Package: scifer (via r-universe)

July 27, 2024

Type Package

Title Scifer: Single-Cell Immunoglobulin Filtering of Sanger Sequences

Version 1.7.7

URL https://github.com/rodrigarc/scifer

BugReports https://github.com/rodrigarc/scifer/issues

Description Have you ever index sorted cells in a 96 or 384-well plate and then sequenced using Sanger sequencing? If so, you probably had some struggles to either check the electropherogram of each cell sequenced manually, or when you tried to identify which cell was sorted where after sequencing the plate. Scifer was developed to solve this issue by performing basic quality control of Sanger sequences and merging flow cytometry data from probed single-cell sorted B cells with sequencing data. scifer can export summary tables, 'fasta' files, electropherograms for visual inspection, and generate reports.

License MIT + file LICENSE

Encoding UTF-8

biocViews Preprocessing, QualityControl, SangerSeq, Sequencing, Software, FlowCytometry, SingleCell

Imports dplyr, rmarkdown, data.table, Biostrings, parallel, stats, plyr, knitr, ggplot2, gridExtra, DECIPHER, stringr, sangerseqR, kableExtra, tibble, scales, rlang, flowCore, methods, basilisk, reticulate, here, utils, basilisk.utils

RoxygenNote 7.2.3

VignetteBuilder knitr

Suggests fs, BiocStyle, testthat (>= 3.0.0)

Config/testthat/edition 3

StagedInstall no

RemoteUrl https://bioc.r-universe.dev **RemoteUrl** https://github.com/bioc/scifer

RemoteRef HEAD

RemoteSha 7c664ecea6dc0b2be65f9f6d1da52bc9d7a4e4ad

2 df_to_fasta

Contents

df_to_fasta	2
fcs_plot	3
fcs_processing	4
igblast	5
quality_report	6
scifer	8
secondary_peaks	8
summarise_abi_file	9
summarise_quality	1
1	12

df_to_fasta

Fasta file creation from dataframe columns and/or vectors.

Description

Fasta file creation from dataframe columns and/or vectors.

Usage

Index

```
df_to_fasta(
    sequence_name,
    sequence_strings,
    file_name = "sequences.fasta",
    output_dir = NULL,
    save_fasta = TRUE
)
```

Arguments

sequence_name

Vector containing the names for each sequence, usually a column from a data.frame.

eg. df\$sequence_name

sequence_strings

Vector containing the DNA or RNA or AA sequences, usually a column from a
data.frame. eg. df\$sequences

file_name

Output file name to be saved as a fasta file

output_dir

Output directory for the fasta file. Default is the working directory

save_fasta

Logical argument, TRUE or FALSE, to indicate if fasta files should be saved.

Default is TRUE.

Value

Saves a fasta file in the desired location, and also returns the stringset as BStringSet if saved as an object.

fcs_plot 3

Examples

```
## Example with vectors, default for save_fasta ir TRUE
df_to_fasta(
    sequence_name = c("myseq1", "myseq2"),
    sequence_strings = c("GATCGAT", "ATCGTAG"),
    file_name = "my_sequences.fasta",
    output_dir = "",
    save_fasta = FALSE
)
```

fcs_plot

Plot flow data from index sorted cells

Description

Plot flow data from index sorted cells

Usage

```
fcs_plot(processed_fcs_list = NULL)
```

Arguments

```
processed_fcs_list
```

List generated using 'fcs_processing()' containing two data.frames

Value

Returns a ggplot object with a traditional flow density plot with the sorted cells and the selected thresholds for the two probes used in fcs_processing().

```
index_sort_data <- fcs_processing(
    folder_path = system.file("/extdata/fcs_index_sorting",
        package = "scifer"
    ),
    compensation = TRUE, plate_wells = 96,
    probe1 = "Pre.F", probe2 = "Post.F",
    posvalue_probe1 = 600, posvalue_probe2 = 400
)

fcs_plot_obj <- fcs_plot(index_sort_data)</pre>
```

4 fcs_processing

fcs_processing

Extract index sorting information from flow cytometry data

Description

Extract index sorting information from flow cytometry data

Usage

```
fcs_processing(
  folder_path = "test/test_dataset/fcs_files/",
  compensation = TRUE,
  plate_wells = 96,
  probe1 = "Pre.F",
  probe2 = "Post.F",
  posvalue_probe1 = 600,
  posvalue_probe2 = 400
)
```

their sample/plate ID. eg. "E11_01.fcs"

Arguments

folder_path

Logical argument, TRUE or FALSE, to indicate if the index files were compensated or not. If TRUE, it will apply its compensation prior assigning specificity

Type of plate used for single-cell sorting. eg. "96" or "384"

Name of the first channel used for the probe or the custom name assigned to the channel in the index file. eg. "FSC.A", "FSC.H", "SSC.A", "DsRed.A", "PE.Cy5_5.A", "PE.Cy7.A", "BV650.A", "BV711.A", "Alexa.Fluor.700.A" "APC.Cy7.A", "PerCP.Cy5.5...

Probe2

Name of the second channel used for the probe or the custom name assigned to the channel in the index file. eg. "FSC.A", "FSC.H", "SSC.A", "DsRed.A", "PE.Cy5_5.A", "PE.Cy7.A", "BV650.A", "BV711.A", "Alexa.Fluor.700.A" "APC.Cy7.A", "PerCP.Cy5.5..."

Folder containing all the flow data index filex (.fcs). Files should be named with

posvalue_probe1

Threshold used for fluorescence intensities to be considered as positive for the first probe

posvalue_probe2

Threshold used for fluorescence intensities to be considered as positive for the second probe

Value

If saved as an object, it returns a table containing all the processed flow cytometry index files, with their fluorescence intensities for each channel and well position.

igblast 5

Examples

```
index_sort_data <- fcs_processing(
   folder_path = system.file("/extdata/fcs_index_sorting",
        package = "scifer"
   ),
   compensation = TRUE, plate_wells = 96,
   probe1 = "Pre.F", probe2 = "Post.F",
   posvalue_probe1 = 600, posvalue_probe2 = 400
)</pre>
```

igblast

Run IgDiscover for IgBlast using basilisk, which enables the python environment for Igblast

Description

Run IgDiscover for IgBlast using basilisk, which enables the python environment for Igblast

Usage

```
igblast(database = "path/to/folder", fasta = "path/to/file", threads = 1)
```

Arguments

database Vector containing the database for VDJ sequences

fasta Vector containing the sequences, usually a column from a data.frame. eg. df\$sequences
threads Variable containing the number of cores when computing in parallel, default

threads = 1

Value

Creates a data frame with the Igblast analysis where each row is the tested sequence with columns containing the results for each sequence

```
## Example with test sequences
## Not run:
igblast(
    database = system.file("/extdata/test_fasta/KIMDB_rm", package = "scifer"),
    fasta = system.file("/extdata/test_fasta/test_igblast.txt", package = "scifer"),
    threads = 1
)
## End(Not run)
```

6 quality_report

quality_report

Generate general and individualized reports

Description

This function uses the other functions already described to create a HTML report based on sequencing quality. Besides the HTML reports, it also creates fasta files with all the sequences and individualized sequences, in addition to a csv file with the quality scores and sequences considered as good quality.

Usage

```
quality_report(
  folder_sequences = "path/to/sanger_sequences",
  outputfile = "QC_report.html",
  output_dir = "test/",
  processors = NULL,
  folder_path_fcs = NULL,
  plot_chromatogram = FALSE,
  raw_length = 343,
  trim_start = 65,
  trim_finish = 400,
  trimmed_mean_quality = 30,
  compensation = TRUE,
  plate_wells = "96",
  probe1 = "Pre.F",
  probe2 = "Post.F",
  posvalue_probe1 = 600,
  posvalue_probe2 = 400,
  cdr3_start = 100,
  cdr3\_end = 150
)
```

Arguments

folder_sequences

Full file directory for searching all ab1 files in a recursive search method. It includes all files in subfolders

outputfile Output file name for the report generation

output_dir Output directory for all the different output files that are generated during the

report

processors Number of processors to use, you can set to NULL to detect automatically all

available processors

folder_path_fcs

Full file directory for searching all flow cytometry index files, files with .fcs extensions, in a recursive search method

quality_report 7

```
plot_chromatogram
                  Logical argument, TRUE or FALSE, to indicate if chromatograms should be
                  plotted or not. Default is FALSE
raw_length
                  Minimum sequence length for filtering. Default is 343 for B cell receptors
trim_start
                  Starting position where the sequence should start to have a good base call accu-
                  racy. Default is 65 for B cell receptors
                  Last position where the sequence should have a good base call accuracy. Default
trim_finish
                  is 400 for B cell receptors
trimmed_mean_quality
                  Minimum Phred quality score expected for an average sequence. Default is 30,
                  which means average of 99.9% base call accuracy
                  Logical argument, TRUE or FALSE, to indicate if the index files were compen-
compensation
                  sated or not. If TRUE, it will apply its compensation prior assigning specificities
plate_wells
                  Type of plate used for single-cell sorting. eg. "96" or "384"
probe1
                  Name of the first channel used for the probe or the custom name assigned to
                  the channel in the index file. eg. "FSC.A", "FSC.H", "SSC.A", "DsRed.A",
                  "PE.Cy5_5.A", "PE.Cy7.A", "BV650.A", "BV711.A", "Alexa.Fluor.700.A" "APC.Cy7.A", "PerCP.Cy5.5..
probe2
                  Name of the second channel used for the probe or the custom name assigned
                  to the channel in the index file. eg. "FSC.A", "FSC.H", "SSC.A", "DsRed.A",
                  "PE.Cy5_5.A", "PE.Cy7.A", "BV650.A", "BV711.A", "Alexa.Fluor.700.A" "APC.Cy7.A", "PerCP.Cy5.5...
posvalue_probe1
                  Threshold used for fluorescence intensities to be considered as positive for the
                  first probe
posvalue_probe2
                  Threshold used for fluorescence intensities to be considered as positive for the
                  second probe
                  Expected CDR3 starting position, that depends on your primer set. Default is
cdr3_start
                  position 100
cdr3_end
                  Expected CDR3 end position, that depends on your primer set. Default is posi-
                  tion 150
```

Value

Saves HTML reports, fasta files, csv files

8 secondary_peaks

```
probe1 = "Pre.F", probe2 = "Post.F",
posvalue_probe1 = 600, posvalue_probe2 = 400,
cdr3_start = 100,
cdr3_end = 150
)
```

scifer

Scifer: Single-Cell Immunoglobulin Filtering of Sanger Sequences

Description

Integrating index single-cell sorted files with Sanger sequencing per plates, combining single-cell sorted data (FACS) and specificity with Sanger sequencing information.

Author(s)

Rodrigo Arcoverde Cerveira < rodrigo.arcoverdi@gmail.com>

secondary_peaks

Check for secondary peaks in a sangerseq object

Description

This function finds and reports secondary peaks in a sangerseq object. It returns a table of secondary peaks, and optionally saves an annotated chromatogram and a csv file of the peak locations.

Usage

```
secondary_peaks(
    s,
    ratio = 0.33,
    output.folder = NA,
    file.prefix = "seq",
    processors = NULL
)
```

Arguments

s a sangerseq s4 object from the sangerseqR package

ratio Ratio of the height of a secondary peak to a primary peak. Secondary peaks

higher than this ratio are annotated. Those below the ratio are not.

output.folder If output.folder is NA (the default) no files are written. If a valid folder is pro-

vided, two files are written to that folder: a .csv file of the secondary peaks (see

description below) and a .pdf file of the chromatogram.

summarise_abi_file 9

file.prefix If output.folder is specified, this is the prefix which will be appended to the .csv and the .pdf file. The default is "seq".

Processors Number of processors to use, or NULL (the default) for all available processors

Value

A list with two elements:

- 1. secondary.peaks: a data frame with one row per secondary peak above the ratio, and three columns: "position" is the position of the secondary peak relative to the primary sequence; "primary.basecall" is the primary base call; "secondary.basecall" is the secondary basecall.
- 2. read: the input sangerseq s4 object after having the makeBaseCalls() function from sangerseqR applied to it. This re-calls the primary and secondary bases in the sequence, and resets a lot of the internal data.

Examples

summarise_abi_file

Create a summary of a single ABI sequencing file

Description

Create a summary of a single ABI sequencing file

Usage

```
summarise_abi_file(
  seq.abif,
  trim.cutoff = 1e-04,
  secondary.peak.ratio = 0.33,
  output.folder = NA,
  prefix = "seq",
  processors = NULL
)
```

10 summarise_abi_file

Arguments

seq.abif an abif.seq s4 object from the sangerseqR package

trim.cutoff the cutoff at which you consider a base to be bad. This works on a logarithmic

scale, such that if you want to consider a score of 10 as bad, you set cutoff to 0.1; for 20 set it at 0.01; for 30 set it at 0.001; for 40 set it at 0.0001; and so on. Contiguous runs of bases below this quality will be removed from the start and

end of the sequence. Default is 0.0001.

secondary.peak.ratio

the ratio of the height of a secondary peak to a primary peak. Secondary peaks

higher than this ratio are annotated. Those below the ratio are not.

output.folder If output.folder is NA (the default) no files are written. If a valid folder is pro-

vided, two files are written to that folder: a .csv file of the secondary peaks (see

description below) and a .pdf file of the chromatogram.

prefix If output.folder is specified, this is the prefix which will be appended to the .csv

and the .pdf file. The default is "seq".

processors Number of processors to use, or NULL (the default) for all available processors

Value

A numeric vector including:

raw.length: the length of the untrimmed sequence, note that this is the sequence after conversion to a sangerseq object, and then the recalling the bases with MakeBaseCalls from the sangerseqR package

- 2. trimmed.length: the length of the trimmed sequence, after trimming using trim.mott from this package and the parameter supplied to this function
- 3. trim.start: the start position of the good sequence, see trim.mott for more details
- 4. trim.finish: the finish position of the good sequence, see trim.mott for more details
- 5. raw.secondary.peaks: the number of secondary peaks in the raw sequence, called with the secondary.peaks function from this package and the parameters supplied to this function
- trimmed.secondary.peaks: the number of secondary peaks in the trimmed sequence, called with the secondary.peaks function from this package and the parameters supplied to this function
- 7. raw.mean.quality: the mean quality score of the raw sequence
- 8. trimmed.mean.quality: the mean quality score of the trimmed sequence
- 9. raw.min.quality: the minimum quality score of the raw sequence

summarise_quality 11

10. trimmed.min.quality: the minimum quality score of the trimmed sequence

Examples

summarise_quality

Generate a summary table containing quality measurements from sanger sequencing abi files

Description

Generate a summary table containing quality measurements from sanger sequencing abi files

Usage

```
summarise_quality(
  folder_sequences = "input_folder",
  trim.cutoff = 0.01,
  secondary.peak.ratio = 0.33,
  processors = NULL
)
```

Arguments

folder_sequences

Folder containing all the sanger sequencing abi/ab1 files on subfolders. Each subfolder should have have a identifiable name, matching name with fcs data. eg. "E18_01", "E23_06". The first characters of the ab1 file name should be the well location. eg. "A1-sequence1.ab1", "F8 sequence-igg.ab1"

trim.cutoff

Cutoff at which you consider a base to be bad. This works on a logarithmic scale, such that if you want to consider a score of 10 as bad, you set cutoff to 0.1; for 20 set it at 0.01; for 30 set it at 0.001; for 40 set it at 0.0001; and so on. Contiguous runs of bases below this quality will be removed from the start and end of the sequence. Given the high quality reads expected of most modern ABI sequencers, the defualt is 0.0001.

12 summarise_quality

secondary.peak.ratio

Ratio of the height of a secondary peak to a primary peak. Secondary peaks higher than this ratio are annotated, while those below the ratio are not.

processors

Number of processors to use, or NULL (the default) for all available processors

Value

List containing two items: * summaries: contains all the summary results from the processed abi files, * quality_scores: contains all the Phred quality score for each position.

Index

```
* AIRR
     scifer, 8
* BCR
     scifer, 8
* QC
     scifer, 8
* TCR
     scifer, 8
* \ \textbf{flowcytometry} \\
     scifer, 8
* sanger
     {\tt scifer}, \textcolor{red}{8}
* sequencing
     scifer, 8
\mathsf{df\_to\_fasta}, \textcolor{red}{2}
fcs_plot, 3
fcs_processing, 4
igblast, 5
quality_report, 6
scifer, 8
secondary\_peaks, 8
summarise_abi_file, 9
summarise_quality, 11
```