_downsample(method = "density", density_cols = c(cd34, cd38)) |>
    # plot
    ggplot(aes(x = cd34, y = cd38)) +
    geom_hex() +
    coord_fixed(ratio = 0.4) +
    scale_x_continuous(limits = c(NA, 1.5)) +
    scale_y_continuous(limits = c(NA, 4)) +
    scale_fill_viridis_c(
        labels = function(x) round(rescale_max(x), 2)
    ) +
    labs(
        fill = "relative density"
    )

Thus, we can see that the density after downsampling is more uniform (though not exactly uniform) across the range of cd34/cd38 values in phenograph_data.

Additional documentation

For more details, check out the documentation for the 3 underlying members of the tof_downsample_* function family (which are wrapped by tof_downsample):

  • tof_downsample_constant
  • tof_downsample_prop
  • tof_downsample_density

Session info

sessionInfo()
#> R version 4.4.2 (2024-10-31)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 24.04.1 LTS
#> 
#> Matrix products: default
#> BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
#> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so;  LAPACK version 3.12.0
#> 
#> locale:
#>  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
#>  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=C              
#>  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
#>  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
#>  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
#> 
#> time zone: Etc/UTC
#> tzcode source: system (glibc)
#> 
#> attached base packages:
#> [1] stats4    stats     graphics  grDevices utils     datasets  methods  
#> [8] base     
#> 
#> other attached packages:
#>  [1] tidyr_1.3.1                 stringr_1.5.1              
#>  [3] HDCytoData_1.26.0           flowCore_2.19.0            
#>  [5] SummarizedExperiment_1.37.0 Biobase_2.67.0             
#>  [7] GenomicRanges_1.59.1        GenomeInfoDb_1.43.2        
#>  [9] IRanges_2.41.2              S4Vectors_0.45.2           
#> [11] MatrixGenerics_1.19.1       matrixStats_1.5.0          
#> [13] ExperimentHub_2.15.0        AnnotationHub_3.15.0       
#> [15] BiocFileCache_2.15.0        dbplyr_2.5.0               
#> [17] BiocGenerics_0.53.3         generics_0.1.3             
#> [19] forcats_1.0.0               ggplot2_3.5.1              
#> [21] dplyr_1.1.4                 tidytof_1.1.0              
#> [23] rmarkdown_2.29             
#> 
#> loaded via a namespace (and not attached):
#>   [1] sys_3.4.3               jsonlite_1.8.9          shape_1.4.6.1          
#>   [4] magrittr_2.0.3          farver_2.1.2            vctrs_0.6.5            
#>   [7] memoise_2.0.1           htmltools_0.5.8.1       S4Arrays_1.7.1         
#>  [10] curl_6.1.0              SparseArray_1.7.3       sass_0.4.9             
#>  [13] parallelly_1.41.0       bslib_0.8.0             lubridate_1.9.4        
#>  [16] cachem_1.1.0            buildtools_1.0.0        igraph_2.1.3           
#>  [19] mime_0.12               lifecycle_1.0.4         iterators_1.0.14       
#>  [22] pkgconfig_2.0.3         Matrix_1.7-1            R6_2.5.1               
#>  [25] fastmap_1.2.0           GenomeInfoDbData_1.2.13 future_1.34.0          
#>  [28] digest_0.6.37           colorspace_2.1-1        AnnotationDbi_1.69.0   
#>  [31] irlba_2.3.5.1           RSQLite_2.3.9           labeling_0.4.3         
#>  [34] filelock_1.0.3          cytolib_2.19.1          yardstick_1.3.1        
#>  [37] timechange_0.3.0        httr_1.4.7              polyclip_1.10-7        
#>  [40] abind_1.4-8             compiler_4.4.2          bit64_4.5.2            
#>  [43] withr_3.0.2             doParallel_1.0.17       viridis_0.6.5          
#>  [46] DBI_1.2.3               ggforce_0.4.2           MASS_7.3-64            
#>  [49] lava_1.8.1              embed_1.1.4             rappdirs_0.3.3         
#>  [52] DelayedArray_0.33.3     tools_4.4.2             future.apply_1.11.3    
#>  [55] nnet_7.3-20             glue_1.8.0              grid_4.4.2             
#>  [58] Rtsne_0.17              recipes_1.1.0           gtable_0.3.6           
#>  [61] tzdb_0.4.0              class_7.3-23            data.table_1.16.4      
#>  [64] hms_1.1.3               utf8_1.2.4              tidygraph_1.3.1        
#>  [67] XVector_0.47.2          RcppAnnoy_0.0.22        ggrepel_0.9.6          
#>  [70] BiocVersion_3.21.1      foreach_1.5.2           pillar_1.10.1          
#>  [73] RcppHNSW_0.6.0          splines_4.4.2           tweenr_2.0.3           
#>  [76] lattice_0.22-6          survival_3.8-3          bit_4.5.0.1            
#>  [79] RProtoBufLib_2.19.0     tidyselect_1.2.1        Biostrings_2.75.3      
#>  [82] maketools_1.3.1         knitr_1.49              gridExtra_2.3          
#>  [85] xfun_0.50               graphlayouts_1.2.1      hardhat_1.4.0          
#>  [88] timeDate_4041.110       stringi_1.8.4           UCSC.utils_1.3.1       
#>  [91] yaml_2.3.10             evaluate_1.0.3          codetools_0.2-20       
#>  [94] ggraph_2.2.1            tibble_3.2.1            BiocManager_1.30.25    
#>  [97] cli_3.6.3               uwot_0.2.2              rpart_4.1.24           
#> [100] munsell_0.5.1           jquerylib_0.1.4         Rcpp_1.0.14            
#> [103] globals_0.16.3          png_0.1-8               parallel_4.4.2         
#> [106] gower_1.0.2             readr_2.1.5             blob_1.2.4             
#> [109] listenv_0.9.1           glmnet_4.1-8            viridisLite_0.4.2      
#> [112] ipred_0.9-15            ggridges_0.5.6          scales_1.3.0           
#> [115] prodlim_2024.06.25      purrr_1.0.2             crayon_1.5.3           
#> [118] rlang_1.1.4             KEGGREST_1.47.0