Title: | sechm: Complex Heatmaps from a SummarizedExperiment |
---|---|
Description: | sechm provides a simple interface between SummarizedExperiment objects and the ComplexHeatmap package. It enables plotting annotated heatmaps from SE objects, with easy access to rowData and colData columns, and implements a number of features to make the generation of heatmaps easier and more flexible. These functionalities used to be part of the SEtools package. |
Authors: | Pierre-Luc Germain [cre, aut] |
Maintainer: | Pierre-Luc Germain <[email protected]> |
License: | GPL-3 |
Version: | 1.15.0 |
Built: | 2024-12-30 05:37:03 UTC |
Source: | https://github.com/bioc/sechm |
Plot a multi-panel heatmap from a list of
SummarizedExperiment-class
.
crossHm( ses, features, do.scale = TRUE, uniqueScale = FALSE, assayName = .getDef("assayName"), sortBy = seq_along(ses), only.common = TRUE, cluster_cols = FALSE, cluster_rows = is.null(sortBy), toporder = NULL, hmcols = NULL, breaks = .getDef("breaks"), gaps_at = .getDef("gaps_at"), gaps_row = NULL, name = NULL, top_annotation = .getDef("anno_columns"), left_annotation = .getDef("anno_rows"), anno_colors = list(), show_rownames = NULL, merge_legends = FALSE, show_colnames = FALSE, rel.width = NULL, ... )
crossHm( ses, features, do.scale = TRUE, uniqueScale = FALSE, assayName = .getDef("assayName"), sortBy = seq_along(ses), only.common = TRUE, cluster_cols = FALSE, cluster_rows = is.null(sortBy), toporder = NULL, hmcols = NULL, breaks = .getDef("breaks"), gaps_at = .getDef("gaps_at"), gaps_row = NULL, name = NULL, top_annotation = .getDef("anno_columns"), left_annotation = .getDef("anno_rows"), anno_colors = list(), show_rownames = NULL, merge_legends = FALSE, show_colnames = FALSE, rel.width = NULL, ... )
ses |
A (named) list of
|
features |
A vector of features (i.e. row.names) to plot. |
do.scale |
Logical; whether to scale rows in each SE (default TRUE). |
uniqueScale |
Logical; whether to force the same colorscale for each heatmap. |
assayName |
The name of the assay to use; if multiple names are given, the first available will be used. Defaults to "logcpm", "lognorm". |
sortBy |
Names or indexes of 'ses' to use for sorting rows (default all) |
only.common |
Logical; whether to plot only rows common to all SEs (default TRUE). |
cluster_cols |
Logical; whether to cluster columns (default FALSE). |
cluster_rows |
Logical; whether to cluster rows (default TRUE if 'do.sortRows=FALSE', FALSE otherwise). |
toporder |
Optional verctor of categories on which to supra-order when sorting rows, or name of a 'rowData' column to use for this purpose. |
hmcols |
Colors for the heatmap. |
breaks |
Breaks for the heatmap colors. Alternatively, symmetrical
breaks can be generated automatically by setting 'breaks' to a numerical
value between 0 and 1. The value is passed as the 'split.prop' argument to
the |
gaps_at |
Columns of 'colData' to use to establish gaps between columns. |
gaps_row |
A named vector according to which rows will be split. |
name |
The title of the heatmap key. |
top_annotation |
Columns of 'colData' to use for top annotation. |
left_annotation |
Columns of 'rowData' to use for left annotation. |
anno_colors |
List of colors to use for annotation. |
show_rownames |
Whether to show row names (default TRUE if 50 rows or less). |
merge_legends |
Logical; passed to
|
show_colnames |
Whether to show column names (default FALSE). |
rel.width |
Relative width of the heatmaps |
... |
Any other parameter passed to each call of
|
A Heatmap list.
data("Chen2017", package="sechm") se1 <- Chen2017[,1:6] se2 <- Chen2017[,7:15] se3 <- crossHm(list(se1=se1, se2=se2), row.names(se1)[1:10] )
data("Chen2017", package="sechm") se1 <- Chen2017[,1:6] se2 <- Chen2017[,7:15] se3 <- crossHm(list(se1=se1, se2=se2), row.names(se1)[1:10] )
A SummarizedExperiment-class
containing (a
subset of) hippocampus RNAseq of mice treated with Forskolin.
Chen et al. 2017. Mapping Gene Expression in Excitatory Neurons during Hippocampal Late-Phase Long-Term Potentiation Frontiers in Molecular Neuroscience. DOI: 10.3389/fnmol.2017.00039
Produces symmetrical breaks for a color scale, with the scale steps increasing for large values, which is useful to avoid outliers influencing too much the color scale.
getBreaks(x, n, split.prop = 0.98, symmetric = TRUE)
getBreaks(x, n, split.prop = 0.98, symmetric = TRUE)
x |
A matrix of log2FC (or any numerical values centered around 0) |
n |
The desired number of breaks. |
split.prop |
The proportion of the data points to plot on a linear scale; the remaining will be plotted on a scale with regular frequency per step (quantile). |
symmetric |
Logical; whether breaks should be symmetric around 0 (default TRUE) |
A vector of breaks of length = 'n'
dat <- rnorm(100,sd = 10) getBreaks(dat, 10)
dat <- rnorm(100,sd = 10) getBreaks(dat, 10)
Extracts (standardized) DEA results from the rowData of an SE object.
getDEA(se, dea = NULL, homogenize = FALSE, sort = TRUE)
getDEA(se, dea = NULL, homogenize = FALSE, sort = TRUE)
se |
A |
dea |
The optional name of the DEA to extract |
homogenize |
Logical; whether to homogenize the DEA |
sort |
Logical; whether to return the table sorted by significance |
The DEA data.frame if 'dea' is given, otherwise a named list of data.frames.
# loading example SE data("Chen2017", package="sechm") # this ones doesn't have saved DEAs in the standard format: getDEA(Chen2017)
# loading example SE data("Chen2017", package="sechm") # this ones doesn't have saved DEAs in the standard format: getDEA(Chen2017)
Get DEGs from a SE or list of DEA results
getDEGs( x, dea = NULL, lfc.th = log2(1.3), fdr.th = 0.05, direction = 0, merge = TRUE )
getDEGs( x, dea = NULL, lfc.th = log2(1.3), fdr.th = 0.05, direction = 0, merge = TRUE )
x |
A 'SummarizedExperiment' object with DEA results in rowData, or a list of DEA result data.frames. |
dea |
Which DEA(s) to use (default all). Used only if 'x' is a 'SummarizedExperiment'. |
lfc.th |
Absolute log-foldchange threshold. |
fdr.th |
FDR threshold. |
direction |
If !=0, specifies whether to fetch only upregulated or downregulated features |
merge |
Logical; whether to take the union of DEGs from the different DEAs (when more than one). |
A character vector with the significant features, or a list of such vectors.
# loading example SE data("Chen2017", package="sechm") # this ones doesn't have saved DEAs in the standard format: getDEGs(Chen2017)
# loading example SE data("Chen2017", package="sechm") # this ones doesn't have saved DEAs in the standard format: getDEGs(Chen2017)
Standardizes the outputs of differential expression methods (to an edgeR-like style)
homogenizeDEA(x)
homogenizeDEA(x)
x |
A data.frame containing the results of a differential expression analysis |
A standardized data.frame.
Generates log2(foldchange) matrix/assay, eventually on a per-batch fashion.
log2FC( x, fromAssay = NULL, controls, by = NULL, isLog = NULL, agFun = rowMeans, toAssay = "log2FC", pseudocount = 1L, ndigits = 2 )
log2FC( x, fromAssay = NULL, controls, by = NULL, isLog = NULL, agFun = rowMeans, toAssay = "log2FC", pseudocount = 1L, ndigits = 2 )
x |
A numeric matrix, or a 'SummarizedExperiment' object |
fromAssay |
The assay to use if 'x' is a 'SummarizedExperiment' |
controls |
A vector of which samples should be used as controls for foldchange calculations. |
by |
An optional vector indicating groups/batches by which the controls will be averaged to calculate per-group foldchanges. |
isLog |
Logical; whether the data is log-transformed. If NULL, will attempt to figure it out from the data and/or assay name |
agFun |
Aggregation function for the baseline (default rowMeans) |
toAssay |
The name of the assay in which to save the output. If left to the default value, both a log2FC assay as well as a scaled log2FC assay (scaled by unit-variance, but not centered) will be saved in the object. |
pseudocount |
If the origin assay is not log-transformed, 'pseudocount' will be added to the values before calculating a log-transformation. This prevents infinite fold-changes and moderates them. |
ndigits |
Number of digits after the decimal of the log2FC (and scaledLFC). |
An object of same class as 'x'; if a 'SummarizedExperiment', will have the additional assay named from 'toAssay'.
log2FC( matrix(rnorm(40), ncol=4), controls=1:2 )
log2FC( matrix(rnorm(40), ncol=4), controls=1:2 )
Melts a SE object into a ggplot
-ready long data.frame.
meltSE( x, features, assayName = NULL, colDat.columns = NULL, rowDat.columns = NULL, flatten = TRUE, baseDF = TRUE )
meltSE( x, features, assayName = NULL, colDat.columns = NULL, rowDat.columns = NULL, flatten = TRUE, baseDF = TRUE )
x |
An object of class
|
features |
A vector of features (i.e. row.names) to include. Use 'features=NULL' to include all. |
assayName |
The name(s) of the assay(s) to use. If NULL and the assays are named, all of them will be included. |
colDat.columns |
The colData columns to include (defaults includes all). Use 'colDat.columns=NA' in order not to include any. |
rowDat.columns |
The rowData columns to include (default all). Use 'rowData=NA' to not include any. |
flatten |
Logical, whether to flatten nested data.frames. |
baseDF |
Logical, whether to return a base data.frame (removing columns containing other objects such as atomic lists). Filtering is applied after flattening. |
A data.frame (or a DataFrame).
data("Chen2017", package="sechm") head(meltSE(Chen2017,"Fos"))
data("Chen2017", package="sechm") head(meltSE(Chen2017,"Fos"))
qualitativeColors
qualitativeColors(names, ...)
qualitativeColors(names, ...)
names |
The names to which the colors are to be assigned, or an integer indicating the desired number of colors |
... |
passed to 'randomcoloR::distinctColorPalette' |
A vector (eventually named) of colors
Resents all package options
resetAllSechmOptions()
resetAllSechmOptions()
None
resetAllSechmOptions()
resetAllSechmOptions()
Equivalent to 'base::scale', but handling missing values and null variance a bit more elegantly.
safescale(x, center = TRUE, byRow = FALSE)
safescale(x, center = TRUE, byRow = FALSE)
x |
A matrix. |
center |
Logical, whether to center values. |
byRow |
Logical, whether to scale by rows instead of columns. |
A scaled matrix.
m <- matrix(rnorm(100), nrow=10) m.scaled <- safescale(m)
m <- matrix(rnorm(100), nrow=10) m.scaled <- safescale(m)
ComplexHeatmap wrapper for
SummarizedExperiment-class
.
sechm( se, features, do.scale = FALSE, assayName = NULL, name = NULL, sortRowsOn = NULL, cluster_cols = FALSE, cluster_rows = NULL, toporder = NULL, hmcols = NULL, breaks = .getDef("breaks"), gaps_at = NULL, gaps_row = NULL, left_annotation = NULL, right_annotation = NULL, top_annotation = NULL, bottom_annotation = NULL, anno_colors = list(), show_rownames = NULL, show_colnames = FALSE, isMult = FALSE, show_heatmap_legend = !isMult, show_annotation_legend = TRUE, mark = NULL, na_col = "white", annorow_title_side = ifelse(show_colnames, "bottom", "top"), annocol_title_side = "right", includeMissing = FALSE, sort.method = "MDS_angle", ... )
sechm( se, features, do.scale = FALSE, assayName = NULL, name = NULL, sortRowsOn = NULL, cluster_cols = FALSE, cluster_rows = NULL, toporder = NULL, hmcols = NULL, breaks = .getDef("breaks"), gaps_at = NULL, gaps_row = NULL, left_annotation = NULL, right_annotation = NULL, top_annotation = NULL, bottom_annotation = NULL, anno_colors = list(), show_rownames = NULL, show_colnames = FALSE, isMult = FALSE, show_heatmap_legend = !isMult, show_annotation_legend = TRUE, mark = NULL, na_col = "white", annorow_title_side = ifelse(show_colnames, "bottom", "top"), annocol_title_side = "right", includeMissing = FALSE, sort.method = "MDS_angle", ... )
se |
|
features |
A vector of features (i.e. row names of 'se'). Alternatively, can be a list of feature sets, in which case these will be plotted as different row chunks. |
do.scale |
Logical; whether to scale rows (default FALSE). |
assayName |
An optional vector of assayNames to use. The first available will be used, or the first assay if NULL. |
name |
The name of the heatmap, eventually appearing as title of the color scale. |
sortRowsOn |
Sort rows by MDS polar order using the specified columns (default all) |
cluster_cols |
Whether to cluster columns (default F) |
cluster_rows |
Whether to cluster rows; default FALSE if 'do.sortRows=TRUE'. |
toporder |
Optional vector of categories on which to supra-order when sorting rows, or name of a 'rowData' column to use for this purpose. |
hmcols |
Colors for the heatmap. |
breaks |
Breaks for the heatmap colors. Alternatively, symmetrical
breaks can be generated automatically by setting 'breaks' to a numerical
value between 0 and 1. The value is passed as the 'split.prop' argument to
the |
gaps_at |
Columns of 'colData' to use to establish gaps between columns. |
gaps_row |
Passed to the heatmap function; if missing, will be set automatically according to toporder. |
left_annotation |
Columns of 'rowData' to use for left annotation. Alternatively, an 'HeatmapAnnotation' object. |
right_annotation |
Columns of 'rowData' to use for left annotation. Alternatively, an 'HeatmapAnnotation' object. |
top_annotation |
Columns of 'colData' to use for top annotation. Alternatively, an 'HeatmapAnnotation' object. To disable (overriding defaults), use 'top_annotation=character()'. |
bottom_annotation |
Columns of 'colData' to use for bottom annotation. Alternatively, an 'HeatmapAnnotation' object. |
anno_colors |
List of colors to use for annotation. |
show_rownames |
Whether to show row names (default TRUE if less than 50 rows to plot). |
show_colnames |
Whether to show column names (default FALSE). |
isMult |
Logical; used to silence labels when plotting multiple heatmaps |
show_heatmap_legend |
Logical; whether to show heatmap legend |
show_annotation_legend |
Logical; whether to show the annotation legend. |
mark |
An optional vector of gene names to highlight. |
na_col |
Color of NA values |
annorow_title_side |
Side (top or bottom) of row annotation names |
annocol_title_side |
Side (left or right) of column annotation names |
includeMissing |
Logical; whether to include missing features (default FALSE) |
sort.method |
Row sorting method (see |
... |
Further arguments passed to 'Heatmap' |
A a Heatmap-class
.
data("Chen2017", package="sechm") sechm(Chen2017, row.names(Chen2017)[1:10], do.scale=TRUE)
data("Chen2017", package="sechm") sechm(Chen2017, row.names(Chen2017)[1:10], do.scale=TRUE)
Set rowData attribute of given rows
setRowAttr(se, values, name = "cluster", clear = TRUE, other = NA)
setRowAttr(se, values, name = "cluster", clear = TRUE, other = NA)
se |
A 'SummarizedExperiment' object |
values |
A named vector of values, where the names correspond to rows of 'se' |
name |
The name of the rowData column in which to store the attribute. |
clear |
Logical; whether to clear out any pre-existing such column. |
other |
The value for unspecified rows (default NA) |
The modified 'se' object.
data("Chen2017", package="sechm") Chen2017 <- setRowAttr(Chen2017, c("Arc"=1,"Junb"=1,"Npas4"=2))
data("Chen2017", package="sechm") Chen2017 <- setRowAttr(Chen2017, c("Arc"=1,"Junb"=1,"Npas4"=2))
Sets a package-wide option for 'sechm'
setSechmOption(variable, value)
setSechmOption(variable, value)
variable |
The name of the variable to set |
value |
The parameter value to save |
None
setSechmOption("hmcols", value=c("blue","black","yellow"))
setSechmOption("hmcols", value=c("blue","black","yellow"))
sortRows
sortRows( x, z = FALSE, toporder = NULL, na.rm = FALSE, method = "MDS_angle", toporder.meth = "before" )
sortRows( x, z = FALSE, toporder = NULL, na.rm = FALSE, method = "MDS_angle", toporder.meth = "before" )
x |
A numeric matrix or data.frame. |
z |
Whether to scale rows for the purpose of calculating order. |
toporder |
Optional verctor of categories (length=nrow(x)) on which to supra-order when sorting rows. |
na.rm |
Whether to remove missing values and invariant rows. |
method |
Seriation method; 'MDS_angle' (default) or 'R2E' recommended. |
toporder.meth |
Whether to perform higher-order sorting 'before' (default) or 'after' the lower-order sorting. |
A reordered matrix or data.frame.
# random data m <- matrix( round(rnorm(100,mean=10, sd=2)), nrow=10, dimnames=list(LETTERS[1:10], letters[11:20]) ) m sortRows(m)
# random data m <- matrix( round(rnorm(100,mean=10, sd=2)), nrow=10, dimnames=list(LETTERS[1:10], letters[11:20]) ) m sortRows(m)