switchde
is an R
package for detecting
switch-like differential expression along single-cell RNA-seq
trajectories. It assumes genes follow a sigmoidal pattern of gene
expression and tests for differential expression using a likelihood
ratio test. It also returns maximum likelihood estimates (MLE) for the
sigmoid parameters, which allows filtering of genes for up or down
regulation as well as where along the trajectory the regulation
occurs.
The parametric form of gene expression assumed is a sigmoid:
Governed by three parameters:
switchde
can be installed from both Bioconductor and
Github.
Example installation from Bioconductor:
if (!requireNamespace("BiocManager", quietly=TRUE))
install.packages("BiocManager")
BiocManager::install("switchde")
Example installation from Github:
Several inputs will cause issues in maximum likelihood and
expecatation maximisation algorithms typically leading to error messages
such as ‘finite gradient required’. To avoid these, strict pre-filtering
of genes is advised such as retaining genes with a certain mean
expression and expressed in a certain proportion of cells. For example,
if the matrix X
represents logged expression data, we can
retain only genes with mean expression greater than 1 and expressed in
20% of cells via
By default, switchde
also sets any expression less than
0.01 to 0. This can be controlled via the lower_threshold
parameter.
We provide a brief example on some synthetic single-cell data bundled
with the package. synth_gex
contains a 12-by-100 expression
matrix of 12 genes, and ex_pseudotime
contains a pseudotime
vector of length 100. We can start by plotting the expression:
data(synth_gex)
data(ex_pseudotime)
gex_cleaned <- as_data_frame(t(synth_gex)) %>%
dplyr::mutate(Pseudotime = ex_pseudotime) %>%
tidyr::gather(Gene, Expression, -Pseudotime)
## Warning: `as_data_frame()` was deprecated in tibble 2.0.0.
## ℹ Please use `as_tibble()` (with slightly different semantics) to convert to a
## tibble, or `as.data.frame()` to convert to a data frame.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
ggplot(gex_cleaned, aes(x = Pseudotime, y = Expression)) +
facet_wrap(~ Gene) + geom_point(shape = 21, fill = 'grey', color = 'black') +
theme_bw() + stat_smooth(color = 'darkred', se = FALSE)
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
Model fitting and differential expression testing is provided by a
call to the switchde
function:
## Input gene-by-cell matrix: 12 genes and 100 cells
This can equivalently be called using an
SingleCellExperiment
from the package
SingleCellExperiment
:
This returns a data.frame
with 6 columns:
gene
The gene name, taken from either
featureNames(sce)
or rowNames(X)
pval
The p-value associated with differential
expressionqval
The Benjamini-Hochberg corrected q-value
associated with differential expressionmu0
The MLE estimate of μ0k
The MLE estimate of kt0
The MLE estimate of t0We can use the function arrange
from dplyr
to order this by q-value:
## # A tibble: 12 × 6
## gene pval qval mu0 k t0
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Gene8 6.51e-21 7.81e-20 5.32 -9.22 0.168
## 2 Gene2 1.03e-12 6.18e-12 3.45 6.79 0.701
## 3 Gene9 3.39e-12 1.36e-11 5.53 -5.05 0.318
## 4 Gene1 9.48e-12 2.84e-11 3.86 7.51 0.567
## 5 Gene5 1.54e-11 3.71e-11 3.51 10.3 0.475
## 6 Gene4 4.83e-10 9.66e-10 12.8 -3.22 -0.211
## 7 Gene3 2.20e- 8 3.76e- 8 4.20 -5.00 0.558
## 8 Gene10 4.47e- 8 6.71e- 8 3.18 8.47 0.380
## 9 Gene7 4.27e- 6 5.70e- 6 3.78 7.42 0.302
## 10 Gene12 3.36e- 4 4.04e- 4 4.86 -4.05 0.779
## 11 Gene11 1.02e- 3 1.12e- 3 2.69 -7.27 0.832
## 12 Gene6 1.91e- 2 1.91e- 2 1.76 -8.87 0.870
We may then wish to plot the expression of a particular gene and the
MLE model. This is acheived using the switchplot
function,
which takes three arguments:
x
Vector of expression valuespseudotime
Pseudotime vector of the same length as
x
pars
The (mu_0
, k
,
t0
) parameter tupleWe can easily extract the parameters using the
extract_pars
function and pass this to
switchplot
, which plots the maximum likelihood sigmoidal
mean:
## mu0 k t0
## 5.3206036 -9.2179954 0.1675885
## Warning: `data_frame()` was deprecated in tibble 1.1.0.
## ℹ Please use `tibble()` instead.
## ℹ The deprecated feature was likely used in the switchde package.
## Please report the issue at <https://github.com/kieranrcampbell/switchde>.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
Note that switchplot
returns a ggplot
which
can be further customised (e.g. using theme_xxx()
,
etc).
We can also model zero inflation in the data with a dropout
probability proportional to the latent gene expression magnitude. To
enable this set zero_inflation = TRUE
. While this model is
more appropriate for single-cell RNA-seq data, it requires use of the EM
algorithm so takes typically 20x longer.
## Input gene-by-cell matrix: 12 genes and 100 cells
As before it returns a data_frame
, this time with an
additional parameter λ
corresponding to the dropout probability (see manuscript):
## # A tibble: 12 × 8
## gene pval qval mu0 k t0 lambda EM_converged
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <lgl>
## 1 Gene8 6.67e-21 8.00e-20 5.32 -9.21 0.168 9.78 TRUE
## 2 Gene2 6.21e-13 3.73e-12 3.46 6.78 0.702 5.80 TRUE
## 3 Gene9 2.32e-12 9.26e-12 5.52 -5.06 0.320 3.20 TRUE
## 4 Gene1 3.66e-12 1.10e-11 3.89 7.44 0.568 1.49 TRUE
## 5 Gene5 1.01e-11 2.41e-11 3.52 10.4 0.475 2.06 TRUE
## 6 Gene4 1.55e-10 3.11e-10 12.6 -3.24 -0.198 1.87 TRUE
## 7 Gene3 1.45e- 8 2.49e- 8 4.23 -4.98 0.557 1.46 TRUE
## 8 Gene10 2.26e- 8 3.39e- 8 3.19 8.43 0.377 0.899 TRUE
## 9 Gene7 3.83e- 6 5.11e- 6 3.78 7.40 0.303 2.87 TRUE
## 10 Gene12 2.96e- 4 3.55e- 4 4.90 -3.97 0.776 0.803 TRUE
## 11 Gene11 9.38e- 4 1.02e- 3 2.70 -7.18 0.832 1.86 TRUE
## 12 Gene6 1.43e- 2 1.43e- 2 1.78 -8.67 0.869 1.57 TRUE
We can plot the gene with the largest dropout effect and compare it to the non-zero-inflated model:
gene <- zde$gene[which.min(zde$lambda)]
pars <- extract_pars(sde, gene)
zpars <- extract_pars(zde, gene)
switchplot(synth_gex[gene, ], ex_pseudotime, pars)
For zero-inflation the expectation-maximisation algorithm is used
which will converge up to a user-supplied change in the log-likelihood
after a given number of iterations. These are controlled by the
parameters maxiter
and log_lik_tol
in the call
to switchde
. Most genes will converge after very few
iterations, but some - particularly those with many zeros where a well
defined ‘step’ can be fit - may take much longer. The default parameters
are designed as a trade-off between accuracy and speed.
If any genes do not converge using the default parameters, the user
is warned and should expect the EM_converged
column of the
output. In this case, three options are available:
EM_converged == FALSE
with
either increasing maxiter
or increased
log_lik_tol
Most pseudotime algorithms will infer something similar to principal component 1 or 2 of the data. Therefore, by definition, many genes will vary across pseudotime leading to a large proportion passing a strict FDR adjusted significance threshold. Genes designated as significant should therefore be treated with appropriate skepticism and ideally experimentally validated.
We further suggest some use cases that might be of interest to researchers:
dplyr
calls such as
filter(sde, qval < 0.01, abs(k) > quantile(abs(k), 0.95))
## R version 4.4.2 (2024-10-31)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.1 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so; LAPACK version 3.12.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: Etc/UTC
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] ggplot2_3.5.1 switchde_1.33.0
## [3] tidyr_1.3.1 dplyr_1.1.4
## [5] SingleCellExperiment_1.29.1 SummarizedExperiment_1.37.0
## [7] Biobase_2.67.0 GenomicRanges_1.59.0
## [9] GenomeInfoDb_1.43.1 IRanges_2.41.1
## [11] S4Vectors_0.45.2 BiocGenerics_0.53.3
## [13] generics_0.1.3 MatrixGenerics_1.19.0
## [15] matrixStats_1.4.1 BiocStyle_2.35.0
##
## loaded via a namespace (and not attached):
## [1] gtable_0.3.6 xfun_0.49 bslib_0.8.0
## [4] lattice_0.22-6 vctrs_0.6.5 tools_4.4.2
## [7] tibble_3.2.1 fansi_1.0.6 pkgconfig_2.0.3
## [10] Matrix_1.7-1 lifecycle_1.0.4 GenomeInfoDbData_1.2.13
## [13] compiler_4.4.2 farver_2.1.2 munsell_0.5.1
## [16] codetools_0.2-20 htmltools_0.5.8.1 sys_3.4.3
## [19] buildtools_1.0.0 sass_0.4.9 yaml_2.3.10
## [22] pillar_1.9.0 crayon_1.5.3 jquerylib_0.1.4
## [25] DelayedArray_0.33.2 cachem_1.1.0 abind_1.4-8
## [28] nlme_3.1-166 tidyselect_1.2.1 digest_0.6.37
## [31] purrr_1.0.2 splines_4.4.2 maketools_1.3.1
## [34] labeling_0.4.3 fastmap_1.2.0 grid_4.4.2
## [37] colorspace_2.1-1 cli_3.6.3 SparseArray_1.7.2
## [40] magrittr_2.0.3 S4Arrays_1.7.1 utf8_1.2.4
## [43] withr_3.0.2 UCSC.utils_1.3.0 scales_1.3.0
## [46] rmarkdown_2.29 XVector_0.47.0 httr_1.4.7
## [49] evaluate_1.0.1 knitr_1.49 mgcv_1.9-1
## [52] rlang_1.1.4 glue_1.8.0 BiocManager_1.30.25
## [55] jsonlite_1.8.9 R6_2.5.1 zlibbioc_1.52.0