Package 'ternarynet'

Title: Ternary Network Estimation
Description: Gene-regulatory network (GRN) modeling seeks to infer dependencies between genes and thereby provide insight into the regulatory relationships that exist within a cell. This package provides a computational Bayesian approach to GRN estimation from perturbation experiments using a ternary network model, in which gene expression is discretized into one of 3 states: up, unchanged, or down). The ternarynet package includes a parallel implementation of the replica exchange Monte Carlo algorithm for fitting network models, using MPI.
Authors: Matthew N. McCall <[email protected]>, Anthony Almudevar <[email protected]>, David Burton <[email protected]>, Harry Stern <[email protected]>
Maintainer: McCall N. Matthew <[email protected]>
License: GPL (>= 2)
Version: 1.51.0
Built: 2024-12-30 08:09:04 UTC
Source: https://github.com/bioc/ternarynet

Help Index


Summarize Attractors

Description

This function summarizes the posterior probability of possible attractors.

Usage

attractorSummary(tpost, post.prob.limit = 0.01, wildtype = TRUE)

Arguments

tpost

a ternaryPost object

post.prob.limit

the minimum posterior probability for an attractor to be listed

wildtype

if TRUE, the wildtype attractors are summarized; if FALSE, the perturbed attractors are summarized.

Value

The function returns a matrix of attractors and posterior probabilities for each perturbation.

Author(s)

Matthew N. McCall and Anthony Almudevar

See Also

Almudevar A, McCall MN, McMurray H, Land H (2011). Fitting Boolean Networks from Steady State Perturbation Data, Statistical Applications in Genetics and Molecular Biology, 10(1): Article 47.

Examples

ssObj <- matrix(c(1,1,1,0,1,1,0,0,1),nrow=3)
pObj <- matrix(c(1,0,0,0,1,0,0,0,1),nrow=3)
rownames(ssObj) <- rownames(pObj) <- colnames(ssObj) <- colnames(pObj) <- c("Gene1","Gene2","Gene3")
tnfitObj <- tnetfit(ssObj, pObj)
tnpostObj <- tnetpost(tnfitObj, mdelta=10, msample=10)
attractorSummary(tnpostObj)

Network Topology

Description

This function summarizes the topology of the ternary network using marginal edge probabilities.

Usage

graphPosterior(tpost)

Arguments

tpost

a ternaryPost object

Value

The function returns a matrix of marginal posterior probabilities of each possible network edge – rows are children and columns are parents. The first column represents no parents.

Author(s)

Matthew N. McCall and Anthony Almudevar

See Also

Almudevar A, McCall MN, McMurray H, Land H (2011). Fitting Boolean Networks from Steady State Perturbation Data, Statistical Applications in Genetics and Molecular Biology, 10(1): Article 47.

Examples

ssObj <- matrix(c(1,1,1,0,1,1,0,0,1),nrow=3)
pObj <- matrix(c(1,0,0,0,1,0,0,0,1),nrow=3)
rownames(ssObj) <- rownames(pObj) <- colnames(ssObj) <- colnames(pObj) <- c("Gene1","Gene2","Gene3")
tnfitObj <- tnetfit(ssObj, pObj)
tnpostObj <- tnetpost(tnfitObj, mdelta=10, msample=10)
graphPosterior(tnpostObj)

Fit ternary network models using parallel tempering

Description

Fit ternary network models using parallel tempering

Usage

parallelFit(experiment_set, 
        max_parents, 
        n_cycles, 
        n_write, 
        T_lo, 
        T_hi,
        target_score,
        n_proc,
        logfile,
        n_thread,
        init_parents,
        init_outcomes,
        exchange_interval,
        adjust_move_size_interval,
        max_states,
        callback)

Arguments

experiment_set

data frame containing five columns: i_exp (experiment index), i_node (node index), outcome (-1/0/1), value (cost for that outcome), is_perturbation (0 or 1)

max_parents

maximum number of parents allowed for each node

n_cycles

maximum number of Monte Carlo cycles

n_write

number of times to write output during the run

T_lo

T for lowest-temperature replica

T_hi

T for highest-temperature replica

target_score

target_score - run will terminate if this is reached

n_proc

number of replicas

logfile

filename for log file

n_thread

number of openMP threads to run per process; default=1

init_parents

initial parents; randomized if null

init_outcomes

initial outcomes; set to '.' if null

exchange_interval

steps between exchanges; default=1000

adjust_move_size_interval

steps between move size adjustment; default=7001

max_states

max states to propagate when testing for repetition; default=10

callback

callback function, should take one integer argument (the replica number), used to call set.seed with different seed for each replica

Value

The return value is a list with an element for each replica. Each element is itself a list of the best unnormalized score, normalized score (unnormalized score divided by product of number of nodes and number of experiments), list of parents for each node, and array describing the transition rule, giving the outcome of a node for each possible configuration of parent nodes.

Author(s)

Harry A. Stern and Matthew N. McCall

Examples

i_exp <- as.integer(c(0,0,0, 0,0,0, 0,0,0, 0,0,0,
                        1,1,1, 1,1,1, 1,1,1, 1,1,1,
                        2,2,2, 2,2,2, 2,2,2, 2,2,2,
                        3,3,3, 3,3,3, 3,3,3, 3,3,3,
                        4,4,4, 4,4,4, 4,4,4, 4,4,4,
                        5,5,5, 5,5,5, 5,5,5, 5,5,5,
                        6,6,6, 6,6,6, 6,6,6, 6,6,6,
                        7,7,7, 7,7,7, 7,7,7, 7,7,7))

i_node <- as.integer(c(0,0,0, 1,1,1, 2,2,2, 3,3,3,
                        0,0,0, 1,1,1, 2,2,2, 3,3,3,
                        0,0,0, 1,1,1, 2,2,2, 3,3,3,
                        0,0,0, 1,1,1, 2,2,2, 3,3,3,
                        0,0,0, 1,1,1, 2,2,2, 3,3,3,
                        0,0,0, 1,1,1, 2,2,2, 3,3,3,
                        0,0,0, 1,1,1, 2,2,2, 3,3,3,
                        0,0,0, 1,1,1, 2,2,2, 3,3,3))

outcome <- as.integer(c(-1,0,1, -1,0,1, -1,0,1, -1,0,1,
                        -1,0,1, -1,0,1, -1,0,1, -1,0,1,
                        -1,0,1, -1,0,1, -1,0,1, -1,0,1,
                        -1,0,1, -1,0,1, -1,0,1, -1,0,1,
                        -1,0,1, -1,0,1, -1,0,1, -1,0,1,
                        -1,0,1, -1,0,1, -1,0,1, -1,0,1,
                        -1,0,1, -1,0,1, -1,0,1, -1,0,1,
                        -1,0,1, -1,0,1, -1,0,1, -1,0,1))

value <- c(0,1,2, 0,1,2, 0,1,2, 0,1,2,
            2,1,0, 0,1,2, 0,1,2, 0,1,2,
            2,1,0, 2,1,0, 0,1,2, 0,1,2,
            2,1,0, 2,1,0, 2,1,0, 0,1,2,
            2,1,0, 2,1,0, 2,1,0, 2,1,0,
            0,1,2, 2,1,0, 2,1,0, 2,1,0,
            0,1,2, 0,1,2, 2,1,0, 2,1,0,
            0,1,2, 0,1,2, 0,1,2, 2,1,0)

is_perturbation <- 
c(TRUE,TRUE,TRUE,  FALSE,FALSE,FALSE, FALSE,FALSE,FALSE, FALSE,FALSE,FALSE,
    FALSE,FALSE,FALSE,  TRUE,TRUE,TRUE, FALSE,FALSE,FALSE, FALSE,FALSE,FALSE,
    FALSE,FALSE,FALSE,  FALSE,FALSE,FALSE, TRUE,TRUE,TRUE, FALSE,FALSE,FALSE,
    FALSE,FALSE,FALSE,  FALSE,FALSE,FALSE, FALSE,FALSE,FALSE, TRUE,TRUE,TRUE,
    TRUE,TRUE,TRUE,  FALSE,FALSE,FALSE, FALSE,FALSE,FALSE, FALSE,FALSE,FALSE,
    FALSE,FALSE,FALSE,  TRUE,TRUE,TRUE, FALSE,FALSE,FALSE, FALSE,FALSE,FALSE,
    FALSE,FALSE,FALSE,  FALSE,FALSE,FALSE, TRUE,TRUE,TRUE, FALSE,FALSE,FALSE,
    FALSE,FALSE,FALSE,  FALSE,FALSE,FALSE, FALSE,FALSE,FALSE, TRUE,TRUE,TRUE)

indata <- data.frame(i_exp,i_node,outcome,value,is_perturbation)

results <- parallelFit(indata,
                        max_parents=1,
                        n_cycles=100000,
                        n_write=10,
                        T_lo=0.001,
                        T_hi=2.0,
                        target_score=0,
                        n_proc=1,
                        logfile='try.log')

lowest_temp_results <- results[[1]]

print('Unnormalized score:')
print(lowest_temp_results$unnormalized_score)

print('Normalized score:')
print(lowest_temp_results$normalized_score)

print('Parents:')
print(lowest_temp_results$parents)

print('Outcomes:')
print(lowest_temp_results$outcomes)

Network Fit Plot

Description

This function plots the graph corresponding to the minimum scoring network.

Usage

plotFit(ternaryFit, type="interactive", ...)

Arguments

ternaryFit

a ternaryFit object

type

the type of plot to produce. "interactive" produces a plot that can be altered in the plotting window using the tkplot function from the igraph package. "static" produces a standard plot in any R graphics device.

...

additional parameters passed to the plotting function

Value

A plot of the network corresponding to the minimum score (stored in the graphObjMin slot) is plotted.

Author(s)

Matthew N. McCall and Anthony Almudevar

See Also

Almudevar A, McCall MN, McMurray H, Land H (2011). Fitting Boolean Networks from Steady State Perturbation Data, Statistical Applications in Genetics and Molecular Biology, 10(1): Article 47.

Examples

ssObj <- matrix(c(1,1,1,0,1,1,0,0,1),nrow=3)
pObj <- matrix(c(1,0,0,0,1,0,0,0,1),nrow=3)
tnfitObj <- tnetfit(ssObj, pObj)
plotFit(tnfitObj, type="static")

Network Posterior Plot

Description

This function plots the graph consisting of all edges with a marginal posterior probability greater than the selected threshold.

Usage

plotPost(ternaryPost, threshold=0.5, type="interactive", ...)

Arguments

ternaryPost

a ternaryPost object

type

the type of plot to produce. "interactive" produces a plot that can be altered in the plotting window using the tkplot function from the igraph package. "static" produces a standard plot in any R graphics device.

threshold

the marginal posterior probability required for an edge to be included in the plot.

...

additional parameters passed to the plotting function

Value

A plot of the network consisting of all edges with a marginal posterior probability greater than the selected threshold.

Author(s)

Matthew N. McCall and Anthony Almudevar

See Also

Almudevar A, McCall MN, McMurray H, Land H (2011). Fitting Boolean Networks from Steady State Perturbation Data, Statistical Applications in Genetics and Molecular Biology, 10(1): Article 47.

Examples

ssObj <- matrix(c(1,1,1,0,1,1,0,0,1),nrow=3)
pObj <- matrix(c(1,0,0,0,1,0,0,0,1),nrow=3)
tnfitObj <- tnetfit(ssObj, pObj)
tnpostObj <- tnetpost(tnfitObj, mdelta=10, msample=10)
plotPost(tnpostObj, type="static")

Network Fit Traces

Description

This function plots the trace of four model parameters.

Usage

plotTraces(tfit)

Arguments

tfit

a ternaryFit object

Value

The function creates a 2x2 grid of the four trace plots.

Author(s)

Matthew N. McCall and Anthony Almudevar

See Also

Almudevar A, McCall MN, McMurray H, Land H (2011). Fitting Boolean Networks from Steady State Perturbation Data, Statistical Applications in Genetics and Molecular Biology, 10(1): Article 47.

Examples

ssObj <- matrix(c(1,1,1,0,1,1,0,0,1),nrow=3)
pObj <- matrix(c(1,0,0,0,1,0,0,0,1),nrow=3)
tnfitObj <- tnetfit(ssObj, pObj)
plotTraces(tnfitObj)

Predict the attractor(s) resulting from a given perturbation

Description

This function computes the posterior probabilities of attractors reached for a given perturbation using the networks from a ternaryPost object.

Usage

predictAttractor(tpost, perturbations, wildtype = TRUE, verbose = FALSE)

Arguments

tpost

a ternaryPost object

perturbations

a list with two elements: perturbed.genes and forced.states

wildtype

if TRUE, the wildtype attractors are summarized; if FALSE, the perturbed attractors are summarized.

verbose

if TRUE, periodic reports on progress are printed.

Value

The function returns a list with two elements: \ post.prob: the posterior probability of each attractor \ attractor.summary: a single vector of steady states based on the resulting attractor

Author(s)

Matthew N. McCall and Anthony Almudevar

See Also

Almudevar A, McCall MN, McMurray H, Land H (2011). Fitting Boolean Networks from Steady State Perturbation Data, Statistical Applications in Genetics and Molecular Biology, 10(1): Article 47.

Examples

ssObj <- matrix(c(1,1,1,0,1,1,0,0,1),nrow=3)
pObj <- matrix(c(1,0,0,0,1,0,0,0,1),nrow=3)
rownames(ssObj) <- rownames(pObj) <- colnames(ssObj) <- colnames(pObj) <- c("Gene1","Gene2","Gene3")
tnfitObj <- tnetfit(ssObj, pObj)
tnpostObj <- tnetpost(tnfitObj, mdelta=10, msample=10)
predictAttractor(tnpostObj, list(perturbed.genes=c(1,2),forced.states=c(1,1)))

Simulate Steady State Data

Description

This function generates simulated steady state data from a given network.

Usage

simulateSteadyState(perturbationObj, tableObj, graphObj, degreeObj, wildtype=FALSE)

Arguments

perturbationObj

a matrix of perturbation experiments. Rows are genes and columns are experiments.

tableObj

a matrix containing the transition function tables

graphObj

a matrix containing the parents of each node

degreeObj

a vector containing the in-degree of each node

wildtype

if TRUE, the preturbations are assumed to be transient; if FALSE, the perturbations are assumed to be persistent.

Value

The function creates a steadyStateObj.

Author(s)

Matthew N. McCall and Anthony Almudevar

See Also

Almudevar A, McCall MN, McMurray H, Land H (2011). Fitting Boolean Networks from Steady State Perturbation Data, Statistical Applications in Genetics and Molecular Biology, 10(1): Article 47.

Examples

pObj <- matrix(c(1,0,0,0,1,0,0,0,1),nrow=3)
degreeObj <- c(0,1,1)
graphObj <- matrix(nrow=1,ncol=3)
graphObj[1,1] <- 0
graphObj[1,2] <- 1
graphObj[1,3] <- 2
tableObj <- matrix(nrow=3,ncol=3)
tableObj[,1] <- rep(0,3)
tableObj[,2] <- c(-1,0,1)
tableObj[,3] <- c(-1,0,1)
ssObj <- simulateSteadyState(pObj, tableObj, graphObj, degreeObj)

Ternary Network Fit

Description

This is a class representation of the output of the ternary network fitting algorithm implemented in the function tnetfit.

Creating Objects

While one can create their own objects using the function ternaryFit(), this is highly discouraged. Typically this class is created by running the tnetfit function.

Slots

perturbationObj:

a matrix of perturbation experiments. Rows are genes and columns are experiments.

steadyStateObj:

a matrix of steady gene expression observations from a perturbation experiment. Rows are genes and columns are experiments.

geneNames:

a vector of gene names corresponding to the rows of the perturbationObj and steadyStateObj.

experimentNames:

a vector of experiment names corresponding to the columns of the perturbationObj and steadyStateObj.

degreeObjMin:

a vector containing the in-degree of each node in the fit achieving the minimum score

graphObjMin:

a matrix containing the parents of each node in the fit achieving the minimum score

tableObjMin:

a matrix containing the table in the fit achieving the minimum score

newScore:

the most recent score

minScore:

the minimum score

finalTemperature:

the final value of the temperature parameter

traces:

a dataframe contain the traces for 4 parameters

stageCount:

the number of stages

xSeed:

the random seed.

inputParams:

the ternaryFitParameters object used.

Methods

All named elements can be accessed and set in the standard way (e.g. xSeed(object) and xSeed(object)<-).

Author(s)

Matthew N. McCall and Anthony Almudevar

See Also

tnetpost, ternaryFitParameters-class, ternaryPost-class. Almudevar A, McCall MN, McMurray H, Land H (2011). Fitting Boolean Networks from Steady State Perturbation Data, Statistical Applications in Genetics and Molecular Biology, 10(1): Article 47.

Examples

ssObj <- matrix(c(1,1,1,0,1,1,0,0,1),nrow=3)
pObj <- matrix(c(1,0,0,0,1,0,0,0,1),nrow=3)
tnfitObj <- tnetfit(ssObj, pObj)
class(tnfitObj)

Ternary Network Fitting Parameters

Description

This is a class representation of the input parameters for the ternary network fitting algorithm implemented in the function tnetfit.

Creating Objects

ternaryFitParameters()

This creates a ternaryFitParameters object with the default fitting parameters.

Slots

perturbationType:

this parameter currently can only be set to 1

scoreType:

the method to score networks. Can be set to either 1 or 2, corresponding the the score types in Almudevar et al. (2011).

backupStage:

current fit is output periodically according to this parameter

maxStage:

the maximum number of stages permitted. Ideally, the actual number of stages required until convergence should be much less than this value.

maxTransition:

This parameter provides an adaptive truncation of the stage sample size. The stage terminates before the specified fixed sample size if the number of transitions resulting in a strict increase of the score reaches this value. If the sampler is in steady state, then this count should be approximately half the number of transitions in which the score changes value.

epsilon:

Convergence tolerance.

beta0:

Algorithm terminates when this number of consecutive convergence events have occurred.

chi0:

The target initial acceptance rate. This should be close to 1, although setting it too close will increase computation time.

delta:

The increment change in steady state distribution between stages (as variational distance). Larger values tend to decrease computation time, but too large a value will result in spurious convergence.

ne:

The fixed sample size (number of MCMC transitions) per stage.

m0:

The sample size (number of transitions) used to determine the initial temperature.

maxDegree:

Maximum number of parents per node permitted in model topology.

pAddParent:

This is the probability of adding a parent to a randomly selected node in the proposal function.

pExchangeParent:

This parameter gives the probability of a parent exchange in the proposal function. The AddParent operation takes precedence, so this probability should be interpreted as being conditional on the rejection of the AddParent operation.

neighborDegree:

Number of applications of the proposal function.

pNeighborhood:

Vector of probabilities denoted, which generates the random number of proposal function iterations. The length is one less than neighborDegree. If neighborDegree equals 1 then no iteration is performed, and this vector is ignored.

rho:

Weight parameter for the exponential smoothing of the variance estimate. For no smoothing set to 1.

edgePenalty:

This parameter provides a complexity penalty. This number times the number of edges is added to the score. To apply no penalty set this parameter to 0.

Methods

All named elements can be accessed and set in the standard way (e.g. scoreType(object) and scoreType(object)<-).

Author(s)

Matthew N. McCall and Anthony Almudevar

See Also

tnetfit, ternaryFit-class, ternaryPost-class. Almudevar A, McCall MN, McMurray H, Land H (2011). Fitting Boolean Networks from Steady State Perturbation Data, Statistical Applications in Genetics and Molecular Biology, 10(1): Article 47.

Examples

# create an instance
ternaryFitParameters()

Ternary Network Posterior

Description

This is a class representation of the output of the ternary network posterior sampling algorithm implemented in the function tnetpost.

Creating Objects

While one can create their own objects using the function ternaryPost(), this is highly discouraged. Typically this class is created by running the tnetpost function.

Slots

perturbationObj:

a matrix of perturbation experiments. Rows are genes and columns are experiments.

steadyStateObj:

a matrix of steady gene expression observations from a perturbation experiment. Rows are genes and columns are experiments.

geneNames:

a vector of gene names corresponding to the rows of the perturbationObj and steadyStateObj.

experimentNames:

a vector of experiment names corresponding to the columns of the perturbationObj and steadyStateObj.

scores:

the score of each sample

degreeObjs:

the in-degree vector for each sample

graphObjs:

the graph matrix for each sample

tableObjs:

the table matrix for each sample

inputParams:

the ternaryFitParameters object used

Methods

All named elements can be accessed and set in the standard way (e.g. scores(object) and scores(object)<-).

Author(s)

Matthew N. McCall and Anthony Almudevar

See Also

tnetfit, ternaryFitParameters-class, ternaryFit-class. Almudevar A, McCall MN, McMurray H, Land H (2011). Fitting Boolean Networks from Steady State Perturbation Data, Statistical Applications in Genetics and Molecular Biology, 10(1): Article 47.

Examples

ssObj <- matrix(c(1,1,1,0,1,1,0,0,1),nrow=3)
pObj <- matrix(c(1,0,0,0,1,0,0,0,1),nrow=3)
tnfitObj <- tnetfit(ssObj, pObj)
tnpostObj <- tnetpost(tnfitObj, mdelta=10, msample=10)
class(tnpostObj)

Ternary Network Fitting

Description

This function fits a ternary network based on perturbation experiments.

Usage

tnetfit(steadyStateObj, perturbationObj, params=ternaryFitParameters(),
xSeed=NA)

Arguments

steadyStateObj

a matrix of steady gene expression observations from a perturbation experiment. Rows are genes and columns are experiments.

perturbationObj

a matrix of perturbation experiments. Rows are genes and columns are experiments.

params

a ternaryFitParameters object

xSeed

an integer random seed. If NA, a random seed is generated.

Value

The function returns a ternaryFit object.

Author(s)

Matthew N. McCall and Anthony Almudevar

See Also

Almudevar A, McCall MN, McMurray H, Land H (2011). Fitting Boolean Networks from Steady State Perturbation Data, Statistical Applications in Genetics and Molecular Biology, 10(1): Article 47.

Examples

ssObj <- matrix(c(1,1,1,0,1,1,0,0,1),nrow=3)
pObj <- matrix(c(1,0,0,0,1,0,0,0,1),nrow=3)
rownames(ssObj) <- rownames(pObj) <- colnames(ssObj) <- colnames(pObj) <- c("Gene1","Gene2","Gene3")
tnfitObj <- tnetfit(ssObj, pObj)

Ternary Network Posterior Sampling

Description

This function samples from the posterior density of a ternary network based on perturbation experiments.

Usage

tnetpost(tfit, mdelta=as.integer(10000), msample=as.integer(2000), temperatureScale=1.0, xSeed=NA)

Arguments

tfit

a ternaryFit object

mdelta

number of transitions between samples

msample

number of samples

temperatureScale

the final temperature is multipled by this value for sampling

xSeed

an integer random seed. If NA, a random seed is generated.

Value

The function returns a ternaryPost object.

Author(s)

Matthew N. McCall and Anthony Almudevar

See Also

Almudevar A, McCall MN, McMurray H, Land H (2011). Fitting Boolean Networks from Steady State Perturbation Data, Statistical Applications in Genetics and Molecular Biology, 10(1): Article 47.

Examples

ssObj <- matrix(c(1,1,1,0,1,1,0,0,1),nrow=3)
pObj <- matrix(c(1,0,0,0,1,0,0,0,1),nrow=3)
rownames(ssObj) <- rownames(pObj) <- colnames(ssObj) <- colnames(pObj) <- c("Gene1","Gene2","Gene3")
tnfitObj <- tnetfit(ssObj, pObj)
tnpostObj <- tnetpost(tnfitObj, mdelta=10, msample=10)