# To install scGPS from github (Depending on the configuration of the local
# computer or HPC, possible custom C++ compilation may be required - see
# installation trouble-shootings below)
devtools::install_github("IMB-Computational-Genomics-Lab/scGPS")
# for C++ compilation trouble-shooting, manual download and installation can be
# done from github
git clone https://github.com/IMB-Computational-Genomics-Lab/scGPS
# then check in scGPS/src if any of the precompiled (e.g. those with *.so and
# *.o) files exist and delete them before recompiling
# then with the scGPS as the R working directory, manually install and load
# using devtools functionality
# Install the package
devtools::install()
#load the package to the workspace
library(scGPS)
The purpose of this workflow is to solve the following task:
# load mixed population 1 (loaded from day_2_cardio_cell_sample dataset,
# named it as day2)
library(scGPS)
day2 <- day_2_cardio_cell_sample
mixedpop1 <- new_scGPS_object(ExpressionMatrix = day2$dat2_counts,
GeneMetadata = day2$dat2geneInfo, CellMetadata = day2$dat2_clusters)
# load mixed population 2 (loaded from day_5_cardio_cell_sample dataset,
# named it as day5)
day5 <- day_5_cardio_cell_sample
mixedpop2 <- new_scGPS_object(ExpressionMatrix = day5$dat5_counts,
GeneMetadata = day5$dat5geneInfo, CellMetadata = day5$dat5_clusters)
# select a subpopulation
c_selectID <- 1
# load gene list (this can be any lists of user selected genes)
genes <- training_gene_sample
genes <- genes$Merged_unique
# load cluster information
cluster_mixedpop1 <- colData(mixedpop1)[,1]
cluster_mixedpop2 <- colData(mixedpop2)[,1]
#run training (running nboots = 3 here, but recommend to use nboots = 50-100)
LSOLDA_dat <- bootstrap_prediction(nboots = 3, mixedpop1 = mixedpop1,
mixedpop2 = mixedpop2, genes = genes, c_selectID = c_selectID,
listData = list(), cluster_mixedpop1 = cluster_mixedpop1,
cluster_mixedpop2 = cluster_mixedpop2, trainset_ratio = 0.7)
names(LSOLDA_dat)
#> [1] "Accuracy" "ElasticNetGenes" "Deviance"
#> [4] "ElasticNetFit" "LDAFit" "predictor_S1"
#> [7] "ElasticNetPredict" "LDAPredict" "cell_results"
# summary results LDA
sum_pred_lda <- summary_prediction_lda(LSOLDA_dat = LSOLDA_dat, nPredSubpop = 4)
# summary results Lasso to show the percent of cells
# classified as cells belonging
sum_pred_lasso <- summary_prediction_lasso(LSOLDA_dat = LSOLDA_dat,
nPredSubpop = 4)
# plot summary results
plot_sum <-function(sum_dat){
sum_dat_tf <- t(sum_dat)
sum_dat_tf <- na.omit(sum_dat_tf)
sum_dat_tf <- apply(sum_dat[, -ncol(sum_dat)],1,
function(x){as.numeric(as.vector(x))})
sum_dat$names <- gsub("ElasticNet for subpop","sp", sum_dat$names )
sum_dat$names <- gsub("in target mixedpop","in p", sum_dat$names)
sum_dat$names <- gsub("LDA for subpop","sp", sum_dat$names )
sum_dat$names <- gsub("in target mixedpop","in p", sum_dat$names)
colnames(sum_dat_tf) <- sum_dat$names
boxplot(sum_dat_tf, las=2)
}
plot_sum(sum_pred_lasso)
# summary accuracy to check the model accuracy in the leave-out test set
summary_accuracy(object = LSOLDA_dat)
#> [1] 65.25822 66.04651 58.96226
# summary maximum deviance explained by the model
summary_deviance(object = LSOLDA_dat)
#> $allDeviance
#> [1] "10.11" "9.18" "10.42"
#>
#> $DeviMax
#> dat_DE$Dfd Deviance DEgenes
#> 1 0 9.18 genes_cluster1
#> 2 2 9.18 genes_cluster1
#> 3 3 9.18 genes_cluster1
#> 4 remaining DEgenes remaining DEgenes remaining DEgenes
#>
#> $LassoGenesMax
#> NULL
The purpose of this workflow is to solve the following task:
(skip this step if clusters are known)
# find clustering information in an expresion data using CORE
day5 <- day_5_cardio_cell_sample
cellnames <- colnames(day5$dat5_counts)
cluster <-day5$dat5_clusters
cellnames <-data.frame("Cluster"=cluster, "cellBarcodes" = cellnames)
mixedpop2 <-new_scGPS_object(ExpressionMatrix = day5$dat5_counts,
GeneMetadata = day5$dat5geneInfo, CellMetadata = cellnames)
CORE_cluster <- CORE_clustering(mixedpop2, remove_outlier = c(0), PCA=FALSE)
# to update the clustering information, users can ...
key_height <- CORE_cluster$optimalClust$KeyStats$Height
optimal_res <- CORE_cluster$optimalClust$OptimalRes
optimal_index = which(key_height == optimal_res)
clustering_after_outlier_removal <- unname(unlist(
CORE_cluster$Cluster[[optimal_index]]))
corresponding_cells_after_outlier_removal <- CORE_cluster$cellsForClustering
original_cells_before_removal <- colData(mixedpop2)[,2]
corresponding_index <- match(corresponding_cells_after_outlier_removal,
original_cells_before_removal )
# check the matching
identical(as.character(original_cells_before_removal[corresponding_index]),
corresponding_cells_after_outlier_removal)
#> [1] TRUE
# create new object with the new clustering after removing outliers
mixedpop2_post_clustering <- mixedpop2[,corresponding_index]
colData(mixedpop2_post_clustering)[,1] <- clustering_after_outlier_removal
(skip this step if clusters are known)
(SCORE aims to get stable subpopulation results by introducing bagging aggregation and bootstrapping to the CORE algorithm)
# find clustering information in an expresion data using SCORE
day5 <- day_5_cardio_cell_sample
cellnames <- colnames(day5$dat5_counts)
cluster <-day5$dat5_clusters
cellnames <-data.frame("Cluster"=cluster, "cellBarcodes" = cellnames)
mixedpop2 <-new_scGPS_object(ExpressionMatrix = day5$dat5_counts,
GeneMetadata = day5$dat5geneInfo, CellMetadata = cellnames )
SCORE_test <- CORE_bagging(mixedpop2, remove_outlier = c(0), PCA=FALSE,
bagging_run = 20, subsample_proportion = .8)
dev.off()
#> null device
#> 1
##3.2.1 plot CORE clustering
p1 <- plot_CORE(CORE_cluster$tree, CORE_cluster$Cluster,
color_branch = c("#208eb7", "#6ce9d3", "#1c5e39", "#8fca40", "#154975",
"#b1c8eb"))
p1
#> $mar
#> [1] 1 5 0 1
#extract optimal index identified by CORE
key_height <- CORE_cluster$optimalClust$KeyStats$Height
optimal_res <- CORE_cluster$optimalClust$OptimalRes
optimal_index = which(key_height == optimal_res)
#plot one optimal clustering bar
plot_optimal_CORE(original_tree= CORE_cluster$tree,
optimal_cluster = unlist(CORE_cluster$Cluster[optimal_index]),
shift = -2000)
#> Ordering and assigning labels...
#> 2
#> 162335NA
#> 3
#> 162335423
#> Plotting the colored dendrogram now....
#> Plotting the bar underneath now....
##3.2.2 plot SCORE clustering
#plot all clustering bars
plot_CORE(SCORE_test$tree, list_clusters = SCORE_test$Cluster)
#plot one stable optimal clustering bar
plot_optimal_CORE(original_tree= SCORE_test$tree,
optimal_cluster = unlist(SCORE_test$Cluster[
SCORE_test$optimal_index]),
shift = -100)
#> Ordering and assigning labels...
#> 2
#> 24112NANANANANA
#> 3
#> 24112250NANANANA
#> 4
#> 24112250335NANANA
#> 5
#> 24112250335367NANA
#> 6
#> 24112250335367414NA
#> 7
#> 24112250335367414470
#> Plotting the colored dendrogram now....
#> Plotting the bar underneath now....
t <- tSNE(expression.mat=assay(mixedpop2))
#> Preparing PCA inputs using the top 1500 genes ...
#> Computing PCA values...
#> Running tSNE ...
p2 <-plot_reduced(t, color_fac = factor(colData(mixedpop2)[,1]),
palletes =1:length(unique(colData(mixedpop2)[,1])))
#> Warning: The dot-dot notation (`..count..`) was deprecated in ggplot2 3.4.0.
#> ℹ Please use `after_stat(count)` instead.
#> ℹ The deprecated feature was likely used in the cowplot package.
#> Please report the issue at <https://github.com/wilkelab/cowplot/issues>.
#> This warning is displayed once every 8 hours.
#> Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
#> generated.
#> Warning: Use of `reduced_dat_toPlot$Dim1` is discouraged.
#> ℹ Use `Dim1` instead.
#> Warning: Use of `reduced_dat_toPlot$Dim2` is discouraged.
#> ℹ Use `Dim2` instead.
p2
#load gene list (this can be any lists of user-selected genes)
genes <-training_gene_sample
genes <-genes$Merged_unique
#the gene list can also be objectively identified by differential expression
#analysis cluster information is requied for find_markers. Here, we use
#CORE results.
#colData(mixedpop2)[,1] <- unlist(SCORE_test$Cluster[SCORE_test$optimal_index])
suppressMessages(library(locfit))
DEgenes <- find_markers(expression_matrix=assay(mixedpop2),
cluster = colData(mixedpop2)[,1],
selected_cluster=unique(colData(mixedpop2)[,1]))
#the output contains dataframes for each cluster.
#the data frame contains all genes, sorted by p-values
names(DEgenes)
#> [1] "baseMean" "log2FoldChange" "lfcSE" "stat"
#> [5] "pvalue" "padj" "id"
#you can annotate the identified clusters
DEgeneList_1vsOthers <- DEgenes$DE_Subpop1vsRemaining$id
#users need to check the format of the gene input to make sure they are
#consistent to the gene names in the expression matrix
#the following command saves the file "PathwayEnrichment.xlsx" to the
#working dir
#use 500 top DE genes
suppressMessages(library(DOSE))
suppressMessages(library(ReactomePA))
suppressMessages(library(clusterProfiler))
genes500 <- as.factor(DEgeneList_1vsOthers[seq_len(500)])
enrichment_test <- annotate_clusters(genes, pvalueCutoff=0.05, gene_symbol=TRUE)
#the enrichment outputs can be displayed by running
clusterProfiler::dotplot(enrichment_test, showCategory=10, font.size = 6)
The purpose of this workflow is to solve the following task:
#select a subpopulation, and input gene list
c_selectID <- 1
#note make sure the format for genes input here is the same to the format
#for genes in the mixedpop1 and mixedpop2
genes = DEgenes$id[1:500]
#run the test bootstrap with nboots = 2 runs
cluster_mixedpop1 <- colData(mixedpop1)[,1]
cluster_mixedpop2 <- colData(mixedpop2)[,1]
LSOLDA_dat <- bootstrap_prediction(nboots = 2, mixedpop1 = mixedpop1,
mixedpop2 = mixedpop2, genes = genes,
c_selectID = c_selectID,
listData = list(),
cluster_mixedpop1 = cluster_mixedpop1,
cluster_mixedpop2 = cluster_mixedpop2)
#get the number of rows for the summary matrix
row_cluster <-length(unique(colData(mixedpop2)[,1]))
#summary results LDA to to show the percent of cells classified as cells
#belonging by LDA classifier
summary_prediction_lda(LSOLDA_dat=LSOLDA_dat, nPredSubpop = row_cluster )
#> V1 V2 names
#> 1 96.7914438502674 95.1871657754011 LDA for subpop 1 in target mixedpop2
#> 2 82.8571428571429 80.7142857142857 LDA for subpop 2 in target mixedpop2
#> 3 90.2255639097744 92.4812030075188 LDA for subpop 3 in target mixedpop2
#> 4 82.5 75 LDA for subpop 4 in target mixedpop2
#summary results Lasso to show the percent of cells classified as cells
#belonging by Lasso classifier
summary_prediction_lasso(LSOLDA_dat=LSOLDA_dat, nPredSubpop = row_cluster)
#> V1 V2 names
#> 1 9.09090909090909 48.6631016042781 ElasticNet for subpop1 in target mixedpop2
#> 2 98.5714285714286 98.5714285714286 ElasticNet for subpop2 in target mixedpop2
#> 3 80.4511278195489 63.9097744360902 ElasticNet for subpop3 in target mixedpop2
#> 4 90 72.5 ElasticNet for subpop4 in target mixedpop2
# summary maximum deviance explained by the model during the model training
summary_deviance(object = LSOLDA_dat)
#> $allDeviance
#> [1] "40.71" "61.05"
#>
#> $DeviMax
#> dat_DE$Dfd Deviance DEgenes
#> 1 0 61.05 genes_cluster1
#> 2 1 61.05 genes_cluster1
#> 3 3 61.05 genes_cluster1
#> 4 4 61.05 genes_cluster1
#> 5 5 61.05 genes_cluster1
#> 6 7 61.05 genes_cluster1
#> 7 10 61.05 genes_cluster1
#> 8 11 61.05 genes_cluster1
#> 9 13 61.05 genes_cluster1
#> 10 20 61.05 genes_cluster1
#> 11 24 61.05 genes_cluster1
#> 12 25 61.05 genes_cluster1
#> 13 26 61.05 genes_cluster1
#> 14 27 61.05 genes_cluster1
#> 15 28 61.05 genes_cluster1
#> 16 29 61.05 genes_cluster1
#> 17 32 61.05 genes_cluster1
#> 18 36 61.05 genes_cluster1
#> 19 37 61.05 genes_cluster1
#> 20 40 61.05 genes_cluster1
#> 21 44 61.05 genes_cluster1
#> 22 remaining DEgenes remaining DEgenes remaining DEgenes
#>
#> $LassoGenesMax
#> NULL
# summary accuracy to check the model accuracy in the leave-out test set
summary_accuracy(object = LSOLDA_dat)
#> [1] 61.60714 63.39286
Here we look at one example use case to find relationship between clusters within one sample or between two sample
#run prediction for 3 clusters
cluster_mixedpop1 <- colData(mixedpop1)[,1]
cluster_mixedpop2 <- colData(mixedpop2)[,1]
#cluster_mixedpop2 <- as.numeric(as.vector(colData(mixedpop2)[,1]))
c_selectID <- 1
#top 200 gene markers distinguishing cluster 1
genes = DEgenes$id[1:200]
LSOLDA_dat1 <- bootstrap_prediction(nboots = 2, mixedpop1 = mixedpop2,
mixedpop2 = mixedpop2, genes=genes, c_selectID,
listData =list(),
cluster_mixedpop1 = cluster_mixedpop2,
cluster_mixedpop2 = cluster_mixedpop2)
c_selectID <- 2
genes = DEgenes$id[1:200]
LSOLDA_dat2 <- bootstrap_prediction(nboots = 2,mixedpop1 = mixedpop2,
mixedpop2 = mixedpop2, genes=genes, c_selectID,
listData =list(),
cluster_mixedpop1 = cluster_mixedpop2,
cluster_mixedpop2 = cluster_mixedpop2)
c_selectID <- 3
genes = DEgenes$id[1:200]
LSOLDA_dat3 <- bootstrap_prediction(nboots = 2,mixedpop1 = mixedpop2,
mixedpop2 = mixedpop2, genes=genes, c_selectID,
listData =list(),
cluster_mixedpop1 = cluster_mixedpop2,
cluster_mixedpop2 = cluster_mixedpop2)
c_selectID <- 4
genes = DEgenes$id[1:200]
LSOLDA_dat4 <- bootstrap_prediction(nboots = 2,mixedpop1 = mixedpop2,
mixedpop2 = mixedpop2, genes=genes, c_selectID,
listData =list(),
cluster_mixedpop1 = cluster_mixedpop2,
cluster_mixedpop2 = cluster_mixedpop2)
#prepare table input for sankey plot
LASSO_C1S2 <- reformat_LASSO(c_selectID=1, mp_selectID = 2,
LSOLDA_dat=LSOLDA_dat1,
nPredSubpop = length(unique(colData(mixedpop2)
[,1])),
Nodes_group ="#7570b3")
LASSO_C2S2 <- reformat_LASSO(c_selectID=2, mp_selectID =2,
LSOLDA_dat=LSOLDA_dat2,
nPredSubpop = length(unique(colData(mixedpop2)
[,1])),
Nodes_group ="#1b9e77")
LASSO_C3S2 <- reformat_LASSO(c_selectID=3, mp_selectID =2,
LSOLDA_dat=LSOLDA_dat3,
nPredSubpop = length(unique(colData(mixedpop2)
[,1])),
Nodes_group ="#e7298a")
LASSO_C4S2 <- reformat_LASSO(c_selectID=4, mp_selectID =2,
LSOLDA_dat=LSOLDA_dat4,
nPredSubpop = length(unique(colData(mixedpop2)
[,1])),
Nodes_group ="#00FFFF")
combined <- rbind(LASSO_C1S2,LASSO_C2S2,LASSO_C3S2, LASSO_C4S2 )
combined <- combined[is.na(combined$Value) != TRUE,]
nboots = 2
#links: source, target, value
#source: node, nodegroup
combined_D3obj <-list(Nodes=combined[,(nboots+3):(nboots+4)],
Links=combined[,c((nboots+2):(nboots+1),ncol(combined))])
library(networkD3)
Node_source <- as.vector(sort(unique(combined_D3obj$Links$Source)))
Node_target <- as.vector(sort(unique(combined_D3obj$Links$Target)))
Node_all <-unique(c(Node_source, Node_target))
#assign IDs for Source (start from 0)
Source <-combined_D3obj$Links$Source
Target <- combined_D3obj$Links$Target
for(i in 1:length(Node_all)){
Source[Source==Node_all[i]] <-i-1
Target[Target==Node_all[i]] <-i-1
}
#
combined_D3obj$Links$Source <- as.numeric(Source)
combined_D3obj$Links$Target <- as.numeric(Target)
combined_D3obj$Links$LinkColor <- combined$NodeGroup
#prepare node info
node_df <-data.frame(Node=Node_all)
node_df$id <-as.numeric(c(0, 1:(length(Node_all)-1)))
suppressMessages(library(dplyr))
Color <- combined %>% count(Node, color=NodeGroup) %>% select(2)
node_df$color <- Color$color
suppressMessages(library(networkD3))
p1<-sankeyNetwork(Links =combined_D3obj$Links, Nodes = node_df,
Value = "Value", NodeGroup ="color", LinkGroup = "LinkColor",
NodeID="Node", Source="Source", Target="Target", fontSize = 22)
p1
Here we look at one example use case to find relationship between clusters within one sample or between two sample
#run prediction for 3 clusters
cluster_mixedpop1 <- colData(mixedpop1)[,1]
cluster_mixedpop2 <- colData(mixedpop2)[,1]
row_cluster <-length(unique(colData(mixedpop2)[,1]))
c_selectID <- 1
#top 200 gene markers distinguishing cluster 1
genes = DEgenes$id[1:200]
LSOLDA_dat1 <- bootstrap_prediction(nboots = 2, mixedpop1 = mixedpop1,
mixedpop2 = mixedpop2, genes=genes, c_selectID,
listData =list(),
cluster_mixedpop1 = cluster_mixedpop1,
cluster_mixedpop2 = cluster_mixedpop2)
c_selectID <- 2
genes = DEgenes$id[1:200]
LSOLDA_dat2 <- bootstrap_prediction(nboots = 2,mixedpop1 = mixedpop1,
mixedpop2 = mixedpop2, genes=genes, c_selectID,
listData =list(),
cluster_mixedpop1 = cluster_mixedpop1,
cluster_mixedpop2 = cluster_mixedpop2)
c_selectID <- 3
genes = DEgenes$id[1:200]
LSOLDA_dat3 <- bootstrap_prediction(nboots = 2,mixedpop1 = mixedpop1,
mixedpop2 = mixedpop2, genes=genes, c_selectID,
listData =list(),
cluster_mixedpop1 = cluster_mixedpop1,
cluster_mixedpop2 = cluster_mixedpop2)
#prepare table input for sankey plot
LASSO_C1S1 <- reformat_LASSO(c_selectID=1, mp_selectID = 1,
LSOLDA_dat=LSOLDA_dat1, nPredSubpop = row_cluster,
Nodes_group = "#7570b3")
LASSO_C2S1 <- reformat_LASSO(c_selectID=2, mp_selectID = 1,
LSOLDA_dat=LSOLDA_dat2, nPredSubpop = row_cluster,
Nodes_group = "#1b9e77")
LASSO_C3S1 <- reformat_LASSO(c_selectID=3, mp_selectID = 1,
LSOLDA_dat=LSOLDA_dat3, nPredSubpop = row_cluster,
Nodes_group = "#e7298a")
combined <- rbind(LASSO_C1S1,LASSO_C2S1,LASSO_C3S1)
nboots = 2
#links: source, target, value
#source: node, nodegroup
combined_D3obj <-list(Nodes=combined[,(nboots+3):(nboots+4)],
Links=combined[,c((nboots+2):(nboots+1),ncol(combined))])
combined <- combined[is.na(combined$Value) != TRUE,]
library(networkD3)
Node_source <- as.vector(sort(unique(combined_D3obj$Links$Source)))
Node_target <- as.vector(sort(unique(combined_D3obj$Links$Target)))
Node_all <-unique(c(Node_source, Node_target))
#assign IDs for Source (start from 0)
Source <-combined_D3obj$Links$Source
Target <- combined_D3obj$Links$Target
for(i in 1:length(Node_all)){
Source[Source==Node_all[i]] <-i-1
Target[Target==Node_all[i]] <-i-1
}
combined_D3obj$Links$Source <- as.numeric(Source)
combined_D3obj$Links$Target <- as.numeric(Target)
combined_D3obj$Links$LinkColor <- combined$NodeGroup
#prepare node info
node_df <-data.frame(Node=Node_all)
node_df$id <-as.numeric(c(0, 1:(length(Node_all)-1)))
suppressMessages(library(dplyr))
n <- length(unique(node_df$Node))
getPalette = colorRampPalette(RColorBrewer::brewer.pal(9, "Set1"))
Color = getPalette(n)
node_df$color <- Color
suppressMessages(library(networkD3))
p1<-sankeyNetwork(Links =combined_D3obj$Links, Nodes = node_df,
Value = "Value", NodeGroup ="color", LinkGroup = "LinkColor",
NodeID="Node", Source="Source", Target="Target", fontSize = 22)
p1
devtools::session_info()
#> ─ Session info ───────────────────────────────────────────────────────────────
#> setting value
#> version R version 4.4.2 (2024-10-31)
#> os Ubuntu 24.04.1 LTS
#> system x86_64, linux-gnu
#> ui X11
#> language (EN)
#> collate C
#> ctype en_US.UTF-8
#> tz Etc/UTC
#> date 2024-11-30
#> pandoc 3.2.1 @ /usr/local/bin/ (via rmarkdown)
#>
#> ─ Packages ───────────────────────────────────────────────────────────────────
#> package * version date (UTC) lib source
#> abind 1.4-8 2024-09-12 [2] RSPM (R 4.4.0)
#> AnnotationDbi * 1.69.0 2024-11-29 [2] https://bioc.r-universe.dev (R 4.4.2)
#> ape 5.8 2024-04-11 [2] RSPM (R 4.4.0)
#> aplot 0.2.3 2024-06-17 [2] RSPM (R 4.4.0)
#> Biobase * 2.67.0 2024-10-31 [2] https://bioc.r-universe.dev (R 4.4.1)
#> BiocGenerics * 0.53.3 2024-11-15 [2] https://bioc.r-universe.dev (R 4.4.2)
#> BiocParallel 1.41.0 2024-11-29 [2] https://bioc.r-universe.dev (R 4.4.2)
#> Biostrings 2.75.1 2024-11-07 [2] https://bioc.r-universe.dev (R 4.4.2)
#> bit 4.5.0 2024-09-20 [2] RSPM (R 4.4.0)
#> bit64 4.5.2 2024-09-22 [2] RSPM (R 4.4.0)
#> blob 1.2.4 2023-03-17 [2] RSPM (R 4.4.0)
#> bslib 0.8.0 2024-07-29 [2] RSPM (R 4.4.0)
#> buildtools 1.0.0 2024-11-24 [3] local (/pkg)
#> cachem 1.1.0 2024-05-16 [2] RSPM (R 4.4.0)
#> caret * 6.0-94 2023-03-21 [2] RSPM (R 4.4.0)
#> class 7.3-22 2023-05-03 [2] RSPM (R 4.4.0)
#> cli 3.6.3 2024-06-21 [2] RSPM (R 4.4.0)
#> clusterProfiler * 4.15.1 2024-11-30 [2] https://bioc.r-universe.dev (R 4.4.2)
#> codetools 0.2-20 2024-03-31 [2] RSPM (R 4.4.0)
#> colorspace 2.1-1 2024-07-26 [2] RSPM (R 4.4.0)
#> cowplot 1.1.3 2024-01-22 [2] RSPM (R 4.4.0)
#> crayon 1.5.3 2024-06-20 [2] RSPM (R 4.4.0)
#> data.table 1.16.2 2024-10-10 [2] RSPM (R 4.4.0)
#> DBI 1.2.3 2024-06-02 [2] RSPM (R 4.4.0)
#> DelayedArray 0.33.2 2024-11-15 [2] https://bioc.r-universe.dev (R 4.4.2)
#> dendextend 1.19.0 2024-11-15 [2] RSPM (R 4.4.0)
#> DESeq2 1.47.1 2024-11-15 [2] https://bioc.r-universe.dev (R 4.4.2)
#> devtools 2.4.5 2022-10-11 [2] RSPM (R 4.4.0)
#> digest 0.6.37 2024-08-19 [2] RSPM (R 4.4.0)
#> DOSE * 4.1.0 2024-11-29 [2] https://bioc.r-universe.dev (R 4.4.2)
#> dplyr * 1.1.4 2023-11-17 [2] RSPM (R 4.4.0)
#> dynamicTreeCut * 1.63-1 2016-03-11 [2] RSPM (R 4.4.0)
#> e1071 1.7-16 2024-09-16 [2] RSPM (R 4.4.0)
#> ellipsis 0.3.2 2021-04-29 [2] RSPM (R 4.4.0)
#> enrichplot 1.27.1 2024-11-30 [2] https://bioc.r-universe.dev (R 4.4.2)
#> evaluate 1.0.1 2024-10-10 [2] RSPM (R 4.4.0)
#> fansi 1.0.6 2023-12-08 [2] RSPM (R 4.4.0)
#> farver 2.1.2 2024-05-13 [2] RSPM (R 4.4.0)
#> fastcluster 1.2.6 2024-01-12 [2] RSPM (R 4.4.0)
#> fastmap 1.2.0 2024-05-15 [2] RSPM (R 4.4.0)
#> fastmatch 1.1-4 2023-08-18 [2] RSPM (R 4.4.0)
#> fgsea 1.33.0 2024-11-19 [2] https://bioc.r-universe.dev (R 4.4.2)
#> foreach 1.5.2 2022-02-02 [2] RSPM (R 4.4.0)
#> fs 1.6.5 2024-10-30 [2] RSPM (R 4.4.0)
#> future 1.34.0 2024-07-29 [2] RSPM (R 4.4.0)
#> future.apply 1.11.3 2024-10-27 [2] RSPM (R 4.4.0)
#> generics * 0.1.3 2022-07-05 [2] RSPM (R 4.4.0)
#> GenomeInfoDb * 1.43.2 2024-11-28 [2] https://bioc.r-universe.dev (R 4.4.2)
#> GenomeInfoDbData 1.2.13 2024-11-30 [2] Bioconductor
#> GenomicRanges * 1.59.1 2024-11-19 [2] https://bioc.r-universe.dev (R 4.4.2)
#> ggforce 0.4.2 2024-02-19 [2] RSPM (R 4.4.0)
#> ggfun 0.1.7 2024-10-24 [2] RSPM (R 4.4.0)
#> ggplot2 * 3.5.1 2024-04-23 [2] RSPM (R 4.4.0)
#> ggplotify 0.1.2 2023-08-09 [2] RSPM (R 4.4.0)
#> ggraph 2.2.1 2024-03-07 [2] RSPM (R 4.4.0)
#> ggrepel 0.9.6 2024-09-07 [2] RSPM (R 4.4.0)
#> ggtangle 0.0.5 2024-11-29 [2] CRAN (R 4.4.2)
#> ggtree 3.15.0 2024-11-29 [2] https://bioc.r-universe.dev (R 4.4.2)
#> glmnet 4.1-8 2023-08-22 [2] RSPM (R 4.4.0)
#> globals 0.16.3 2024-03-08 [2] RSPM (R 4.4.0)
#> glue 1.8.0 2024-09-30 [2] RSPM (R 4.4.0)
#> GO.db 3.20.0 2024-11-30 [2] Bioconductor
#> GOSemSim 2.33.0 2024-11-29 [2] https://bioc.r-universe.dev (R 4.4.2)
#> gower 1.0.1 2022-12-22 [2] RSPM (R 4.4.0)
#> graph 1.85.0 2024-11-29 [2] https://bioc.r-universe.dev (R 4.4.2)
#> graphite 1.53.0 2024-11-01 [2] https://bioc.r-universe.dev (R 4.4.1)
#> graphlayouts 1.2.1 2024-11-18 [2] RSPM (R 4.4.0)
#> gridExtra 2.3 2017-09-09 [2] RSPM (R 4.4.0)
#> gridGraphics 0.5-1 2020-12-13 [2] RSPM (R 4.4.0)
#> gson 0.1.0 2023-03-07 [2] RSPM (R 4.4.0)
#> gtable 0.3.6 2024-10-25 [2] RSPM (R 4.4.0)
#> hardhat 1.4.0 2024-06-02 [2] RSPM (R 4.4.0)
#> htmltools 0.5.8.1 2024-04-04 [2] RSPM (R 4.4.0)
#> htmlwidgets 1.6.4 2023-12-06 [2] RSPM (R 4.4.0)
#> httpuv 1.6.15 2024-03-26 [2] RSPM (R 4.4.0)
#> httr 1.4.7 2023-08-15 [2] RSPM (R 4.4.0)
#> igraph 2.1.1 2024-10-19 [2] RSPM (R 4.4.0)
#> ipred 0.9-15 2024-07-18 [2] RSPM (R 4.4.0)
#> IRanges * 2.41.1 2024-11-17 [2] https://bioc.r-universe.dev (R 4.4.2)
#> iterators 1.0.14 2022-02-05 [2] RSPM (R 4.4.0)
#> jquerylib 0.1.4 2021-04-26 [2] RSPM (R 4.4.0)
#> jsonlite 1.8.9 2024-09-20 [2] RSPM (R 4.4.0)
#> KEGGREST 1.47.0 2024-11-29 [2] https://bioc.r-universe.dev (R 4.4.2)
#> knitr 1.49 2024-11-08 [2] RSPM (R 4.4.0)
#> labeling 0.4.3 2023-08-29 [2] RSPM (R 4.4.0)
#> later 1.4.1 2024-11-27 [2] RSPM (R 4.4.0)
#> lattice * 0.22-6 2024-03-20 [2] RSPM (R 4.4.0)
#> lava 1.8.0 2024-03-05 [2] RSPM (R 4.4.0)
#> lazyeval 0.2.2 2019-03-15 [2] RSPM (R 4.4.0)
#> lifecycle 1.0.4 2023-11-07 [2] RSPM (R 4.4.0)
#> listenv 0.9.1 2024-01-29 [2] RSPM (R 4.4.0)
#> locfit * 1.5-9.10 2024-06-24 [2] RSPM (R 4.4.0)
#> lubridate 1.9.3 2023-09-27 [2] RSPM (R 4.4.0)
#> magrittr 2.0.3 2022-03-30 [2] RSPM (R 4.4.0)
#> maketools 1.3.1 2024-10-04 [3] RSPM (R 4.4.0)
#> MASS 7.3-61 2024-06-13 [2] RSPM (R 4.4.0)
#> Matrix 1.7-1 2024-10-18 [2] RSPM (R 4.4.0)
#> MatrixGenerics * 1.19.0 2024-11-06 [2] https://bioc.r-universe.dev (R 4.4.2)
#> matrixStats * 1.4.1 2024-09-08 [2] RSPM (R 4.4.0)
#> memoise 2.0.1 2021-11-26 [2] RSPM (R 4.4.0)
#> mime 0.12 2021-09-28 [2] RSPM (R 4.4.0)
#> miniUI 0.1.1.1 2018-05-18 [2] RSPM (R 4.4.0)
#> ModelMetrics 1.2.2.2 2020-03-17 [2] RSPM (R 4.4.0)
#> munsell 0.5.1 2024-04-01 [2] RSPM (R 4.4.0)
#> networkD3 * 0.4 2017-03-18 [2] RSPM (R 4.4.0)
#> nlme 3.1-166 2024-08-14 [2] RSPM (R 4.4.0)
#> nnet 7.3-19 2023-05-03 [2] RSPM (R 4.4.0)
#> org.Hs.eg.db * 3.20.0 2024-11-30 [2] Bioconductor
#> parallelly 1.39.0 2024-11-07 [2] RSPM (R 4.4.0)
#> patchwork 1.3.0 2024-09-16 [2] RSPM (R 4.4.0)
#> pillar 1.9.0 2023-03-22 [2] RSPM (R 4.4.0)
#> pkgbuild 1.4.5 2024-10-28 [2] RSPM (R 4.4.0)
#> pkgconfig 2.0.3 2019-09-22 [2] RSPM (R 4.4.0)
#> pkgload 1.4.0 2024-06-28 [2] RSPM (R 4.4.0)
#> plyr 1.8.9 2023-10-02 [2] RSPM (R 4.4.0)
#> png 0.1-8 2022-11-29 [2] RSPM (R 4.4.0)
#> polyclip 1.10-7 2024-07-23 [2] RSPM (R 4.4.0)
#> pROC 1.18.5 2023-11-01 [2] RSPM (R 4.4.0)
#> prodlim 2024.06.25 2024-06-24 [2] RSPM (R 4.4.0)
#> profvis 0.4.0 2024-09-20 [2] RSPM (R 4.4.0)
#> promises 1.3.2 2024-11-28 [2] RSPM (R 4.4.0)
#> proxy 0.4-27 2022-06-09 [2] RSPM (R 4.4.0)
#> purrr 1.0.2 2023-08-10 [2] RSPM (R 4.4.0)
#> qvalue 2.39.0 2024-11-19 [2] https://bioc.r-universe.dev (R 4.4.2)
#> R.methodsS3 1.8.2 2022-06-13 [2] RSPM (R 4.4.0)
#> R.oo 1.27.0 2024-11-01 [2] RSPM (R 4.4.0)
#> R.utils 2.12.3 2023-11-18 [2] RSPM (R 4.4.0)
#> R6 2.5.1 2021-08-19 [2] RSPM (R 4.4.0)
#> rappdirs 0.3.3 2021-01-31 [2] RSPM (R 4.4.0)
#> RColorBrewer 1.1-3 2022-04-03 [2] RSPM (R 4.4.0)
#> Rcpp 1.0.13-1 2024-11-02 [2] RSPM (R 4.4.0)
#> RcppArmadillo 14.2.0-1 2024-11-18 [2] RSPM (R 4.4.0)
#> RcppParallel 5.1.9 2024-08-19 [2] RSPM (R 4.4.0)
#> reactome.db 1.89.0 2024-11-30 [2] Bioconductor
#> ReactomePA * 1.51.0 2024-11-30 [2] https://bioc.r-universe.dev (R 4.4.2)
#> recipes 1.1.0 2024-07-04 [2] RSPM (R 4.4.0)
#> remotes 2.5.0 2024-03-17 [2] RSPM (R 4.4.0)
#> reshape2 1.4.4 2020-04-09 [2] RSPM (R 4.4.0)
#> rlang 1.1.4 2024-06-04 [2] RSPM (R 4.4.0)
#> rmarkdown * 2.29 2024-11-04 [2] RSPM (R 4.4.0)
#> rpart 4.1.23 2023-12-05 [2] RSPM (R 4.4.0)
#> RSQLite 2.3.8 2024-11-17 [2] RSPM (R 4.4.0)
#> Rtsne 0.17 2023-12-07 [2] RSPM (R 4.4.0)
#> S4Arrays 1.7.1 2024-11-18 [2] https://bioc.r-universe.dev (R 4.4.2)
#> S4Vectors * 0.45.2 2024-11-16 [2] https://bioc.r-universe.dev (R 4.4.2)
#> sass 0.4.9 2024-03-15 [2] RSPM (R 4.4.0)
#> scales 1.3.0 2023-11-28 [2] RSPM (R 4.4.0)
#> scGPS * 1.21.0 2024-11-30 [1] https://bioc.r-universe.dev (R 4.4.2)
#> sessioninfo 1.2.2 2021-12-06 [2] RSPM (R 4.4.0)
#> shape 1.4.6.1 2024-02-23 [2] RSPM (R 4.4.0)
#> shiny 1.9.1 2024-08-01 [2] RSPM (R 4.4.0)
#> SingleCellExperiment * 1.29.1 2024-11-09 [2] https://bioc.r-universe.dev (R 4.4.2)
#> SparseArray 1.7.2 2024-11-15 [2] https://bioc.r-universe.dev (R 4.4.2)
#> stringi 1.8.4 2024-05-06 [2] RSPM (R 4.4.0)
#> stringr 1.5.1 2023-11-14 [2] RSPM (R 4.4.0)
#> SummarizedExperiment * 1.37.0 2024-11-21 [2] https://bioc.r-universe.dev (R 4.4.2)
#> survival 3.7-0 2024-06-05 [2] RSPM (R 4.4.0)
#> sys 3.4.3 2024-10-04 [2] RSPM (R 4.4.0)
#> tibble 3.2.1 2023-03-20 [2] RSPM (R 4.4.0)
#> tidygraph 1.3.1 2024-01-30 [2] RSPM (R 4.4.0)
#> tidyr 1.3.1 2024-01-24 [2] RSPM (R 4.4.0)
#> tidyselect 1.2.1 2024-03-11 [2] RSPM (R 4.4.0)
#> tidytree 0.4.6 2023-12-12 [2] RSPM (R 4.4.0)
#> timechange 0.3.0 2024-01-18 [2] RSPM (R 4.4.0)
#> timeDate 4041.110 2024-09-22 [2] RSPM (R 4.4.0)
#> treeio 1.31.0 2024-11-19 [2] https://bioc.r-universe.dev (R 4.4.2)
#> tweenr 2.0.3 2024-02-26 [2] RSPM (R 4.4.0)
#> UCSC.utils 1.3.0 2024-10-31 [2] https://bioc.r-universe.dev (R 4.4.1)
#> urlchecker 1.0.1 2021-11-30 [2] RSPM (R 4.4.0)
#> usethis 3.1.0 2024-11-26 [2] RSPM (R 4.4.0)
#> utf8 1.2.4 2023-10-22 [2] RSPM (R 4.4.0)
#> vctrs 0.6.5 2023-12-01 [2] RSPM (R 4.4.0)
#> viridis 0.6.5 2024-01-29 [2] RSPM (R 4.4.0)
#> viridisLite 0.4.2 2023-05-02 [2] RSPM (R 4.4.0)
#> withr 3.0.2 2024-10-28 [2] RSPM (R 4.4.0)
#> xfun 0.49 2024-10-31 [2] RSPM (R 4.4.0)
#> xtable 1.8-4 2019-04-21 [2] RSPM (R 4.4.0)
#> XVector 0.47.0 2024-11-21 [2] https://bioc.r-universe.dev (R 4.4.2)
#> yaml 2.3.10 2024-07-26 [2] RSPM (R 4.4.0)
#> yulab.utils 0.1.8 2024-11-07 [2] RSPM (R 4.4.0)
#> zlibbioc 1.52.0 2024-10-29 [2] Bioconductor 3.20 (R 4.4.2)
#>
#> [1] /tmp/RtmpxXgBp7/Rinst2c9c646e12ad
#> [2] /github/workspace/pkglib
#> [3] /usr/local/lib/R/site-library
#> [4] /usr/lib/R/site-library
#> [5] /usr/lib/R/library
#>
#> ──────────────────────────────────────────────────────────────────────────────