A useful tool for visualizing the phenotypic relationships between single cells and clusters of cells is dimensionality reduction, a form of unsupervised machine learning used to represent high-dimensional datasets in a smaller number of dimensions.
{tidytof}
includes several dimensionality reduction
algorithms commonly used by biologists: Principal component analysis
(PCA), t-distributed stochastic neighbor embedding (tSNE), and uniform
manifold approximation and projection (UMAP). To apply these to a
dataset, use tof_reduce_dimensions()
.
tof_reduce_dimensions()
.Here is an example call to tof_reduce_dimensions()
in
which we use tSNE to visualize data in {tidytof}
’s built-in
phenograph_data
dataset.
data(phenograph_data)
# perform the dimensionality reduction
phenograph_tsne <-
phenograph_data |>
tof_preprocess() |>
tof_reduce_dimensions(method = "tsne")
#> Loading required namespace: Rtsne
# select only the tsne embedding columns
phenograph_tsne |>
select(contains("tsne")) |>
head()
#> # A tibble: 6 × 2
#> .tsne1 .tsne2
#> <dbl> <dbl>
#> 1 -5.77 6.61
#> 2 -1.69 9.81
#> 3 14.2 31.6
#> 4 4.47 17.6
#> 5 -2.75 7.37
#> 6 3.15 25.5
By default, tof_reduce_dimensions
will add
reduced-dimension feature embeddings to the input tof_tbl
and return the augmented tof_tbl
(that is, a
tof_tbl
with new columns for each embedding dimension) as
its result. To return only the features embeddings themselves, set
augment
to FALSE
(as in
tof_cluster
).
phenograph_data |>
tof_preprocess() |>
tof_reduce_dimensions(method = "tsne", augment = FALSE)
#> # A tibble: 3,000 × 2
#> .tsne1 .tsne2
#> <dbl> <dbl>
#> 1 17.1 -1.43
#> 2 15.5 -7.89
#> 3 25.5 -25.0
#> 4 10.4 -16.2
#> 5 18.1 -4.64
#> 6 18.8 -15.7
#> 7 16.7 -9.65
#> 8 24.1 -16.8
#> 9 11.6 -19.1
#> 10 9.77 -2.53
#> # ℹ 2,990 more rows
Changing the method
argument results in different
low-dimensional embeddings:
phenograph_data |>
tof_reduce_dimensions(method = "umap", augment = FALSE)
#> # A tibble: 3,000 × 2
#> .umap1 .umap2
#> <dbl> <dbl>
#> 1 -9.85 -5.02
#> 2 -9.30 -3.89
#> 3 -3.77 -0.246
#> 4 -3.25 1.65
#> 5 -9.99 -4.83
#> 6 -0.607 2.20
#> 7 -10.2 -4.49
#> 8 -2.82 0.428
#> 9 -6.05 0.356
#> 10 -8.26 -5.80
#> # ℹ 2,990 more rows
phenograph_data |>
tof_reduce_dimensions(method = "pca", augment = FALSE)
#> # A tibble: 3,000 × 5
#> .pc1 .pc2 .pc3 .pc4 .pc5
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 -2.77 1.23 -0.868 0.978 3.49
#> 2 -0.969 -1.02 -0.787 1.22 0.329
#> 3 -2.36 2.54 -1.95 -0.882 -1.30
#> 4 -3.68 -0.00565 0.962 0.410 0.788
#> 5 -4.03 2.07 -0.829 1.59 5.39
#> 6 -2.59 -0.108 1.32 -1.41 -1.24
#> 7 -1.55 -0.651 -0.233 1.08 0.129
#> 8 -1.18 -0.446 0.134 -0.771 -0.932
#> 9 -2.00 -0.485 0.593 -0.0416 -0.658
#> 10 -0.0356 -0.924 -0.692 1.45 0.270
#> # ℹ 2,990 more rows
tof_reduce_*()
functionstof_reduce_dimensions()
provides a high-level API for
three lower-level functions: tof_reduce_pca()
,
tof_reduce_umap()
, and tof_reduce_tsne()
. The
help files for each of these functions provide details about the
algorithm-specific method specifications associated with each of these
dimensionality reduction approaches. For example,
tof_reduce_pca
takes the num_comp
argument to
determine how many principal components should be returned:
# 2 principal components
phenograph_data |>
tof_reduce_pca(num_comp = 2)
#> # A tibble: 3,000 × 2
#> .pc1 .pc2
#> <dbl> <dbl>
#> 1 -2.77 1.23
#> 2 -0.969 -1.02
#> 3 -2.36 2.54
#> 4 -3.68 -0.00565
#> 5 -4.03 2.07
#> 6 -2.59 -0.108
#> 7 -1.55 -0.651
#> 8 -1.18 -0.446
#> 9 -2.00 -0.485
#> 10 -0.0356 -0.924
#> # ℹ 2,990 more rows
# 3 principal components
phenograph_data |>
tof_reduce_pca(num_comp = 3)
#> # A tibble: 3,000 × 3
#> .pc1 .pc2 .pc3
#> <dbl> <dbl> <dbl>
#> 1 -2.77 1.23 -0.868
#> 2 -0.969 -1.02 -0.787
#> 3 -2.36 2.54 -1.95
#> 4 -3.68 -0.00565 0.962
#> 5 -4.03 2.07 -0.829
#> 6 -2.59 -0.108 1.32
#> 7 -1.55 -0.651 -0.233
#> 8 -1.18 -0.446 0.134
#> 9 -2.00 -0.485 0.593
#> 10 -0.0356 -0.924 -0.692
#> # ℹ 2,990 more rows
see ?tof_reduce_pca
, ?tof_reduce_umap
, and
?tof_reduce_tsne
for additional details.
tof_plot_cells_embedding()
Regardless of the method used, reduced-dimension feature embeddings
can be visualized using {ggplot2}
(or any graphics
package). {tidytof}
also provides some helper functions for
easily generating dimensionality reduction plots from a
tof_tbl
or tibble with columns representing embedding
dimensions:
# plot the tsne embeddings using color to distinguish between clusters
phenograph_tsne |>
tof_plot_cells_embedding(
embedding_cols = contains(".tsne"),
color_col = phenograph_cluster
)
# plot the tsne embeddings using color to represent CD11b expression
phenograph_tsne |>
tof_plot_cells_embedding(
embedding_cols = contains(".tsne"),
color_col = cd11b
) +
ggplot2::scale_fill_viridis_c()
Such visualizations can be helpful in qualitatively describing the phenotypic differences between the clusters in a dataset. For example, in the example above, we can see that one of the clusters has high CD11b expression, whereas the others have lower CD11b expression.
sessionInfo()
#> R version 4.4.2 (2024-10-31)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 24.04.1 LTS
#>
#> Matrix products: default
#> BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
#> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so; LAPACK version 3.12.0
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#>
#> time zone: Etc/UTC
#> tzcode source: system (glibc)
#>
#> attached base packages:
#> [1] stats4 stats graphics grDevices utils datasets methods
#> [8] base
#>
#> other attached packages:
#> [1] tidyr_1.3.1 stringr_1.5.1
#> [3] HDCytoData_1.26.0 flowCore_2.19.0
#> [5] SummarizedExperiment_1.37.0 Biobase_2.67.0
#> [7] GenomicRanges_1.59.1 GenomeInfoDb_1.43.2
#> [9] IRanges_2.41.2 S4Vectors_0.45.2
#> [11] MatrixGenerics_1.19.0 matrixStats_1.4.1
#> [13] ExperimentHub_2.15.0 AnnotationHub_3.15.0
#> [15] BiocFileCache_2.15.0 dbplyr_2.5.0
#> [17] BiocGenerics_0.53.3 generics_0.1.3
#> [19] forcats_1.0.0 ggplot2_3.5.1
#> [21] dplyr_1.1.4 tidytof_1.1.0
#> [23] rmarkdown_2.29
#>
#> loaded via a namespace (and not attached):
#> [1] sys_3.4.3 jsonlite_1.8.9 shape_1.4.6.1
#> [4] magrittr_2.0.3 farver_2.1.2 zlibbioc_1.52.0
#> [7] vctrs_0.6.5 memoise_2.0.1 htmltools_0.5.8.1
#> [10] S4Arrays_1.7.1 curl_6.0.1 SparseArray_1.7.2
#> [13] sass_0.4.9 parallelly_1.40.1 bslib_0.8.0
#> [16] lubridate_1.9.4 cachem_1.1.0 buildtools_1.0.0
#> [19] igraph_2.1.2 mime_0.12 lifecycle_1.0.4
#> [22] iterators_1.0.14 pkgconfig_2.0.3 Matrix_1.7-1
#> [25] R6_2.5.1 fastmap_1.2.0 GenomeInfoDbData_1.2.13
#> [28] future_1.34.0 digest_0.6.37 colorspace_2.1-1
#> [31] AnnotationDbi_1.69.0 irlba_2.3.5.1 RSQLite_2.3.9
#> [34] labeling_0.4.3 filelock_1.0.3 cytolib_2.19.0
#> [37] fansi_1.0.6 yardstick_1.3.1 timechange_0.3.0
#> [40] httr_1.4.7 polyclip_1.10-7 abind_1.4-8
#> [43] compiler_4.4.2 bit64_4.5.2 withr_3.0.2
#> [46] doParallel_1.0.17 viridis_0.6.5 DBI_1.2.3
#> [49] ggforce_0.4.2 MASS_7.3-61 lava_1.8.0
#> [52] embed_1.1.4 rappdirs_0.3.3 DelayedArray_0.33.3
#> [55] tools_4.4.2 future.apply_1.11.3 nnet_7.3-19
#> [58] glue_1.8.0 grid_4.4.2 Rtsne_0.17
#> [61] recipes_1.1.0 gtable_0.3.6 tzdb_0.4.0
#> [64] class_7.3-22 data.table_1.16.4 hms_1.1.3
#> [67] tidygraph_1.3.1 utf8_1.2.4 XVector_0.47.0
#> [70] RcppAnnoy_0.0.22 ggrepel_0.9.6 BiocVersion_3.21.1
#> [73] foreach_1.5.2 pillar_1.9.0 RcppHNSW_0.6.0
#> [76] splines_4.4.2 tweenr_2.0.3 lattice_0.22-6
#> [79] survival_3.7-0 bit_4.5.0.1 RProtoBufLib_2.19.0
#> [82] tidyselect_1.2.1 Biostrings_2.75.3 maketools_1.3.1
#> [85] knitr_1.49 gridExtra_2.3 xfun_0.49
#> [88] graphlayouts_1.2.1 hardhat_1.4.0 timeDate_4041.110
#> [91] stringi_1.8.4 UCSC.utils_1.3.0 yaml_2.3.10
#> [94] evaluate_1.0.1 codetools_0.2-20 ggraph_2.2.1
#> [97] tibble_3.2.1 BiocManager_1.30.25 cli_3.6.3
#> [100] uwot_0.2.2 rpart_4.1.23 munsell_0.5.1
#> [103] jquerylib_0.1.4 Rcpp_1.0.13-1 globals_0.16.3
#> [106] png_0.1-8 parallel_4.4.2 gower_1.0.1
#> [109] readr_2.1.5 blob_1.2.4 listenv_0.9.1
#> [112] glmnet_4.1-8 viridisLite_0.4.2 ipred_0.9-15
#> [115] ggridges_0.5.6 scales_1.3.0 prodlim_2024.06.25
#> [118] purrr_1.0.2 crayon_1.5.3 rlang_1.1.4
#> [121] KEGGREST_1.47.0