Package 'selectKSigs'

Title: Selecting the number of mutational signatures using a perplexity-based measure and cross-validation
Description: A package to suggest the number of mutational signatures in a collection of somatic mutations using calculating the cross-validated perplexity score.
Authors: Zhi Yang [aut, cre], Yuichi Shiraishi [ctb]
Maintainer: Zhi Yang <[email protected]>
License: GPL-3
Version: 1.19.0
Built: 2024-11-17 06:14:38 UTC
Source: https://github.com/bioc/selectKSigs

Help Index


A function for calculating the log-likelihood from the data and parameters

Description

A function for calculating the log-likelihood from the data and parameters

Usage

calcPMSLikelihood(p, y)

Arguments

p

this variable includes the parameters for mutation signatures and membership parameters

y

this variable includes the information on the mutation features, the number of mutation signatures specified and so on

Value

a value


Output the maximum potential scale reduction statistic of all parameters estimated

Description

Output the maximum potential scale reduction statistic of all parameters estimated

Usage

Calculate_Likelihood_test(train, test, paramG)

Arguments

train

a MutationFeatureData S4 class output of training data.

test

a MutationFeatureData S4 class output of test data.

paramG

an estimatedParameters S4 class with estimated parameters

Value

the likelihood of the test data


Restore the converted parameter F for turboEM

Description

Restore the converted parameter F for turboEM

Usage

convertFromTurbo_F(turboF, fdim, signatureNum, isBackground)

Arguments

turboF

F (converted for turboEM)

fdim

a vector specifying the number of possible values for each mutation signature

signatureNum

the number of mutation signatures

isBackground

the logical value showing whether a background mutaiton features is included or not

Value

a vector


Restore the converted parameter Q for turboEM

Description

Restore the converted parameter Q for turboEM

Usage

convertFromTurbo_Q(turboQ, signatureNum, sampleNum)

Arguments

turboQ

Q (converted for turboEM)

signatureNum

the number of mutation signatures

sampleNum

the number of cancer genomes

Value

a vector


Convert the parameter F so that turboEM can treat

Description

Convert the parameter F so that turboEM can treat

Usage

convertToTurbo_F(vF, fdim, signatureNum, isBackground)

Arguments

vF

F (converted to a vector)

fdim

a vector specifying the number of possible values for each mutation signature

signatureNum

the number of mutation signatures

isBackground

the logical value showing whether a background mutaiton features is included or not

Value

a vector


Convert the parameter Q so that turboEM can treat

Description

Convert the parameter Q so that turboEM can treat

Usage

convertToTurbo_Q(vQ, signatureNum, sampleNum)

Arguments

vQ

Q (converted to a vector)

signatureNum

the number of mutation signatures

sampleNum

the number of cancer genomes

Value

a vector


Output the maximum potential scale reduction statistic of all parameters estimated

Description

Output the maximum potential scale reduction statistic of all parameters estimated

Usage

cv_PMSignature(inputG, Kfold = 3, nRep = 3, Klimit = 8)

Arguments

inputG

a MutationFeatureData S4 class.

Kfold

an integer number of the number of cross-validation folds.

nRep

an integer number of replications.

Klimit

an integer of the maximum value of number of signatures.

Value

a matrix of measures

Examples

load(system.file("extdata/sample.rdata", package = "selectKSigs"))
results <- cv_PMSignature(G, Kfold = 3)

Get the statsus of using the background signature

Description

Get the statsus of using the background signature

Usage

getBG(object)

Arguments

object

the EstimatedParameters class (the result of pmgetSignature)

Value

the status of using the background signature


Get the count data in a matrix

Description

Get the count data in a matrix

Usage

getCounts(object)

Arguments

object

the MutationFeatureData class

Value

the count data in a matrix


Get a matrix of mutational exposures of signatures

Description

Get a matrix of mutational exposures of signatures

Usage

getExposures(object)

Arguments

object

the EstimatedParameters class (the result of pmgetSignature)

Value

a matrix of mutational exposures of signatures


Get a vector of possible features

Description

Get a vector of possible features

Usage

getFeatures(object)

Arguments

object

the EstimatedParameters class (the result of pmgetSignature)

Value

a vector of possible features


Get a matrix of feature vector list

Description

Get a matrix of feature vector list

Usage

getFeatureVec(object)

Arguments

object

the MutationFeatureData class

Value

a matrix of feature vector list


Get the number of signatures

Description

Get the number of signatures

Usage

getK(object)

Arguments

object

the EstimatedParameters class (the result of pmgetSignature)

Value

the number of signatures in pmgetSignature in HiLDA


Get the values of loglikelihood

Description

Get the values of loglikelihood

Usage

getLL(object)

Arguments

object

the EstimatedParameters class (the result of pmgetSignature)

Value

likelihood values estimated by pmgetSignature in HiLDA


Calculate the value of the log-likelihood for given parameters

Description

Calculate the value of the log-likelihood for given parameters

Usage

getLogLikelihoodC(
  vPatternList,
  vSparseCount,
  vF,
  vQ,
  fdim,
  signatureNum,
  sampleNum,
  patternNum,
  samplePatternNum,
  isBackground,
  vF0
)

Arguments

vPatternList

The list of possible mutation features (converted to a vector)

vSparseCount

The table showing (mutation feature, sample, the number of mutation) (converted to a vector)

vF

F (converted to a vector)

vQ

Q (converted to a vector)

fdim

a vector specifying the number of possible values for each mutation signature

signatureNum

the number of mutation signatures

sampleNum

the number of cancer genomes

patternNum

the number of possible combinations of all the mutation features

samplePatternNum

the number of possible combination of samples and mutation patternns

isBackground

the logical value showing whether a background mutaiton features is included or not

vF0

a background mutaiton features

Value

a value


Get the sample list

Description

Get the sample list

Usage

getSamplelist(object)

Arguments

object

the EstimatedParameters class (the result of pmgetSignature)

Value

the sample list of named elements.


Get the sample list

Description

Get the sample list

Usage

getSamplelistG(object)

Arguments

object

the MutationFeatureData class

Value

the sample list of named elements.


Get an array of signature feature distributions

Description

Get an array of signature feature distributions

Usage

getSignatures(object)

Arguments

object

the EstimatedParameters class (the result of pmgetSignature)

Value

an array of signature feature distributions


Get the statsus of specifying the transcription bias

Description

Get the statsus of specifying the transcription bias

Usage

getTranscription(object)

Arguments

object

the MutationFeatureData class

Value

the status of specifying the transcription bias


Output the training data or test data

Description

Output the training data or test data

Usage

select_kth_fold(inputG, k, f_s, folds, include)

Arguments

inputG

a MutationFeatureData S4 class output by the pmsignature.

k

an integer number of the number of cross-validation folds.

f_s

a primary key of combining the feature pattern and sample ID.

folds

the assignment to each fold.

include

a boolean indictor of whether to include kth fold or not.

Value

a MutationFeatureData S4 class of either include or exclude kth fold.


Output the maximum potential scale reduction statistic of all parameters estimated

Description

Output the maximum potential scale reduction statistic of all parameters estimated

Usage

splitG(inputG, Kfold = 3)

Arguments

inputG

a MutationFeatureData S4 class output by the pmsignature.

Kfold

an integer number of the number of cross-validation folds.

Value

a matrix made of perplexity from the results of cross-validation.

Examples

load(system.file("extdata/sample.rdata", package = "selectKSigs"))
G_split <- splitG(G, Kfold = 3)