Package: sccomp (via r-universe)

September 24, 2024

Title Robust Outlier-aware Estimation of Composition and Heterogeneity for Single-cell Data

Version 1.9.0

Description A robust and outlier-aware method for testing differential tissue composition from single-cell data. This model can infer changes in tissue composition and heterogeneity, and can produce realistic data simulations based on any existing dataset. This model can also transfer knowledge from a large set of integrated datasets to increase accuracy further.

License GPL-3

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.1

Biarch true

Depends R (>= 4.2.0)

Imports methods, Rcpp (>= 0.12.0), RcppParallel (>= 5.0.1), rstantools (>= 2.1.1), rstan (>= 2.26.0), SeuratObject, SingleCellExperiment, parallel, dplyr, tidyr, purrr, magrittr, rlang, tibble, boot, lifecycle, stats, tidyselect, utils, ggplot2, ggrepel, patchwork, forcats, readr, scales, stringr, glue

Suggests BiocStyle, testthat (>= 3.0.0), markdown, knitr, loo, tidyseurat, tidySingleCellExperiment, prettydoc

Enhances furrr, extraDistr

LinkingTo BH (>= 1.66.0), Rcpp (>= 0.12.0), RcppEigen (>= 0.3.3.3.0), RcppParallel (>= 5.0.1), rstan (>= 2.26.0), StanHeaders (>= 2.26.0)

SystemRequirements GNU make

VignetteBuilder knitr

RdMacros lifecycle

biocViews ImmunoOncology, Normalization, Sequencing, RNASeq, Software, GeneExpression, Transcriptomics, SingleCell, Clustering

LazyDataCompression xz

Config/testthat/edition 3

URL https://github.com/stemangiola/sccomp

BugReports https://github.com/stemangiola/sccomp/issues

Additional_repositories https://mc-stan.org/r-packages/

Repository https://bioc.r-universe.dev

RemoteUrl https://github.com/bioc/sccomp

RemoteRef HEAD

RemoteSha 13c53228291907ce59678cf653281721fb25258c

Contents

sccomp-package	2
counts_obj	3
multi_beta_glm	3
plot.sccomp_tbl	4
plot_summary	5
sccomp_boxplot	6
sccomp_estimate	6
sccomp_glm	9
sccomp_predict	13
sccomp_remove_outliers	14
sccomp_remove_unwanted_variation	16
sccomp_replicate	17
sccomp_test	18
sce_obj	19
seurat_obj	20
simulate_data	
test_contrasts	22
	24

Index

sccomp-package The 'sccomp' package.

Description

A DESCRIPTION OF THE PACKAGE

Author(s)

Maintainer: Stefano Mangiola <mangiolastefano@gmail.com>

counts_obj

References

Stan Development Team (2020). RStan: the R interface to Stan. R package version 2.21.2. https://mc-stan.org

See Also

Useful links:

- https://github.com/stemangiola/sccomp
- Report bugs at https://github.com/stemangiola/sccomp/issues

counts_obj counts_obj

Description

Example data set containing cell counts per cell cluster

Usage

data(counts_obj)

Format

A tidy data frame.

multi_beta_glm multi_beta_glm main

Description

This function runs the data modelling and statistical test for the hypothesis that a cell_type includes outlier biological replicate.

Usage

```
multi_beta_glm(
  .data,
  formula = ~1,
  .sample,
  check_outliers = FALSE,
  approximate_posterior_inference = TRUE,
  cores = detect_cores(),
  seed = sample(1e+05, 1)
)
```

Arguments

.data	A tibble including a cell_type name column sample name column read counts column factor columns Pvaue column a significance column	
formula	A formula. The sample formula used to perform the differential cell_type abundance analysis	
.sample	A column name as symbol. The sample identifier	
check_outliers	A boolean. Whether to check for outliers before the fit.	
approximate_posterior_inference		
	A boolean. Whether the inference of the joint posterior distribution should be approximated with variational Bayes. It confers execution time advantage.	
cores	An integer. How many cored to be used with parallel calculations.	
seed	An integer. Used for development and testing purposes	

Value

A nested tibble tbl with cell_type-wise information: sample wise data|plot|ppc samples failed |exposure deleterious outliers

plot.sccomp_tbl plot

Description

This function plots a summary of the results of the model.

Usage

```
## S3 method for class 'sccomp_tbl'
plot(x, ...)
```

Arguments

x	A tibble including a cell_group name column sample name column read counts column factor columns Pvalue column a significance column
	parameters like significance_threshold A real. FDR threshold for labelling sig- nificant cell-groups.

Value

A ggplot

plot_summary

Examples

plot_summary plot_summary

Description

This function plots a summary of the results of the model.

Usage

```
plot_summary(.data, significance_threshold = 0.025)
```

Arguments

.data A tibble including a cell_group name column | sample name column | read counts column | factor columns | Pvalue column | a significance column significance_threshold A real. FDR threshold for labelling significant cell-groups.

Value

A ggplot

sccomp_boxplot sccomp_boxplot

Description

This function plots a boxplot of the results of the model.

Usage

```
sccomp_boxplot(.data, factor, significance_threshold = 0.025)
```

Arguments

.data	A tibble including a cell_group name column sample name column read	
	counts column factor columns Pvalue column a significance column	
factor	A character string for a factor of interest included in the model	
significance_threshold		
	A real. FDR threshold for labelling significant cell-groups.	

Value

A ggplot

Examples

sccomp_estimate Main Function for SCCOMP Estimate

Description

The sccomp_estimate function performs linear modeling on a table of cell counts, which includes a cell-group identifier, sample identifier, integer count, and factors (continuous or discrete). The user can define a linear model with an input R formula, where the first factor is the factor of interest. Alternatively, sccomp accepts single-cell data containers (e.g., Seurat, SingleCellExperiment, cell metadata, or group-size) and derives the count data from cell metadata.

sccomp_estimate

Usage

```
sccomp_estimate(
  .data,
  formula_composition = ~1,
  formula_variability = ~1,
  .sample,
  .cell_group,
  .count = NULL,
  cores = detectCores(),
 bimodal_mean_variability_association = FALSE,
  percent_false_positive = 5,
  variational_inference = TRUE,
 prior_mean = list(intercept = c(0, 1), coefficients = c(0, 1)),
 prior_overdispersion_mean_association = list(intercept = c(5, 2), slope = c(0, 0.6),
    standard_deviation = c(10, 20)),
  .sample_cell_group_pairs_to_exclude = NULL,
  verbose = TRUE,
  enable_loo = FALSE,
  noise_model = "multi_beta_binomial",
 exclude_priors = FALSE,
 use_data = TRUE,
 mcmc_seed = sample(1e+05, 1),
 max_sampling_iterations = 20000,
 pass_fit = TRUE,
  approximate_posterior_inference = NULL
)
```

Arguments

.data	A tibble including cell_group name column, sample name column, read counts		
	column (optional depending on the input class), and factor columns.		
formula_composi	formula_composition		
	A formula describing the model for differential abundance.		
formula_variabi	lity		
	A formula describing the model for differential variability.		
.sample	A column name as symbol for the sample identifier.		
.cell_group	A column name as symbol for the cell_group identifier.		
.count	A column name as symbol for the cell_group abundance (read count).		
cores	Number of cores to use for parallel calculations.		
bimodal_mean_variability_association			
	Boolean for modeling mean-variability as bimodal.		
percent_false_positive			
	Real number between 0 and 100 for outlier identification.		
variational_inf	erence		
	Boolean for using variational Bayes for posterior inference. It is faster and convenient. Setting this argument to FALSE runs the full Bayesian (Hamiltonian Monte Carlo) inference, slower but it is the gold standard.		

prior_mean	List with prior knowledge about mean distribution, they are the intercept and coefficient.
prior_overdispe	ersion_mean_association
	List with prior knowledge about mean/variability association.
.sample_cell_gr	<pre>roup_pairs_to_exclude</pre>
	Column name with boolean for sample/cell-group pairs exclusion.
verbose	Boolean to print progression.
enable_loo	Boolean to enable model comparison using the LOO package.
noise_model	Character string for the noise model (e.g., 'multi_beta_binomial').
exclude_priors	Boolean to run a prior-free model.
use_data	Boolean to run the model data-free.
mcmc_seed	Integer for MCMC reproducibility.
<pre>max_sampling_it</pre>	cerations
	Integer to limit maximum iterations for large datasets.
pass_fit	Boolean to include the Stan fit as attribute in the output.
approximate_pos	sterior_inference
	DEPRECATED please use the variational_inference argument.

Value

A nested tibble tb1, with the following columns

- cell_group column including the cell groups being tested
- parameter The parameter being estimated, from the design matrix dscribed with the input formula_composition and formula_variability
- factor The factor in the formula corresponding to the covariate, if exists (e.g. it does not exist in case og Intercept or contrasts, which usually are combination of parameters)
- c_lower lower (2.5%) quantile of the posterior distribution for a composition (c) parameter.
- c_effect mean of the posterior distribution for a composition (c) parameter.
- c_upper upper (97.5%) quantile of the posterior distribution fo a composition (c) parameter.
- c_pH0 Probability of the null hypothesis (no difference) for a composition (c). This is not a p-value.
- c_FDR False-discovery rate of the null hypothesis (no difference) for a composition (c).
- c_n_eff Effective sample size the number of independent draws in the sample, the higher the better (mc-stan.org/docs/2_25/cmdstan-guide/stansummary.html).
- c_R_k_hat R statistic, a measure of chain equilibrium, should be within 0.05 of 1.0 (mc-stan.org/docs/2_25/cmdstan-guide/stansummary.html).
- v_lower Lower (2.5%) quantile of the posterior distribution for a variability (v) parameter
- v_effect Mean of the posterior distribution for a variability (v) parameter
- v_upper Upper (97.5%) quantile of the posterior distribution for a variability (v) parameter
- v_pH0 Probability of the null hypothesis (no difference) for a variability (v). This is not a p-value.

- v_FDR False-discovery rate of the null hypothesis (no difference), for a variability (v).
- v_n_eff Effective sample size for a variability (v) parameter the number of independent draws in the sample, the higher the better (mc-stan.org/docs/2_25/cmdstan-guide/stansummary.html).
- v_R_k_hat R statistic for a variability (v) parameter, a measure of chain equilibrium, should be within 0.05 of 1.0 (mc-stan.org/docs/2_25/cmdstan-guide/stansummary.html).
- count_data Nested input count data.

Examples

```
estimate =
  sccomp_estimate(
  counts_obj ,
    ~ type,
    ~1,
    sample,
    cell_group,
    count,
    cores = 1
)
```

data("counts_obj")

sccomp_glm

DEPRECATED - sccomp_glm main

Description

The function for linear modelling takes as input a table of cell counts with three columns containing a cell-group identifier, sample identifier, integer count and the factors (continuous or discrete). The user can define a linear model with an input R formula, where the first factor is the factor of interest. Alternatively, sccomp accepts single-cell data containers (Seurat, SingleCellExperiment44, cell metadata or group-size). In this case, sccomp derives the count data from cell metadata.

Usage

```
sccomp_glm(
  .data,
  formula_composition = ~1,
  formula_variability = ~1,
  .sample,
  .cell_group,
  .count = NULL,
  contrasts = NULL,
  prior_mean_variable_association = list(intercept = c(5, 2), slope = c(0, 0.6),
     standard_deviation = c(20, 40)),
  check_outliers = TRUE,
```

```
bimodal_mean_variability_association = FALSE,
enable_loo = FALSE,
cores = detectCores(),
percent_false_positive = 5,
approximate_posterior_inference = "none",
test_composition_above_logit_fold_change = 0.2,
.sample_cell_group_pairs_to_exclude = NULL,
verbose = FALSE,
noise_model = "multi_beta_binomial",
exclude_priors = FALSE,
use_data = TRUE,
mcmc_seed = sample(1e+05, 1),
max_sampling_iterations = 20000,
pass_fit = TRUE
```

Arguments

)

.data	A tibble including a cell_group name column sample name column read counts column (optional depending on the input class) factor columns.	
formula_compos	ition	
	A formula. The formula describing the model for differential abundance, for example ~treatment.	
formula_variab	ility	
	A formula. The formula describing the model for differential variability, for example ~treatment. In most cases, if differentially variability is of interest, the formula should only include the factor of interest as a large anount of data is needed to define variability depending to each factors.	
.sample	A column name as symbol. The sample identifier	
.cell_group	A column name as symbol. The cell_group identifier	
.count	A column name as symbol. The cell_group abundance (read count). Used only for data frame count output. The variable in this column should be of class integer.	
contrasts	A vector of character strings. For example if your formula is $\sim 0 + \text{treatment}$ and the factor treatment has values yes and no, your contrast could be constrasts = c("treatmentyes - treatmentno").	
prior_mean_variable_association		
	A list of the form list(intercept = $c(5, 2)$, slope = $c(0, 0.6)$, standard_deviation = $c(20, 40)$). Where for intercept and slope parameters, we specify mean and standard deviation, while for standard deviation, we specify shape and rate. This is used to incorporate prior knowledge about the mean/variability association of cell-type proportions.	
check_outliers	A boolean. Whether to check for outliers before the fit.	
<pre>bimodal_mean_variability_association</pre>		
	A boolean. Whether to model the mean-variability as bimodal, as often needed	

A boolean. Whether to model the mean-variability as bimodal, as often needed in the case of single-cell RNA sequencing data, and not usually for CyTOF and

10

	microbiome data. The plot summary_plot()\$credible_intervals_2D can be used to assess whether the bimodality should be modelled.
enable_loo	A boolean. Enable model comparison by the R package LOO. This is helpful when you want to compare the fit between two models, for example, analogously to ANOVA, between a one factor model versus a interceot-only model.
cores	An integer. How many cored to be used with parallel calculations.
percent_false_p	positive
	A real between 0 and 100 non included. This used to identify outliers with a specific false positive rate.
approximate_pos	sterior_inference
	A boolean. Whether the inference of the joint posterior distribution should be approximated with variational Bayes. It confers execution time advantage.
test_compositio	on_above_logit_fold_change
	A positive integer. It is the effect threshold used for the hypothesis test. A value of 0.2 correspond to a change in cell proportion of 10% for a cell type with baseline proportion of 50%. That is, a cell type goes from 45% to 50%. When the baseline proportion is closer to 0 or 1 this effect thrshold has consistent value in the logit uncontrained scale.
.sample_cell_gr	roup_pairs_to_exclude
	A column name that includes a boolean variable for the sample/cell-group pairs to be ignored in the fit. This argument is for pro-users.
verbose	A boolean. Prints progression.
noise_model	A character string. The two noise models available are multi_beta_binomial (default) and dirichlet_multinomial.
exclude_priors	A boolean. Whether to run a prior-free model, for benchmarking purposes.
use_data	A booelan. Whether to sun the model data free. This can be used for prior predictive check.
mcmc_seed	An integer. Used for Markov-chain Monte Carlo reproducibility. By default a random number is sampled from 1 to 999999. This itself can be controlled by set.seed()
<pre>max_sampling_it</pre>	terations
	An integer. This limit the maximum number of iterations in case a large dataset is used, for limiting the computation time.
pass_fit	A boolean. Whether to pass the Stan fit as attribute in the output. Because the Stan fit can be very large, setting this to FALSE can be used to lower the memory imprint to save the output.
ue	

A nested tibble tbl, with the following columns

- cell_group column including the cell groups being tested
- parameter The parameter being estimated, from the design matrix dscribed with the input formula_composition and formula_variability

- factor The factor in the formula corresponding to the covariate, if exists (e.g. it does not exist in case og Intercept or contrasts, which usually are combination of parameters)
- c_lower lower (2.5%) quantile of the posterior distribution for a composition (c) parameter.
- c_effect mean of the posterior distribution for a composition (c) parameter.
- c_upper upper (97.5%) quantile of the posterior distribution fo a composition (c) parameter.
- c_pH0 Probability of the null hypothesis (no difference) for a composition (c). This is not a p-value.
- c_FDR False-discovery rate of the null hypothesis (no difference) for a composition (c).
- c_n_eff Effective sample size the number of independent draws in the sample, the higher the better (mc-stan.org/docs/2_25/cmdstan-guide/stansummary.html).
- c_R_k_hat R statistic, a measure of chain equilibrium, should be within 0.05 of 1.0 (mc-stan.org/docs/2_25/cmdstan-guide/stansummary.html).
- v_lower Lower (2.5%) quantile of the posterior distribution for a variability (v) parameter
- v_effect Mean of the posterior distribution for a variability (v) parameter
- v_upper Upper (97.5%) quantile of the posterior distribution for a variability (v) parameter
- v_pH0 Probability of the null hypothesis (no difference) for a variability (v). This is not a p-value.
- v_FDR False-discovery rate of the null hypothesis (no difference), for a variability (v).
- v_n_eff Effective sample size for a variability (v) parameter the number of independent draws in the sample, the higher the better (mc-stan.org/docs/2_25/cmdstan-guide/stansummary.html).
- v_R_k_hat R statistic for a variability (v) parameter, a measure of chain equilibrium, should be within 0.05 of 1.0 (mc-stan.org/docs/2_25/cmdstan-guide/stansummary.html).
- count_data Nested input count data.

Examples

```
estimate =
  sccomp_glm(
  counts_obj ,
    ~ type,
    ~1,
    sample,
    cell_group,
    count,
    check_outliers = FALSE,
    cores = 1
)
```

data("counts_obj")

sccomp_predict sccomp_predict

Description

This function replicates counts from a real-world dataset.

Usage

```
sccomp_predict(
  fit,
  formula_composition = NULL,
  new_data = NULL,
  number_of_draws = 500,
  mcmc_seed = sample(1e+05, 1)
)
```

Arguments

fit	The result of sccomp_estimate.	
formula_compos	ition	
	A formula. The formula describing the model for differential abundance, for ex- ample ~treatment. This formula can be a sub-formula of your estimated model; in this case all other factor will be factored out.	
new_data	A sample-wise data frame including the column that represent the factors in your formula. If you want to predict proportions for 10 samples, there should be 10 rows. T	
number_of_draws		
	An integer. How may copies of the data you want to draw from the model joint posterior distribution.	
<pre>mcmc_seed</pre>	An integer. Used for Markov-chain Monte Carlo reproducibility. By default a random number is sampled from 1 to 999999. This itself can be controlled by set.seed()	

Value

A nested tibble tbl with cell_group-wise statistics

) |>

sccomp_predict()

sccomp_remove_outliers

sccomp_remove_outliers main

Description

The function for linear modelling takes as input a table of cell counts with three columns containing a cell-group identifier, sample identifier, integer count and the factors (continuous or discrete). The user can define a linear model with an input R formula, where the first factor is the factor of interest. Alternatively, sccomp accepts single-cell data containers (Seurat, SingleCellExperiment44, cell metadata or group-size). In this case, sccomp derives the count data from cell metadata.

Usage

```
sccomp_remove_outliers(
  .estimate,
  percent_false_positive = 5,
  cores = detectCores(),
  variational_inference = TRUE,
  verbose = TRUE,
  mcmc_seed = sample(1e+05, 1),
  max_sampling_iterations = 20000,
  enable_loo = FALSE,
  approximate_posterior_inference = NULL
)
```

Arguments

.estimate	A tibble including a cell_group name column sample name column read counts column (optional depending on the input class) factor columns.	
percent_false_	positive	
	A real between 0 and 100 non included. This used to identify outliers with a specific false positive rate.	
cores	An integer. How many cored to be used with parallel calculations.	
variational_inference		
	Boolean for using variational Bayes for posterior inference. It is faster and convenient. Setting this argument to FALSE runs the full Bayesian (Hamiltonian Monte Carlo) inference, slower but it is the gold standard.	
verbose	A boolean. Prints progression.	
<pre>mcmc_seed</pre>	An integer. Used for Markov-chain Monte Carlo reproducibility. By default a random number is sampled from 1 to 999999. This itself can be controlled by set.seed()	

14

<pre>max_sampling_iterations</pre>		
	An integer. This limit the maximum number of iterations in case a large dataset is used, for limiting the computation time.	
enable_loo	A boolean. Enable model comparison by the R package LOO. This is helpful when you want to compare the fit between two models, for example, analogously to ANOVA, between a one factor model versus a interceot-only model.	
approximate_posterior_inference		
	DEPRECATED please use the variational_inference argument.	

Value

A nested tibble tb1, with the following columns

- cell_group column including the cell groups being tested
- parameter The parameter being estimated, from the design matrix dscribed with the input formula_composition and formula_variability
- factor The factor in the formula corresponding to the covariate, if exists (e.g. it does not exist in case og Intercept or contrasts, which usually are combination of parameters)
- c_lower lower (2.5%) quantile of the posterior distribution for a composition (c) parameter.
- c_effect mean of the posterior distribution for a composition (c) parameter.
- c_upper upper (97.5%) quantile of the posterior distribution fo a composition (c) parameter.
- c_n_eff Effective sample size the number of independent draws in the sample, the higher the better (mc-stan.org/docs/2_25/cmdstan-guide/stansummary.html).
- c_R_k_hat R statistic, a measure of chain equilibrium, should be within 0.05 of 1.0 (mc-stan.org/docs/2_25/cmdstan-guide/stansummary.html).
- v_lower Lower (2.5%) quantile of the posterior distribution for a variability (v) parameter
- v_effect Mean of the posterior distribution for a variability (v) parameter
- v_upper Upper (97.5%) quantile of the posterior distribution for a variability (v) parameter
- v_n_eff Effective sample size for a variability (v) parameter the number of independent draws in the sample, the higher the better (mc-stan.org/docs/2_25/cmdstan-guide/stansummary.html).
- v_R_k_hat R statistic for a variability (v) parameter, a measure of chain equilibrium, should be within 0.05 of 1.0 (mc-stan.org/docs/2_25/cmdstan-guide/stansummary.html).
- count_data Nested input count data.

```
data("counts_obj")
estimate =
   sccomp_estimate(
   counts_obj ,
        ~ type,
        ~1,
      sample,
      cell_group,
   count,
```

```
cores = 1
) |>
sccomp_remove_outliers(cores = 1)
```

sccomp_remove_unwanted_variation
 sccomp_remove_unwanted_variation

Description

This function uses the model to remove unwanted variation from a dataset using the estimated of the model. For example if you fit your data with this formula $\sim factor_1 + factor_2$ and use this formula to remove unwanted variation $\sim factor_1$, the factor_2 will be factored out.

Usage

```
sccomp_remove_unwanted_variation(
  .data,
  formula_composition = ~1,
  formula_variability = NULL
)
```

Arguments

.data A tibble. The result of sccomp_estimate.

formula_composition

A formula. The formula describing the model for differential abundance, for example ~treatment. This formula can be a sub-formula of your estimated model; in this case all other factor will be factored out.

formula_variability

A formula. The formula describing the model for differential variability, for example ~treatment. In most cases, if differentially variability is of interest, the formula should only include the factor of interest as a large anount of data is needed to define variability depending to each factors. This formula can be a sub-formula of your estimated model; in this case all other factor will be factored out.

Value

A nested tibble tbl with cell_group-wise statistics

16

sccomp_replicate

Examples

sccomp_remove_unwanted_variation(estimates)

sccomp_replicate sccomp_replicate

Description

This function replicates counts from a real-world dataset.

Usage

```
sccomp_replicate(
   fit,
   formula_composition = NULL,
   formula_variability = NULL,
   number_of_draws = 1,
   mcmc_seed = sample(1e+05, 1)
)
```

Arguments

fit	The result of sccomp_estimate.
formula_composi	tion
formula variabi	A formula. The formula describing the model for differential abundance, for example ~treatment. This formula can be a sub-formula of your estimated model; in this case all other factor will be factored out.
formula_variabi	iity
	A formula. The formula describing the model for differential variability, for example ~treatment. In most cases, if differentially variability is of interest, the formula should only include the factor of interest as a large anount of data is needed to define variability depending to each factors. This formula can be a sub-formula of your estimated model; in this case all other factor will be factored out.
number_of_draws	
	An integer. How may copies of the data you want to draw from the model joint posterior distribution.
mcmc_seed	An integer. Used for Markov-chain Monte Carlo reproducibility. By default a random number is sampled from 1 to 999999. This itself can be controlled by set.seed()

Value

A nested tibble tbl with cell_group-wise statistics

Examples

sccomp_test

Description

This function test contrasts from a sccomp result.

Usage

```
sccomp_test(
  .data,
  contrasts = NULL,
  percent_false_positive = 5,
  test_composition_above_logit_fold_change = 0.2,
  pass_fit = TRUE
)
```

sccomp_test

Arguments

.data	A tibble. The result of sccomp_estimate.	
contrasts	A vector of character strings. For example if your formula is $\sim 0 + \text{treatment}$ and the factor treatment has values yes and no, your contrast could be "constrasts = c(treatmentyes - treatmentno)".	
percent_false_positive		
	A real between 0 and 100 non included. This used to identify outliers with a specific false positive rate.	
<pre>test_composition_above_logit_fold_change</pre>		
	A positive integer. It is the effect threshold used for the hypothesis test. A value	
	of 0.2 correspond to a change in cell proportion of 10% for a cell type with	
	baseline proportion of 50%. That is, a cell type goes from 45% to 50%. When	

sce_obj	19
	the baseline proportion is closer to 0 or 1 this effect thrshold has consistent value in the logit uncontrained scale.
pass_fit	A boolean. Whether to pass the Stan fit as attribute in the output. Because the Stan fit can be very large, setting this to FALSE can be used to lower the memory imprint to save the output.

Value

A nested tibble tbl with cell_group-wise statistics

Examples

```
data("counts_obj")
estimates =
sccomp_estimate(
counts_obj ,
~ 0 + type, ~1, sample, cell_group, count,
cores = 1
) |>
```

```
sccomp_test("typecancer - typebenign")
```

sce_obj	sce_obj		
---------	---------	--	--

Description

Example SingleCellExperiment data set. SingleCellExperiment data objects can be directly used with sccomp_glm function.

Usage

data(sce_obj)

Format

A SingeCellExperiment object. SingeCellExperiment data objects can be directly used with sc-comp_glm function.

seurat_obj

Description

Example Seurat data set. Seurat data objects can be directly used with sccomp_glm function.

Usage

data(seurat_obj)

Format

A Seurat object

simulate_data simulate_data

Description

This function simulates counts from a linear model.

Usage

```
simulate_data(
  .data,
  .estimate_object,
  formula_composition,
  formula_variability = NULL,
  .sample = NULL,
  .cell_group = NULL,
  .coefficients = NULL,
  variability_multiplier = 5,
  number_of_draws = 1,
  mcmc_seed = sample(1e+05, 1)
)
```

Arguments

.data

A tibble including a cell_group name column | sample name column | read counts column | factor columns | Pvalue column | a significance column

.estimate_object

The result of sccomp_estimate execution. This is used for sampling from realdata properties. formula_composition

A formula. The sample formula used to perform the differential cell_group abundance analysis

formula_variability

	A formula. The formula describing the model for differential variability, for example ~treatment. In most cases, if differentially variability is of interest, the formula should only include the factor of interest as a large anount of data is needed to define variability depending to each factors.	
.sample	A column name as symbol. The sample identifier	
.cell_group	A column name as symbol. The cell_group identifier	
.coefficients	The column names for coefficients, for example, $c(b_0, b_1)$	
variability_multiplier		
	A real scalar. This can be used for artificially increasing the variability of the simulation for benchmarking purposes.	
number_of_draws		
	An integer. How may copies of the data you want to draw from the model joint posterior distribution.	
<pre>mcmc_seed</pre>	An integer. Used for Markov-chain Monte Carlo reproducibility. By default a random number is sampled from 1 to 9999999. This itself can be controlled by set.seed()	

Value

A nested tibble tbl with cell_group-wise statistics

```
data("counts_obj")
library(dplyr)
estimate =
  sccomp_estimate(
  counts_obj,
    ~ type, ~1, sample, cell_group, count,
    cores = 1
  )
# Set coefficients for cell_groups. In this case all coefficients are 0 for simplicity.
counts_obj = counts_obj |> mutate(b_0 = 0, b_1 = 0)
# Simulate data
simulate_data(counts_obj, estimate, ~type, ~1, sample, cell_group, c(b_0, b_1))
```

test_contrasts test_contrasts

Description

This function test ocntrasts from a sccomp result.

Usage

```
test_contrasts(
  .data,
  contrasts = NULL,
  percent_false_positive = 5,
  test_composition_above_logit_fold_change = 0.2,
  pass_fit = TRUE
)
```

Arguments

.data	A tibble. The result of sccomp_glm.		
contrasts	A vector of character strings. For example if your formula is ~ $0 +$ treatment and the factor treatment has values yes and no, your contrast could be "constrasts = c(treatmentyes - treatmentno)".		
percent_false_positive			
	A real between 0 and 100 non included. This used to identify outliers with a specific false positive rate.		
<pre>test_composition_above_logit_fold_change</pre>			
	A positive integer. It is the effect threshold used for the hypothesis test. A value of 0.2 correspond to a change in cell proportion of 10% for a cell type with baseline proportion of 50%. That is, a cell type goes from 45% to 50%. When the baseline proportion is closer to 0 or 1 this effect thrshold has consistent value in the logit uncontrained scale.		
pass_fit	A boolean. Whether to pass the Stan fit as attribute in the output. Because the Stan fit can be very large, setting this to FALSE can be used to lower the memory imprint to save the output.		

Value

A nested tibble tb1 with cell_group-wise statistics

```
data("counts_obj")
```

```
estimates =
sccomp_glm(
counts_obj ,
```

test_contrasts

```
~ 0 + type, ~1, sample, cell_group, count,
    check_outliers = FALSE,
    cores = 1
) |>
test_contrasts("typecancer - typebenign")
```

Index

* datasets counts_obj, 3 sce_obj, 19 $seurat_obj, 20$ counts_obj, 3 multi_beta_glm, 3 plot.sccomp_tbl,4 plot_summary, 5 sccomp (sccomp-package), 2 sccomp-package, 2sccomp_boxplot, 6 $\texttt{sccomp_estimate}, \mathbf{6}$ sccomp_glm, 9 sccomp_predict, 13 sccomp_remove_outliers, 14 sccomp_remove_unwanted_variation, 16 sccomp_replicate, 17 sccomp_test, 18 sce_obj, 19 seurat_obj, 20 simulate_data, 20

 $test_contrasts, 22$