Package 'scTreeViz'

Title: R/Bioconductor package to interactively explore and visualize single cell RNA-seq datasets with hierarhical annotations
Description: scTreeViz provides classes to support interactive data aggregation and visualization of single cell RNA-seq datasets with hierarchies for e.g. cell clusters at different resolutions. The `TreeIndex` class provides methods to manage hierarchy and split the tree at a given resolution or across resolutions. The `TreeViz` class extends `SummarizedExperiment` and can performs quick aggregations on the count matrix defined by clusters.
Authors: Jayaram Kancherla [aut, cre], Hector Corrada Bravo [aut], Kazi Tasnim Zinat [aut], Stephanie Hicks [aut]
Maintainer: Jayaram Kancherla <[email protected]>
License: Artistic-2.0
Version: 1.13.0
Built: 2024-11-19 04:33:40 UTC
Source: https://github.com/bioc/scTreeViz

Help Index


generate hierarchy tree

Description

generate hierarchy tree

Usage

.generate_hierarchy_tree(hierarchy, feature_order)

Arguments

hierarchy

hierarchy as a data.table

feature_order

order of the tree if different from colnames

Value

a data frame object


generate leaf of table

Description

generate leaf of table

Usage

.generate_leaf_of_table(
  hierarchy_tree,
  node_ids_table,
  nodes_table,
  feature_order
)

Arguments

hierarchy_tree

hierarchy as a data.table

node_ids_table

node ids

nodes_table

nodes table

feature_order

order of the tree if different from colnames

Value

a data frame object


generate node ids in the tree

Description

generate node ids in the tree

Usage

.generate_node_ids(hierarchy_tree, feature_order)

Arguments

hierarchy_tree

hierarchy as a data.table

feature_order

order of the tree if different from colnames

Value

a data frame object


generate nodes table tree

Description

generate nodes table tree

Usage

.generate_nodes_table(hierarchy_tree, node_ids_table, feature_order)

Arguments

hierarchy_tree

hierarchy as a data.table

node_ids_table

node ids

feature_order

order of the tree if different from colnames

Value

a data frame object


replace if there are NA's in the hierarchy

Description

replace if there are NA's in the hierarchy

Usage

.replaceNAFeatures(replacing_na_obj_fData, feature_order)

Arguments

replacing_na_obj_fData

hierarchy data table

feature_order

order of the tree if different from colnames

Value

a data frame object


Subset TreeIndex

Description

Subset TreeIndex

Generic method to get nodes at a tree level

Method to get nodes at a tree level

Generic method for possible node states

Method to get possible node states a node state is 0 if removed, 1 if expanded to show children & 2 if counts are aggregated to the node

Generic method to split the tree

splitAt divides the TreeIndex into groups defined by the level, node selections and filters(start, end)

Show the TreeIndex object

Usage

## S4 method for signature 'TreeIndex,ANY,ANY,ANY'
x[i, j, ..., drop = FALSE]

getNodes(x, ...)

## S4 method for signature 'TreeIndex'
getNodes(x, selectedLevel = NULL)

getNodeStates(x)

## S4 method for signature 'TreeIndex'
getNodeStates(x)

splitAt(x, ...)

## S4 method for signature 'TreeIndex'
splitAt(
  x,
  selectedLevel = 3,
  selectedNodes = NULL,
  start = 1,
  end = NULL,
  format = "list"
)

## S4 method for signature 'TreeIndex'
show(object)

Arguments

x

TreeIndex object

i, j

indices to subset or keep

...

other parameters

drop

drop the dimensions of the object. defaults to FALSE

selectedLevel

tree level to select nodes from

selectedNodes

used to set states on individual nodes to define a cut on the tree

start, end

indices to filter nodes by

format

return format can be one of "list" or "TreeIndex"

object

TreeIndex object

Value

a 'TreeIndex' subset object

a generic

levels at node cut

node state

node states

a generic

a 'TreeIndex' object or type set in format

object description of the 'TreeIndex' object

Examples

library(metagenomeSeq)
data(mouseData)
counts <- MRcounts(mouseData)
hierarchy <- fData(mouseData)
tree <- TreeIndex(hierarchy)
getNodes(tree)
library(metagenomeSeq)
data(mouseData)
counts <- MRcounts(mouseData)
hierarchy <- fData(mouseData)
tree <- TreeIndex(hierarchy)
getNodes(tree)
 
library(metagenomeSeq)
data(mouseData)
counts <- MRcounts(mouseData)
hierarchy <- fData(mouseData)
tree <- TreeIndex(hierarchy)
splitAt(tree)

 
library(metagenomeSeq)
data(mouseData)
counts <- MRcounts(mouseData)
hierarchy <- fData(mouseData)
tree <- TreeIndex(hierarchy)
splitAt(tree)

Creates a new ClusterHierarchy object.

Description

Works as a validation check for multiple issues user passed dataframe might have. For example, multiple root nodes, incompatible naming, multiple parents of a single node, etc This function performs all this checks and tries to resolve the issues by making changes in cluster assignment User can give either col_regex or columns option to filter the columns or specify the column order

Usage

ClusterHierarchy(hierarchy, col_regex = NULL, columns = NULL)

Arguments

hierarchy

hierarchy as a dataFrame

col_regex

Regular Expression for choosing columns

columns

Vector containing list of columns to choose from with ordering

Value

'ClusterHierarchy“ return an object of class ClusterHierarchy containing cluster information that ensures a valid dataframe for treeviz input

Examples

n=64
# create a hierarchy
df<- data.frame(cluster0=rep(1,n))
for(i in seq(1,5)){
  df[[paste0("cluster",i)]]<- rep(seq(1:(2**i)),each=ceiling(n/(2**i)),len=n)
}
clus_hier<-ClusterHierarchy(df, col_regex = "clus")

ClusterHierarchy class to manage treeviz cluster data

Description

ClusterHierarchy class to manage treeviz cluster data


Creates a 'TreeViz“ object from 'SingleCellExperiment'. Generates clusters based on Walktrap algorithm if no default is provided

Description

Creates a 'TreeViz“ object from 'SingleCellExperiment'. Generates clusters based on Walktrap algorithm if no default is provided

Usage

createFromSCE(
  object,
  check_coldata = FALSE,
  col_regex = NULL,
  columns = NULL,
  reduced_dim = c("TSNE")
)

Arguments

object

'SingleCellExperiment' object to be visualized

check_coldata

whether to colData of 'SingeCellExperiment' object for cluster information or not

col_regex

common regular expression shared across all columns with cluster information

columns

vector containing columns with cluster information

reduced_dim

Vector of Dimensionality reduction information provided in 'SingeCellExperiment' object to be added in 'TreeViz' (if exists)

Value

'TreeViz' Object

Examples

library(SingleCellExperiment)
library(scater)
sce <- mockSCE()
sce <- logNormCounts(sce)
sce <- runTSNE(sce)
sce <- runUMAP(sce)
set.seed(1000)
for (i in  seq_len(5)) {
clust.kmeans <- kmeans(reducedDim(sce, "TSNE"), centers = i)
sce[[paste0("clust", i)]] <- factor(clust.kmeans$cluster)
}
treeviz <-createFromSCE(sce, check_coldata = TRUE, col_regex = "clust", reduced_dim = c("TSNE", "UMAP"))

Creates a 'TreeViz' object from 'Seurat'

Description

Creates a 'TreeViz' object from 'Seurat'

Usage

createFromSeurat(
  object,
  check_metadata = FALSE,
  col_regex = "*snn*",
  columns = NULL,
  reduced_dim = c("TSNE")
)

Arguments

object

'Seurat' class containing cluster information at different resolutions

check_metadata

whether to metaData of 'Seurat' object for cluster information or not

col_regex

common regular expression shared across all columns with cluster information

columns

vector containing columns with cluster information

reduced_dim

Vector of Dimensionality reduction information provided in 'Seurat' object to be added in 'TreeViz' (if exists)

Value

'TreeViz' Object

Examples

library(Seurat)
data(pbmc_small)
pbmc <- pbmc_small
treeviz<- createFromSeurat(pbmc, check_metadata = TRUE, reduced_dim = c("pca","tsne"))

Creates 'TreeViz' object from hierarchy and count matrix

Description

Provided with a count matrix and a dataframe or 'ClusterHierarchy' object, this module runs the necessary checks on the dataframe and tries to convert it to a tree by making necessary changes. Returns the 'TreeViz' object if a tree is successfully generated from dataframe, throws error otherwise

Usage

createTreeViz(clusters, counts)

Arguments

clusters

'ClusterHierarchy' object or a dataframe containing cluster information at different resolutions

counts

matrix Dense or sparse matrix containing the count matrix

Value

'TreeViz“ Object

Examples

n=64
# create a hierarchy
df<- data.frame(cluster0=rep(1,n))
for(i in seq_len(5)){
  df[[paste0("cluster",i)]]<- rep(seq(1:(2**i)),each=ceiling(n/(2**i)),len=n)
}
# generate a count matrix
counts <- matrix(rpois(6400, lambda = 10), ncol=n, nrow=100)
colnames(counts)<- seq_len(64)
# create a `TreeViz` object
treeViz <- createTreeViz(df, counts)

Data container for MRexperiment objects

Description

Used to serve hierarchical data (used in e.g., icicle plots and heatmaps).

Methods

df_to_tree(root, df)

Helper function to recursively build nested response for getHierarchy

root

Root of subtree

df

data.frame containing children to process

get_default_chart_type()

Get name of default chart type for this data type

get_measurements()

Get description of measurements served by this object

getCombined( measurements = NULL, seqName, start = 1, end = 1000, order = NULL, nodeSelection = NULL, selectedLevels = NULL )

Return the counts aggregated to selected nodes for the given samples

measurements

Samples to get counts for

seqName

name of datasource

start

Start of feature range to query

end

End of feature range to query

order

Ordering of nodes

nodeSelection

Node-id and selectionType pairs

selectedLevels

Current aggregation level

getHierarchy(nodeId = NULL)

Retrieve feature hierarchy information for subtree with specified root

nodeId

Feature identifier with level info

getReducedDim(method = NULL, gene = NULL)

Compute PCA over all features for given samples

method

which dimension to access

gene

send expression of a gene back with the dimensions

getRows( measurements = NULL, start = 1, end = 1000, selectedLevels = 3, selections = NULL )

Return the sample annotation and features within the specified range and level for a given sample and features

measurements

Samples to retrieve for

start

Start of feature range to query

end

End of feature range to query

selections

Node-id and selectionType pairs

selectedLevels

Current aggregation level

propagateHierarchyChanges( selection = NULL, order = NULL, selectedLevels = NULL, request_with_labels = FALSE )

Update internal state for hierarchy

selection

Node-id and selectionType pairs

order

Ordering of features

selectedLevels

Current aggregation level

request_with_labels

For handling requests using fData entries from MRexperiment

row_to_dict(row)

Helper function to format each node entry for getHierarchy response

row

Information for current node.

searchTaxonomy(query = NULL, max_results = 15)

Return list of features matching a text-based query

query

String of feature for which to search

max_results

Maximum results to return


Sets gene list for visualization

Description

Sets gene list for visualization

Usage

set_gene_list(treeviz, genes)

Arguments

treeviz

TreeViz object

genes

list of genes to use

Value

TreeViz object set with gene list


show object

Description

show object

Method to aggregate a TreeViz object

Method to aggregate a TreeViz object

Generic method to register data to the epiviz data server

plot tree from TreeViz

Usage

## S4 method for signature 'TreeViz'
show(object)

aggregateTree(x, ...)

## S4 method for signature 'TreeViz'
aggregateTree(
  x,
  selectedLevel = 3,
  selectedNodes = NULL,
  aggFun = colSums,
  start = 1,
  end = NULL,
  by = "row",
  format = "TreeViz"
)

## S4 method for signature 'TreeViz'
register(object, tree = "row", columns = NULL, ...)

## S4 method for signature 'TreeViz,ANY'
plot(x, y)

Arguments

object

The object to register to data server

x

treeviz object

...

Additional arguments passed to object constructors

selectedLevel

level to select nodes from

selectedNodes

used to set states on individual nodes to define a cut on the tree

aggFun

aggregate function to use, by default colSums if by="row", rowSums if by="col"

start, end

indices to filter nodes

by

"row" to aggregate the TreeIndex on rowData, "col" to aggregate TreeIndex on colData

format

return format can be one of "counts" or "TreeViz"

tree

Is tree over rows or columns of the object (default: "row")

columns

Name of columns containing data to register

y

none

Value

describe a TreeIndex object

a generic

a Treeviz object or type specified by format

An EpivizTreeData-class object

Dataframe containing cluster information at different resolutions

Functions

  • show,TreeViz-method:

  • aggregateTree:

  • aggregateTree,TreeViz-method:

  • register,TreeViz-method:

  • plot,TreeViz,ANY-method:

Examples

library(metagenomeSeq)
data(mouseData)
counts <- MRcounts(mouseData)
hierarchy <- fData(mouseData)
tree <- TreeIndex(hierarchy)
mbiome <- TreeViz(SimpleList(counts=counts), rowData=tree)
aggregateTree(mbiome)

 
library(metagenomeSeq)
data(mouseData)
counts <- MRcounts(mouseData)
hierarchy <- fData(mouseData)
tree <- TreeIndex(hierarchy)
mbiome <- TreeViz(SimpleList(counts=counts), rowData=tree)
aggregateTree(mbiome)


library(metagenomeSeq)
data(mouseData)
counts <- MRcounts(mouseData)
hierarchy <- fData(mouseData)
tree <- TreeIndex(hierarchy)
mbiome <- TreeViz(SimpleList(counts=counts), rowData=tree)
plot(mbiome)

Start treeviz app and create TreeVizApp object to manage connection.

Description

Start treeviz app and create TreeVizApp object to manage connection.

Usage

startTreeviz(
  data = NULL,
  genes = NULL,
  top_genes = 100,
  host = "http://epiviz.cbcb.umd.edu/treeviz",
  register_function = .register_all_treeviz_things,
  delay = 2L,
  ...
)

Arguments

data

TreeViz object to explore

genes

(character vector) genes (rownames) to include in heatmap

top_genes

(integer) number of top variable genes to include in the heatmap

host

(character) host address to launch.

register_function

(function) function used to register actions and charts on the treeviz app.

delay

(integer) number of seconds to wait for application to load in browser

...

additional parameters passed to startEpiviz.

Value

An object of class TreeVizApp

See Also

TreeVizApp

Examples

# see package vignette for example usage
app <- startTreeviz(non_interactive=TRUE, open_browser=FALSE)
app$stop_app()

create a new TreeIndex object

Description

create a new TreeIndex object

Usage

TreeIndex(hierarchy = NULL, feature_order = NULL)

Arguments

hierarchy

hierarchy as a data.table

feature_order

order of the tree if different from colnames

Value

a 'TreeIndex' object

Examples

library(metagenomeSeq)
data(mouseData)
counts <- MRcounts(mouseData)
hierarchy <- fData(mouseData)
tree <- TreeIndex(hierarchy)

TreeIndex class to manage and query hierarchical data

Description

TreeIndex class to manage and query hierarchical data


The TreeViz class.

Description

SummarizedExperiment-like class for datasets that have hierarchies on either rowData or colData. For microbiome data, rowData is a tree hierarchy For single cell data, colData is a tree hierarchy

Usage

TreeViz(assays = SimpleList(), rowData = NULL, colData = NULL, ...)

Arguments

assays

simple list of counts

rowData

rowData

colData

colData

...

other parameters for SummarizedExperiment

Value

a 'TreeViz' object

Examples

library(metagenomeSeq)
data(mouseData)
counts <- MRcounts(mouseData)
hierarchy <- fData(mouseData)
tree <- TreeIndex(hierarchy)
mbiome <- TreeViz(SimpleList(counts=counts), rowData=tree)

TreeViz class wrapper for SummarizedExperiment objects

Description

TreeViz class wrapper for SummarizedExperiment objects


Class managing connection to metaviz application.

Description

Class managing connection to metaviz application.

Methods

plotGene(gene = NULL, datasource_name = "SCRNA_1")

Plot a bar plot for a gene across cell types

gene

gene to extract expression values

datasource_name

object to extract from (automatically selected)