Dimensionality reduction

library(tidytof)
library(dplyr)
library(ggplot2)

A useful tool for visualizing the phenotypic relationships between single cells and clusters of cells is dimensionality reduction, a form of unsupervised machine learning used to represent high-dimensional datasets in a smaller number of dimensions.

{tidytof} includes several dimensionality reduction algorithms commonly used by biologists: Principal component analysis (PCA), t-distributed stochastic neighbor embedding (tSNE), and uniform manifold approximation and projection (UMAP). To apply these to a dataset, use tof_reduce_dimensions().

Dimensionality reduction with tof_reduce_dimensions().

Here is an example call to tof_reduce_dimensions() in which we use tSNE to visualize data in {tidytof}’s built-in phenograph_data dataset.

data(phenograph_data)

# perform the dimensionality reduction
phenograph_tsne <-
    phenograph_data |>
    tof_preprocess() |>
    tof_reduce_dimensions(method = "tsne")
#> Loading required namespace: Rtsne

# select only the tsne embedding columns
phenograph_tsne |>
    select(contains("tsne")) |>
    head()
#> # A tibble: 6 × 2
#>   .tsne1 .tsne2
#>    <dbl>  <dbl>
#> 1  -5.77   6.61
#> 2  -1.69   9.81
#> 3  14.2   31.6 
#> 4   4.47  17.6 
#> 5  -2.75   7.37
#> 6   3.15  25.5

By default, tof_reduce_dimensions will add reduced-dimension feature embeddings to the input tof_tbl and return the augmented tof_tbl (that is, a tof_tbl with new columns for each embedding dimension) as its result. To return only the features embeddings themselves, set augment to FALSE (as in tof_cluster).

phenograph_data |>
    tof_preprocess() |>
    tof_reduce_dimensions(method = "tsne", augment = FALSE)
#> # A tibble: 3,000 × 2
#>    .tsne1 .tsne2
#>     <dbl>  <dbl>
#>  1  17.1   -1.43
#>  2  15.5   -7.89
#>  3  25.5  -25.0 
#>  4  10.4  -16.2 
#>  5  18.1   -4.64
#>  6  18.8  -15.7 
#>  7  16.7   -9.65
#>  8  24.1  -16.8 
#>  9  11.6  -19.1 
#> 10   9.77  -2.53
#> # ℹ 2,990 more rows

Changing the method argument results in different low-dimensional embeddings:

phenograph_data |>
    tof_reduce_dimensions(method = "umap", augment = FALSE)
#> # A tibble: 3,000 × 2
#>     .umap1 .umap2
#>      <dbl>  <dbl>
#>  1  -9.85  -5.02 
#>  2  -9.30  -3.89 
#>  3  -3.77  -0.246
#>  4  -3.25   1.65 
#>  5  -9.99  -4.83 
#>  6  -0.607  2.20 
#>  7 -10.2   -4.49 
#>  8  -2.82   0.428
#>  9  -6.05   0.356
#> 10  -8.26  -5.80 
#> # ℹ 2,990 more rows

phenograph_data |>
    tof_reduce_dimensions(method = "pca", augment = FALSE)
#> # A tibble: 3,000 × 5
#>       .pc1     .pc2   .pc3    .pc4   .pc5
#>      <dbl>    <dbl>  <dbl>   <dbl>  <dbl>
#>  1 -2.77    1.23    -0.868  0.978   3.49 
#>  2 -0.969  -1.02    -0.787  1.22    0.329
#>  3 -2.36    2.54    -1.95  -0.882  -1.30 
#>  4 -3.68   -0.00565  0.962  0.410   0.788
#>  5 -4.03    2.07    -0.829  1.59    5.39 
#>  6 -2.59   -0.108    1.32  -1.41   -1.24 
#>  7 -1.55   -0.651   -0.233  1.08    0.129
#>  8 -1.18   -0.446    0.134 -0.771  -0.932
#>  9 -2.00   -0.485    0.593 -0.0416 -0.658
#> 10 -0.0356 -0.924   -0.692  1.45    0.270
#> # ℹ 2,990 more rows

Method specifications for tof_reduce_*() functions

tof_reduce_dimensions() provides a high-level API for three lower-level functions: tof_reduce_pca(), tof_reduce_umap(), and tof_reduce_tsne(). The help files for each of these functions provide details about the algorithm-specific method specifications associated with each of these dimensionality reduction approaches. For example, tof_reduce_pca takes the num_comp argument to determine how many principal components should be returned:

# 2 principal components
phenograph_data |>
    tof_reduce_pca(num_comp = 2)
#> # A tibble: 3,000 × 2
#>       .pc1     .pc2
#>      <dbl>    <dbl>
#>  1 -2.77    1.23   
#>  2 -0.969  -1.02   
#>  3 -2.36    2.54   
#>  4 -3.68   -0.00565
#>  5 -4.03    2.07   
#>  6 -2.59   -0.108  
#>  7 -1.55   -0.651  
#>  8 -1.18   -0.446  
#>  9 -2.00   -0.485  
#> 10 -0.0356 -0.924  
#> # ℹ 2,990 more rows
# 3 principal components
phenograph_data |>
    tof_reduce_pca(num_comp = 3)
#> # A tibble: 3,000 × 3
#>       .pc1     .pc2   .pc3
#>      <dbl>    <dbl>  <dbl>
#>  1 -2.77    1.23    -0.868
#>  2 -0.969  -1.02    -0.787
#>  3 -2.36    2.54    -1.95 
#>  4 -3.68   -0.00565  0.962
#>  5 -4.03    2.07    -0.829
#>  6 -2.59   -0.108    1.32 
#>  7 -1.55   -0.651   -0.233
#>  8 -1.18   -0.446    0.134
#>  9 -2.00   -0.485    0.593
#> 10 -0.0356 -0.924   -0.692
#> # ℹ 2,990 more rows

see ?tof_reduce_pca, ?tof_reduce_umap, and ?tof_reduce_tsne for additional details.

Visualization using tof_plot_cells_embedding()

Regardless of the method used, reduced-dimension feature embeddings can be visualized using {ggplot2} (or any graphics package). {tidytof} also provides some helper functions for easily generating dimensionality reduction plots from a tof_tbl or tibble with columns representing embedding dimensions:

# plot the tsne embeddings using color to distinguish between clusters
phenograph_tsne |>
    tof_plot_cells_embedding(
        embedding_cols = contains(".tsne"),
        color_col = phenograph_cluster
    )


# plot the tsne embeddings using color to represent CD11b expression
phenograph_tsne |>
    tof_plot_cells_embedding(
        embedding_cols = contains(".tsne"),
        color_col = cd11b
    ) +
    ggplot2::scale_fill_viridis_c()

Such visualizations can be helpful in qualitatively describing the phenotypic differences between the clusters in a dataset. For example, in the example above, we can see that one of the clusters has high CD11b expression, whereas the others have lower CD11b expression.

Session info

sessionInfo()
#> R version 4.4.2 (2024-10-31)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 24.04.1 LTS
#> 
#> Matrix products: default
#> BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
#> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so;  LAPACK version 3.12.0
#> 
#> locale:
#>  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
#>  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=C              
#>  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
#>  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
#>  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
#> 
#> time zone: Etc/UTC
#> tzcode source: system (glibc)
#> 
#> attached base packages:
#> [1] stats4    stats     graphics  grDevices utils     datasets  methods  
#> [8] base     
#> 
#> other attached packages:
#>  [1] tidyr_1.3.1                 stringr_1.5.1              
#>  [3] HDCytoData_1.26.0           flowCore_2.19.0            
#>  [5] SummarizedExperiment_1.37.0 Biobase_2.67.0             
#>  [7] GenomicRanges_1.59.1        GenomeInfoDb_1.43.2        
#>  [9] IRanges_2.41.2              S4Vectors_0.45.2           
#> [11] MatrixGenerics_1.19.1       matrixStats_1.5.0          
#> [13] ExperimentHub_2.15.0        AnnotationHub_3.15.0       
#> [15] BiocFileCache_2.15.0        dbplyr_2.5.0               
#> [17] BiocGenerics_0.53.3         generics_0.1.3             
#> [19] forcats_1.0.0               ggplot2_3.5.1              
#> [21] dplyr_1.1.4                 tidytof_1.1.0              
#> [23] rmarkdown_2.29             
#> 
#> loaded via a namespace (and not attached):
#>   [1] sys_3.4.3               jsonlite_1.8.9          shape_1.4.6.1          
#>   [4] magrittr_2.0.3          farver_2.1.2            vctrs_0.6.5            
#>   [7] memoise_2.0.1           htmltools_0.5.8.1       S4Arrays_1.7.1         
#>  [10] curl_6.1.0              SparseArray_1.7.3       sass_0.4.9             
#>  [13] parallelly_1.41.0       bslib_0.8.0             lubridate_1.9.4        
#>  [16] cachem_1.1.0            buildtools_1.0.0        igraph_2.1.3           
#>  [19] mime_0.12               lifecycle_1.0.4         iterators_1.0.14       
#>  [22] pkgconfig_2.0.3         Matrix_1.7-1            R6_2.5.1               
#>  [25] fastmap_1.2.0           GenomeInfoDbData_1.2.13 future_1.34.0          
#>  [28] digest_0.6.37           colorspace_2.1-1        AnnotationDbi_1.69.0   
#>  [31] irlba_2.3.5.1           RSQLite_2.3.9           labeling_0.4.3         
#>  [34] filelock_1.0.3          cytolib_2.19.1          yardstick_1.3.1        
#>  [37] timechange_0.3.0        httr_1.4.7              polyclip_1.10-7        
#>  [40] abind_1.4-8             compiler_4.4.2          bit64_4.5.2            
#>  [43] withr_3.0.2             doParallel_1.0.17       viridis_0.6.5          
#>  [46] DBI_1.2.3               ggforce_0.4.2           MASS_7.3-64            
#>  [49] lava_1.8.1              embed_1.1.4             rappdirs_0.3.3         
#>  [52] DelayedArray_0.33.3     tools_4.4.2             future.apply_1.11.3    
#>  [55] nnet_7.3-20             glue_1.8.0              grid_4.4.2             
#>  [58] Rtsne_0.17              recipes_1.1.0           gtable_0.3.6           
#>  [61] tzdb_0.4.0              class_7.3-23            data.table_1.16.4      
#>  [64] hms_1.1.3               utf8_1.2.4              tidygraph_1.3.1        
#>  [67] XVector_0.47.2          RcppAnnoy_0.0.22        ggrepel_0.9.6          
#>  [70] BiocVersion_3.21.1      foreach_1.5.2           pillar_1.10.1          
#>  [73] RcppHNSW_0.6.0          splines_4.4.2           tweenr_2.0.3           
#>  [76] lattice_0.22-6          survival_3.8-3          bit_4.5.0.1            
#>  [79] RProtoBufLib_2.19.0     tidyselect_1.2.1        Biostrings_2.75.3      
#>  [82] maketools_1.3.1         knitr_1.49              gridExtra_2.3          
#>  [85] xfun_0.50               graphlayouts_1.2.1      hardhat_1.4.0          
#>  [88] timeDate_4041.110       stringi_1.8.4           UCSC.utils_1.3.1       
#>  [91] yaml_2.3.10             evaluate_1.0.3          codetools_0.2-20       
#>  [94] ggraph_2.2.1            tibble_3.2.1            BiocManager_1.30.25    
#>  [97] cli_3.6.3               uwot_0.2.2              rpart_4.1.24           
#> [100] munsell_0.5.1           jquerylib_0.1.4         Rcpp_1.0.14            
#> [103] globals_0.16.3          png_0.1-8               parallel_4.4.2         
#> [106] gower_1.0.2             readr_2.1.5             blob_1.2.4             
#> [109] listenv_0.9.1           glmnet_4.1-8            viridisLite_0.4.2      
#> [112] ipred_0.9-15            ggridges_0.5.6          scales_1.3.0           
#> [115] prodlim_2024.06.25      purrr_1.0.2             crayon_1.5.3           
#> [118] rlang_1.1.4             KEGGREST_1.47.0