Clustering and metaclustering

library(tidytof)
library(dplyr)

Often, clustering single-cell data to identify communities of cells with shared characteristics is a major goal of high-dimensional cytometry data analysis.

To do this, {tidytof} provides the tof_cluster() verb. Several clustering methods are implemented in {tidytof}, including the following:

Each of these methods are wrapped by tof_cluster().

Clustering with tof_cluster()

To demonstrate, we can apply the PhenoGraph clustering algorithm to {tidytof}’s built-in phenograph_data. Note that phenograph_data contains 3000 total cells (1000 each from 3 clusters identified in the original PhenoGraph publication). For demonstration purposes, we also metacluster our PhenoGraph clusters using k-means clustering.

data(phenograph_data)

set.seed(203L)

phenograph_clusters <-
    phenograph_data |>
    tof_preprocess() |>
    tof_cluster(
        cluster_cols = starts_with("cd"),
        num_neighbors = 50L,
        distance_function = "cosine",
        method = "phenograph"
    ) |>
    tof_metacluster(
        cluster_col = .phenograph_cluster,
        metacluster_cols = starts_with("cd"),
        num_metaclusters = 3L,
        method = "kmeans"
    )

phenograph_clusters |>
    dplyr::select(sample_name, .phenograph_cluster, .kmeans_metacluster) |>
    head()
#> # A tibble: 6 × 3
#>   sample_name            .phenograph_cluster .kmeans_metacluster
#>   <chr>                  <chr>               <chr>              
#> 1 H1_PhenoGraph_cluster1 5                   2                  
#> 2 H1_PhenoGraph_cluster1 1                   2                  
#> 3 H1_PhenoGraph_cluster1 5                   2                  
#> 4 H1_PhenoGraph_cluster1 1                   2                  
#> 5 H1_PhenoGraph_cluster1 1                   2                  
#> 6 H1_PhenoGraph_cluster1 5                   2

The outputs of both tof_cluster() and tof_metacluster() are a tof_tbl identical to the input tibble, but now with the addition of an additional column (in this case, “.phenograph_cluster” and “.kmeans_metacluster”) that encodes the cluster id for each cell in the input tof_tbl. Note that all output columns added to a tibble or tof_tbl by {tidytof} begin with a full-stop (“.”) to reduce the likelihood of collisions with existing column names.

Because the output of tof_cluster is a tof_tbl, we can use dplyr’s count method to assess the accuracy of our clustering procedure compared to the original clustering from the PhenoGraph paper.

phenograph_clusters |>
    dplyr::count(phenograph_cluster, .kmeans_metacluster, sort = TRUE)
#> # A tibble: 4 × 3
#>   phenograph_cluster .kmeans_metacluster     n
#>   <chr>              <chr>               <int>
#> 1 cluster2           1                    1000
#> 2 cluster3           3                    1000
#> 3 cluster1           2                     995
#> 4 cluster1           3                       5

Here, we can see that our clustering procedure groups most cells from the same PhenoGraph cluster with one another (with a small number of mistakes).

To change which clustering algorithm tof_cluster uses, alter the method flag.

# use the kmeans algorithm
phenograph_data |>
    tof_preprocess() |>
    tof_cluster(
        cluster_cols = contains("cd"),
        method = "kmeans"
    )

# use the flowsom algorithm
phenograph_data |>
    tof_preprocess() |>
    tof_cluster(
        cluster_cols = contains("cd"),
        method = "flowsom"
    )

To change the columns used to compute the clusters, change the cluster_cols flag. And finally, if you want to return a one-column tibble that only includes the cluster labels (as opposed to the cluster labels added as a new column to the input tof_tbl), set augment to FALSE.

# will result in a tibble with only 1 column (the cluster labels)
phenograph_data |>
    tof_preprocess() |>
    tof_cluster(
        cluster_cols = contains("cd"),
        method = "kmeans",
        augment = FALSE
    ) |>
    head()
#> # A tibble: 6 × 1
#>   .kmeans_cluster
#>   <chr>          
#> 1 9              
#> 2 9              
#> 3 2              
#> 4 19             
#> 5 12             
#> 6 19

Session info

sessionInfo()
#> R version 4.4.2 (2024-10-31)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 24.04.1 LTS
#> 
#> Matrix products: default
#> BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
#> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so;  LAPACK version 3.12.0
#> 
#> locale:
#>  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
#>  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=C              
#>  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
#>  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
#>  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
#> 
#> time zone: Etc/UTC
#> tzcode source: system (glibc)
#> 
#> attached base packages:
#> [1] stats4    stats     graphics  grDevices utils     datasets  methods  
#> [8] base     
#> 
#> other attached packages:
#>  [1] HDCytoData_1.26.0           flowCore_2.19.0            
#>  [3] SummarizedExperiment_1.37.0 Biobase_2.67.0             
#>  [5] GenomicRanges_1.59.1        GenomeInfoDb_1.43.2        
#>  [7] IRanges_2.41.2              S4Vectors_0.45.2           
#>  [9] MatrixGenerics_1.19.1       matrixStats_1.5.0          
#> [11] ExperimentHub_2.15.0        AnnotationHub_3.15.0       
#> [13] BiocFileCache_2.15.0        dbplyr_2.5.0               
#> [15] BiocGenerics_0.53.3         generics_0.1.3             
#> [17] forcats_1.0.0               ggplot2_3.5.1              
#> [19] dplyr_1.1.4                 tidytof_1.1.0              
#> [21] rmarkdown_2.29             
#> 
#> loaded via a namespace (and not attached):
#>   [1] sys_3.4.3               jsonlite_1.8.9          shape_1.4.6.1          
#>   [4] magrittr_2.0.3          farver_2.1.2            vctrs_0.6.5            
#>   [7] memoise_2.0.1           htmltools_0.5.8.1       S4Arrays_1.7.1         
#>  [10] curl_6.1.0              SparseArray_1.7.3       sass_0.4.9             
#>  [13] parallelly_1.41.0       bslib_0.8.0             lubridate_1.9.4        
#>  [16] cachem_1.1.0            buildtools_1.0.0        igraph_2.1.3           
#>  [19] mime_0.12               lifecycle_1.0.4         iterators_1.0.14       
#>  [22] pkgconfig_2.0.3         Matrix_1.7-1            R6_2.5.1               
#>  [25] fastmap_1.2.0           GenomeInfoDbData_1.2.13 future_1.34.0          
#>  [28] digest_0.6.37           colorspace_2.1-1        AnnotationDbi_1.69.0   
#>  [31] RSQLite_2.3.9           labeling_0.4.3          filelock_1.0.3         
#>  [34] cytolib_2.19.1          yardstick_1.3.1         timechange_0.3.0       
#>  [37] httr_1.4.7              polyclip_1.10-7         abind_1.4-8            
#>  [40] compiler_4.4.2          bit64_4.5.2             withr_3.0.2            
#>  [43] doParallel_1.0.17       viridis_0.6.5           DBI_1.2.3              
#>  [46] ggforce_0.4.2           MASS_7.3-64             lava_1.8.1             
#>  [49] rappdirs_0.3.3          DelayedArray_0.33.3     tools_4.4.2            
#>  [52] future.apply_1.11.3     nnet_7.3-20             glue_1.8.0             
#>  [55] grid_4.4.2              recipes_1.1.0           gtable_0.3.6           
#>  [58] tzdb_0.4.0              class_7.3-23            tidyr_1.3.1            
#>  [61] data.table_1.16.4       hms_1.1.3               utf8_1.2.4             
#>  [64] tidygraph_1.3.1         XVector_0.47.2          ggrepel_0.9.6          
#>  [67] BiocVersion_3.21.1      foreach_1.5.2           pillar_1.10.1          
#>  [70] stringr_1.5.1           RcppHNSW_0.6.0          splines_4.4.2          
#>  [73] tweenr_2.0.3            lattice_0.22-6          survival_3.8-3         
#>  [76] bit_4.5.0.1             RProtoBufLib_2.19.0     tidyselect_1.2.1       
#>  [79] Biostrings_2.75.3       maketools_1.3.1         knitr_1.49             
#>  [82] gridExtra_2.3           xfun_0.50               graphlayouts_1.2.1     
#>  [85] hardhat_1.4.0           timeDate_4041.110       stringi_1.8.4          
#>  [88] UCSC.utils_1.3.1        yaml_2.3.10             evaluate_1.0.3         
#>  [91] codetools_0.2-20        ggraph_2.2.1            tibble_3.2.1           
#>  [94] BiocManager_1.30.25     cli_3.6.3               rpart_4.1.24           
#>  [97] munsell_0.5.1           jquerylib_0.1.4         Rcpp_1.0.14            
#> [100] globals_0.16.3          png_0.1-8               parallel_4.4.2         
#> [103] gower_1.0.2             readr_2.1.5             blob_1.2.4             
#> [106] listenv_0.9.1           glmnet_4.1-8            viridisLite_0.4.2      
#> [109] ipred_0.9-15            ggridges_0.5.6          scales_1.3.0           
#> [112] prodlim_2024.06.25      purrr_1.0.2             crayon_1.5.3           
#> [115] rlang_1.1.4             KEGGREST_1.47.0