Package 'standR'

Title: Spatial transcriptome analyses of Nanostring's DSP data in R
Description: standR is an user-friendly R package providing functions to assist conducting good-practice analysis of Nanostring's GeoMX DSP data. All functions in the package are built based on the SpatialExperiment object, allowing integration into various spatial transcriptomics-related packages from Bioconductor. standR allows data inspection, quality control, normalization, batch correction and evaluation with informative visualizations.
Authors: Ning Liu [aut, cre] , Dharmesh D Bhuva [aut] , Ahmed Mohamed [aut]
Maintainer: Ning Liu <[email protected]>
License: MIT + file LICENSE
Version: 1.11.1
Built: 2025-01-03 03:15:54 UTC
Source: https://github.com/bioc/standR

Help Index


Add QC statistics to the Spatial Experiment object

Description

Add QC statistics to the Spatial Experiment object

Usage

addPerROIQC(
  spe_object,
  sample_fraction = 0.9,
  rm_genes = TRUE,
  min_count = 5,
  design = NULL
)

Arguments

spe_object

A SpatialExperiment object

sample_fraction

Double. Genes with low count in more than this threshold of the samples will be removed. Default is 0.9

rm_genes

Logical. Decide whether genes with low count in more than sample_fraction of the samples are removed from the dataset. Default is TRUE.

min_count

Integer. Minimum read count to calculate count threshold. Default is 5.

design

Generate using model.matrix, if this is specify, edgeR::filterByExpr will be used to filter genes.

Value

A SpatialExperiment object

Examples

data("dkd_spe_subset")
spe_filtered <- addPerROIQC(dkd_spe_subset)
spe_filtered

Calculate statistics for evaluating batch correction

Description

Calculate statistics for evaluating batch correction

Usage

computeClusterEvalStats(
  spe_object,
  foiColumn,
  precomputed = NULL,
  n_dimension = c(1, 2),
  assay = 2
)

Arguments

spe_object

A Spatial Experiment object.

foiColumn

A column name indicating the factor of interest to be tested, can be biological factor or batch factor.

precomputed

a dimensional reduction results from stats::prcomp. result in reducedDims(object) to plot. Default is NULL, we will compute for you.

n_dimension

The top n dimensions to be plotted

assay

a numeric or character, specifying the assay to use (for SummarizedExperiment and its derivative classes).

Value

A dataframe object containing the clustering evaluating statistics.

Examples

library(scater)
data("dkd_spe_subset")
computeClusterEvalStats(dkd_spe_subset, "SlideName")

Compute and plot the results of a PCA analysis on gene expression data

Description

Compute and plot the results of a PCA analysis on gene expression data

Usage

drawPCA(object, dims = c(1, 2), ...)

## S4 method for signature 'ExpressionSet'
drawPCA(object, dims = c(1, 2), precomputed = NULL, textScale = 1, ...)

## S4 method for signature 'SummarizedExperiment'
drawPCA(
  object,
  dims = c(1, 2),
  assay = 1,
  precomputed = NULL,
  textScale = 1,
  ...
)

## S4 method for signature 'SingleCellExperiment'
drawPCA(
  object,
  dims = c(1, 2),
  assay = 1,
  precomputed = NULL,
  textScale = 1,
  ...
)

## S4 method for signature 'SpatialExperiment'
drawPCA(
  object,
  dims = c(1, 2),
  assay = 1,
  precomputed = NULL,
  textScale = 1,
  ...
)

Arguments

object

a DGEList, SummarizedExperiment or ExpressionSet object containing gene expression data.

dims

a numeric, containing 2 values specifying the dimensions to plot.

...

aesthetic mappings to pass to ggplot2::aes_string().

precomputed

a dimensional reduction results from stats::prcomp. result in reducedDims(object) to plot.

textScale

a numeric, specifying the relative scale factor to apply to text on the plot.

assay

a numeric or character, specifying the assay to use (for SummarizedExperiment and its derivative classes).

Value

a ggplot2 object

Examples

data("dkd_spe_subset")
drawPCA(dkd_spe_subset)

Testing multiple K for RUV4 batch correction to find the best K.

Description

Testing multiple K for RUV4 batch correction to find the best K.

Usage

findBestK(
  spe,
  maxK = 10,
  factor_of_int,
  factor_batch,
  NCGs,
  point_size = 3,
  line_col = "black",
  point_col = "black",
  text_size = 13
)

Arguments

spe

A Spatial Experiment object.

maxK

Integer. The max k to test, will test k from 1 to maxK, by default is 10.

factor_of_int

Column name(s) to indicate the factors of interest. This is required for the RUV4 method.

factor_batch

Column name to indicate the batch.

NCGs

Negative control genes. This is required for the RUV4 method.

point_size

Numeric. Plotting parameter.

line_col

Character. Plotting parameter.

point_col

Character. Plotting parameter.

text_size

Numeric. Plotting parameter.

Value

A ggplot object.

Examples

data("dkd_spe_subset")
spe <- findNCGs(dkd_spe_subset, top_n = 100)
findBestK(spe,
  factor_of_int = c("disease_status"),
  factor_batch = "SlideName", NCGs = S4Vectors::metadata(spe)$NCGs
)

Get negative control genes from each batch of the data

Description

Get negative control genes from each batch of the data

Usage

findNCGs(spe, n_assay = 2, batch_name = "SlideName", top_n = 200)

Arguments

spe

A Spatial Experiment object.

n_assay

Integer to indicate the nth count table in the assay(spe) to be used.

batch_name

Column name indicating batches.

top_n

Integer indicate how many genes to be included as negative control genes.

Value

A Spatial Experiment object, conatining negative control genes in the metadata.

Examples

data("dkd_spe_subset")

spe <- findNCGs(dkd_spe_subset, top_n = 100)
S4Vectors::metadata(spe)$NCGs

Batch correction for GeoMX data

Description

Batch correction for GeoMX data

Usage

geomxBatchCorrection(
  spe,
  k,
  factors,
  NCGs,
  n_assay = 2,
  batch = NULL,
  batch2 = NULL,
  covariates = NULL,
  design = matrix(1, ncol(spe), 1),
  method = c("RUV4", "Limma", "RUVg"),
  isLog = TRUE,
  outAssay = "logcounts"
)

Arguments

spe

A Spatial Experiment object.

k

The number of unwanted factors to use. Can be 0. This is required for the RUV4 method.

factors

Column name(s) to indicate the factors of interest. This is required for the RUV4 method.

NCGs

Negative control genes. This is required for the RUV4 method.

n_assay

Integer to indicate the nth count table in the assay(spe) to be used.

batch

A vector indicating batches. This is required for the Limma method.

batch2

A vector indicating the second series of batches. This is specific for the Limma method.

covariates

A matrix or vector of numeric covariates to be adjusted for.

design

A design matrix relating to treatment conditions to be preserved, can be generated using stats::model.matrix function with all biological factors included.

method

Can be either RUV4 or Limma or RUVg, by default is RUV4.

isLog

Logical vector, indicating if the count table is log or not.

outAssay

Output assay name, logcounts by default.

Value

A Spatial Experiment object, containing the normalized count and normalization factor. For method RUV4 and RUVg, the W matrices will be saved in the colData of the object.

Note

The normalised count is not intended to be used directly for linear modelling. For linear modelling, it is better to include the batch factors/W matrices in the linear model.

References

Gagnon-Bartsch, J. A., Jacob, L., & Speed, T. P. (2013). Removing unwanted variation from high dimensional data with negative controls. Berkeley: Tech Reports from Dep Stat Univ California, 1-112.

Ritchie, M. E., Phipson, B., Wu, D. I., Hu, Y., Law, C. W., Shi, W., & Smyth, G. K. (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic acids research, 43(7), e47-e47.

Examples

data("dkd_spe_subset")
spe <- findNCGs(dkd_spe_subset, top_n = 100)
spe_ruv <- geomxBatchCorrection(spe,
  k = 3,
  factors = c("disease_status", "region"),
  NCGs = S4Vectors::metadata(spe)$NCGs
)

Perform normalization to GeoMX data

Description

Perform normalization to GeoMX data

Usage

geomxNorm(
  spe_object,
  method = c("TMM", "RPKM", "TPM", "CPM", "upperquartile", "sizefactor"),
  log = TRUE
)

Arguments

spe_object

A SpatialExperiment object.

method

Normalization method to use. Options: TMM, RPKM, TPM, CPM, upperquartile, sizefactor. RPKM and TPM require gene length information, which should be added into rowData(spe). Note that TMM here is TMM + CPM.

log

Log-transformed or not.

Value

A SpatialExperiment object, with the second assay being the normalized count matrix. The normalised count is stored in the assay slot called "logcounts" by default. With method TMM and sizefactor, the norm.factor will be saved in the metadata of the SpatialExperiment object.

Note

The normalised count is not intended to be used directly for linear modelling. For linear modelling, it is better to include the normalized factors in the "norm.factors" column of the DGEList object.

References

Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139-140.

Love, M., Anders, S., & Huber, W. (2014). Differential analysis of count data–the DESeq2 package. Genome Biol, 15(550), 10-1186.

Examples

data("dkd_spe_subset")

spe_tmm <- geomxNorm(dkd_spe_subset, method = "TMM")
spe_upq <- geomxNorm(dkd_spe_subset, method = "upperquartile")
spe_deseqnorm <- geomxNorm(dkd_spe_subset, method = "sizefactor")

Compare and evaluate different batch corrected data with plotting.

Description

Compare and evaluate different batch corrected data with plotting.

Usage

plotClusterEvalStats(
  spe_list,
  bio_feature_name,
  batch_feature_name,
  data_names,
  colors = NA
)

Arguments

spe_list

A list of Spatial Experiment object.

bio_feature_name

The common biological variation name.

batch_feature_name

The common batch variation name.

data_names

Data names.

colors

Color values of filing the bars.

Value

A ggplot object.

Examples

library(scater)
data("dkd_spe_subset")
spe <- dkd_spe_subset
spe2 <- spe
spe3 <- spe
plotClusterEvalStats(list(spe, spe2, spe3),
  bio_feature_name = "region",
  batch_feature_name = "SlideName", c("test1", "test2", "test3")
)

Compute and plot the results of any dimension reduction methods on gene expression data

Description

Compute and plot the results of any dimension reduction methods on gene expression data

Usage

plotDR(object, dims = c(1, 2), ...)

## S4 method for signature 'SingleCellExperiment'
plotDR(object, dims, dimred = "PCA", textScale = 1, ...)

## S4 method for signature 'SpatialExperiment'
plotDR(object, dims, dimred = "PCA", textScale = 1, ...)

Arguments

object

a DGEList, SummarizedExperiment or ExpressionSet object containing gene expression data.

dims

a numeric, containing 2 values specifying the dimensions to plot.

...

aesthetic mappings to pass to ggplot2::aes_string().

dimred

a string or integer scalar indicating the reduced dimension result in reducedDims(object) to plot.

textScale

a numeric, specifying the relative scale factor to apply to text on the plot.

Value

a ggplot2 object

Examples

library(scater)
data("dkd_spe_subset")
spe <- scater::runPCA(dkd_spe_subset)
plotDR(spe, dimred = "PCA")

Plot gene-wise QC plot

Description

Plot gene-wise QC plot

Usage

plotGeneQC(
  spe,
  top_n = 9,
  ordannots = c(),
  point_size = 1,
  line_type = "dashed",
  line_col = "darkred",
  line_cex = 1,
  hist_col = "black",
  hist_fill = "skyblue",
  bin_num = 30,
  text_size = 13,
  layout_ncol = 1,
  layout_nrow = 2,
  layout_height = c(1, 1),
  ...
)

Arguments

spe

A SpatialExperiment object.

top_n

Integer. Indicating the top n genes will be plotted. Default is 9.

ordannots

variables or computations to sort samples by (tidy style).

point_size

Numeric. Point size.

line_type

Character. Line types for ggplot.

line_col

Color for line.

line_cex

Cex for line.

hist_col

Color for histogram.

hist_fill

Fill for histogram.

bin_num

Bin numbers for histogram.

text_size

Text size.

layout_ncol

Integer. Column number for layout. Default is 1.

layout_nrow

Integer. Row number for layout. Default is 2.

layout_height

Vector of numerics with length of 2. Default is c(1, .4).

...

aesthetic mappings to pass to ggplot2::aes() of the dot plots.

Value

A ggplot object

Examples

data("dkd_spe_subset")
spe <- addPerROIQC(dkd_spe_subset)
plotGeneQC(spe)

Compute and plot the results of a MDS analysis on gene expression data

Description

Compute and plot the results of a MDS analysis on gene expression data

Usage

plotMDS(
  object,
  dims = c(1, 2),
  precomputed = NULL,
  textScale = 1,
  assay = 1,
  ...
)

## S4 method for signature 'DGEList'
plotMDS(
  object,
  dims = c(1, 2),
  precomputed = NULL,
  textScale = 1,
  assay = 1,
  ...
)

## S4 method for signature 'ExpressionSet'
plotMDS(
  object,
  dims = c(1, 2),
  precomputed = NULL,
  textScale = 1,
  assay = 1,
  ...
)

## S4 method for signature 'SummarizedExperiment'
plotMDS(
  object,
  dims = c(1, 2),
  precomputed = NULL,
  textScale = 1,
  assay = 1,
  ...
)

## S4 method for signature 'SingleCellExperiment'
plotMDS(
  object,
  dims = c(1, 2),
  precomputed = NULL,
  textScale = 1,
  assay = 1,
  ...
)

## S4 method for signature 'SpatialExperiment'
plotMDS(
  object,
  dims = c(1, 2),
  precomputed = NULL,
  textScale = 1,
  assay = 1,
  ...
)

Arguments

object

a DGEList, SummarizedExperiment or ExpressionSet object containing gene expression data.

dims

a numeric, containing 2 values specifying the dimensions to plot.

precomputed

a dimensional reduction results from either limma::plotMDS.

textScale

a numeric, specifying the relative scale factor to apply to text on the plot.

assay

a numeric or character, specifying the assay to use (for SummarizedExperiment and its derivative classes).

...

aesthetic mappings to pass to ggplot2::aes_string().

Value

a ggplot2 object

Examples

data("dkd_spe_subset")
standR::plotMDS(dkd_spe_subset)

Plot pair-wise PCA plots for multiple dimensions

Description

Plot pair-wise PCA plots for multiple dimensions

Usage

plotPairPCA(
  spe_object,
  n_dimension = 3,
  precomputed = NULL,
  assay = 2,
  title = NA,
  title.size = 14,
  rmduplabs = FALSE,
  flipcoord = FALSE,
  legend.pos = "top",
  ...
)

Arguments

spe_object

A SpatialExperiment object.

n_dimension

The top n dimensions to be plotted

precomputed

a dimensional reduction results from stats::prcomp. result in reducedDims(object) to plot. Default is NULL, we will compute for you.

assay

a numeric or character, specifying the assay to use (for SummarizedExperiment and its derivative classes).

title

Character vector, title to put at the top.

title.size

Numeric vector, size of the title.

rmduplabs

Remove duplicated labels from the plot. FALSE by default.

flipcoord

Flip the xy coordinates. FALSE by default.

legend.pos

Position of the legend. top by default.

...

aesthetic mappings to pass to ggplot2::aes().

Value

A ggplot object.

Examples

data("dkd_spe_subset")
plotPairPCA(dkd_spe_subset)

Plot PCA bi plot

Description

Plot PCA bi plot

Usage

plotPCAbiplot(
  spe_object,
  n_loadings = 10,
  dims = c(1, 2),
  precomputed = NULL,
  assay = 1,
  arrow_x = 0,
  arrow_y = 0,
  ...
)

Arguments

spe_object

A SpatialExperiment object.

n_loadings

Plot the top n gene loadings

dims

The top n dimensions to be plotted

precomputed

a dimensional reduction results from stats::prcomp. result in reducedDims(object) to plot. Default is NULL, we will compute for you.

assay

a numeric or character, specifying the assay to use (for SummarizedExperiment and its derivative classes).

arrow_x

a numeric, indicating the x coordinate of the base of the arrow.

arrow_y

a numeric, indicating the y coordinate of the base of the arrow.

...

aesthetic mappings to pass to ggplot2::aes().

Value

A ggplot object.

Examples

data("dkd_spe_subset")
plotPCAbiplot(dkd_spe_subset)

Compute and plot relative log expression (RLE) values of gene expression data

Description

Compute and plot relative log expression (RLE) values of gene expression data

Usage

plotRLExpr(object, ordannots = c(), ...)

## S4 method for signature 'DGEList'
plotRLExpr(object, ordannots = c(), ...)

## S4 method for signature 'ExpressionSet'
plotRLExpr(object, ordannots = c(), ...)

## S4 method for signature 'SummarizedExperiment'
plotRLExpr(object, ordannots, assay = 1, sce_thresh = 1000, ...)

Arguments

object

a DGEList, SummarizedExperiment or ExpressionSet object containing gene expression data.

ordannots

variables or computations to sort samples by (tidy style).

...

aesthetic mappings to pass to ggplot2::aes_string().

assay

a numeric or character, specifying the assay to use (for SummarizedExperiment and its derivative classes).

sce_thresh

Integer value. The threshold of sample size for using dot plot instead of box plot.

Value

a ggplot2 object, containing the RLE plot.

Examples

data("dkd_spe_subset")
plotRLExpr(dkd_spe_subset)

Plot Sample-wise QC plot

Description

Plot Sample-wise QC plot

Usage

plotROIQC(
  spe_object,
  x_axis = "AOINucleiCount",
  y_axis = "lib_size",
  x_lab = "AOINucleiCount",
  y_lab = "Library size",
  x_threshold = NULL,
  y_threshold = NULL,
  regression_col = "purple",
  hist_col = "black",
  hist_fill = "white",
  bin_num = 50,
  threshold_col = "red",
  threshold_linetype = "dashed",
  layout_ncol = 2,
  layout_nrow = 2,
  leyout_height = c(0.8, 2.5),
  layout_width = c(2.5, 0.8),
  ...
)

Arguments

spe_object

A SpatialExperiment object.

x_axis

Numeric feature to plot as x axis.

y_axis

Numeric feature to plot as y axis.

x_lab

Label name for x axis.

y_lab

Label name for y axis.

x_threshold

Threshold to draw.

y_threshold

Threshold to draw.

regression_col

Color for the regression line.

hist_col

Color for the histograms.

hist_fill

Fill for the histograms.

bin_num

Bin numbers for the histograms.

threshold_col

Threshold line color.

threshold_linetype

Threshold line type.

layout_ncol

Column number layout.

layout_nrow

Row number layout.

leyout_height

Height layout.

layout_width

Width layout.

...

aesthetic mappings to pass to ggplot2::aes() of the dot plots.

Value

A ggplot object.

Examples

library(ggplot2)
library(patchwork)
data("dkd_spe_subset")
spe <- addPerROIQC(dkd_spe_subset)

plotROIQC(spe)

Plot the user-defined meta data using alluvium plot

Description

Plot the user-defined meta data using alluvium plot

Usage

plotSampleInfo(spe_object, column2plot, textsize = 3)

Arguments

spe_object

A SpatialExperiment object.

column2plot

Which columns to plot.

textsize

text size.

Value

A ggplot object

Examples

library(ggalluvial)

data("dkd_spe_subset")
plotSampleInfo(dkd_spe_subset, column2plot = c("SlideName", "disease_status", "region"))

Plot the PCA scree plot.

Description

Plot the PCA scree plot.

Usage

plotScreePCA(
  spe_object,
  dims = ncol(spe_object),
  precomputed = NULL,
  assay = 1,
  bar_color = "black",
  bar_fill = "royalblue",
  bar_width = 0.8,
  point_col = "tomato3",
  line_col = "tomato3",
  point_size = 2
)

Arguments

spe_object

A SpatialExperiment object.

dims

The top n dimensions to be plotted

precomputed

a dimensional reduction results from stats::prcomp. result in reducedDims(object) to plot. Default is NULL, we will compute for you.

assay

a numeric or character, specifying the assay to use (for SummarizedExperiment and its derivative classes).

bar_color

Color for bar.

bar_fill

Fill for bar.

bar_width

Bar width.

point_col

Color for point.

line_col

Color for line.

point_size

Point size.

Value

A ggplot object.

Examples

data("dkd_spe_subset")
plotScreePCA(dkd_spe_subset, dims = 10)

Preparing the inputs for SpatialDecon for doing deconvolution on spatial data

Description

Preparing the inputs for SpatialDecon for doing deconvolution on spatial data

Usage

prepareSpatialDecon(
  spe,
  assay2use = "logcounts",
  negProbeName = "NegProbe-WTX",
  pool = NA
)

Arguments

spe

SpatialExperiment object.

assay2use

The name of the assay to use. By default is logcounts.

negProbeName

The name of the negative probe gene. By default is NegProbe-WTX.

pool

A vector indicates the pools of the genes. This is required when there are more than one Negative Probes.

Value

A list of two dataframes. The first data.frame is the normalised count, the second data.frame is the background for the data.

Examples

library(ExperimentHub)
eh <- ExperimentHub()

query(eh, "standR")
countFile <- eh[["EH7364"]]
sampleAnnoFile <- eh[["EH7365"]]

spe <- readGeoMx(countFile, sampleAnnoFile, rmNegProbe = FALSE)

out <- prepareSpatialDecon(spe)

Import GeoMX DSP data into a saptial experiment object from file paths

Description

Import GeoMX DSP data into a saptial experiment object from file paths

Usage

readGeoMx(
  countFile,
  sampleAnnoFile,
  featureAnnoFile = NA,
  rmNegProbe = TRUE,
  NegProbeName = "NegProbe-WTX",
  colnames.as.rownames = c("TargetName", "SegmentDisplayName", "TargetName"),
  coord.colnames = c("ROICoordinateX", "ROICoordinateY")
)

Arguments

countFile

tsv file or a dataframe object. Count matrix, with samples in columns and features/genes in rows. The first column is gene names/ids.

sampleAnnoFile

tsv file or a dataframe object. Sample annotations.

featureAnnoFile

tsv file or a dataframe object. Feature/Gene annotations.

rmNegProbe

Logical. Default is TRUE, indicating there are negative probe genes in the data.

NegProbeName

Character. Name of negative probe genes, default is NegProbe-WTX.

colnames.as.rownames

Vector of characters, length of 3. Column names used to capture gene names, sample names and gene names in countFile, sampleAnnoFile and featureAnnoFile, respectively.

coord.colnames

Vector of characters, length of 2. Column names used to capture ROI coordinates.

Value

A SpatialExperiment object.

Examples

library(ExperimentHub)

eh <- ExperimentHub()
query(eh, "standR")
countFile <- eh[["EH7364"]]
sampleAnnoFile <- eh[["EH7365"]]

spe <- readGeoMx(countFile, sampleAnnoFile, rmNegProbe = FALSE)

Import GeoMX DSP data into a spatial experiment object from DGEList object

Description

Import GeoMX DSP data into a spatial experiment object from DGEList object

Usage

readGeoMxFromDGE(dge_object, spatialCoord = NULL)

Arguments

dge_object

a DGEList object (created using edgeR::DGEList).

spatialCoord

a matrix with coordinates of samples, rowname must be cosistent with the colnames of dge_object.

Value

A SpatialExperiment object.

Examples

# making a simple DGEList object
ng <- 1000
ns <- 10
Counts <- matrix(rnbinom(ng * ns, mu = 5, size = 2), ng, ns)
rownames(Counts) <- seq(ng)
y <- edgeR::DGEList(counts = Counts, group = rep(seq(2), each = 5))

# transfer into spatial experiment object
coords <- matrix(rnorm(2 * ns), 10, 2)
spe <- readGeoMxFromDGE(dge_object = y, spatialCoord = coords)
spe

Transfer SpatialExperiment object into DGEList object for DE analysis

Description

Transfer SpatialExperiment object into DGEList object for DE analysis

Usage

spe2dge(spe)

Arguments

spe

SpatialExperiment object.

Value

A DGEList.

Examples

data("dkd_spe_subset")


spe_tmm <- geomxNorm(dkd_spe_subset, method = "TMM")
dge <- spe2dge(spe_tmm)