Package: scDiagnostics (via r-universe)

October 26, 2024
Type Package

Title Cell type annotation diagnostics
Version 0.99.11

Description The scDiagnostics package provides diagnostic plots to
assess the quality of cell type assignments from single cell
gene expression profiles. The implemented functionality allows
to assess the reliability of cell type annotations, investigate
gene expression patterns, and explore relationships between
different cell types in query and reference datasets allowing
users to detect potential misalignments between reference and
query datasets. The package also provides visualization
capabilities for diagnostics purposes.

License Artistic-2.0
URL https://github.com/ccb-hms/scDiagnostics

BugReports https://github.com/ccb-hms/scDiagnostics/issues
Depends R (>=4.4.0)

Imports SingleCellExperiment, methods, isotree, ggplot2, ggridges,
SummarizedExperiment, ranger, transport, speedglm, cramer,
rlang, bluster, patchwork

Suggests AUCell, BiocStyle, knitr, Matrix, rmarkdown, scran, scRNAseq,
SingleR, celldex, scuttle, scater, dplyr, testthat (>= 3.0.0)

VignetteBuilder knitr

biocViews Annotation, Classification, Clustering, GeneExpression,
RNASeq, SingleCell, Software, Transcriptomics

Encoding UTF-8
LazyDataCompression xz
RoxygenNote 7.3.2
Config/testthat/edition 3
Repository https://bioc.r-universe.dev

RemoteUrl https://github.com/bioc/scDiagnostics

https://github.com/ccb-hms/scDiagnostics
https://github.com/ccb-hms/scDiagnostics/issues

boxplotPCA

RemoteRef HEAD
RemoteSha c58572e51c80ba9334e75elcb1bcd2fc90d5dc76

Contents
boxplotPCA e 2
calculateCategorizationEntropyo 4
calculateCellDistancesSimilarity oo 5
calculateCramerPValue o 7
calculateHotellingPValue 8
calculateHVGOwverlap 10
calculateVarImpOverlap 11
calculateWassersteinDistance oL o 13
histQCVSANNOtation e e e e e e 15
plotCellTypeMDS e 16
plotCellTypePCA e 18
plotGeneExpressionDimred 19
plotGeneSetScores e e e e 20
plotMarkerExpressiono 21
plotPairwiseDistancesDensity oL 23
plotQCVSANNOtAtion e e e e 25
projectPCA . . . L e 26
projectSIR Lo 27

Index 30

boxplotPCA Plot Principal Components for Different Cell Types
Description

This function generates a ggplot2 boxplot visualization of principal components (PCs) for different
cell types across two datasets (query and reference).

Usage

boxplotPCA(

query_data,
reference_data,
query_cell_type_col,
ref_cell_type_col,
cell_types = NULL,
pc_subset = 1:5,
assay_name = "logcounts”

boxplotPCA 3

Arguments

query_data A SingleCellExperiment object containing numeric expression matrix for the
query cells.

reference_data A SingleCellExperiment object containing numeric expression matrix for the

reference cells.
query_cell_type_col

The column name in the colData of query_data that identifies the cell types.
ref_cell_type_col
The column name in the colData of reference_data that identifies the cell

types.
cell_types A character vector specifying the cell types to include in the plot. If NULL, all
cell types are included.
pc_subset A numeric vector specifying which principal components to include in the plot.
Default is PC1 to PCS5.
assay_name Name of the assay on which to perform computations. Default is "logcounts".
Details

The function boxplotPCA is designed to provide a visualization of principal component analysis
(PCA) results. It projects the query dataset onto the principal components obtained from the refer-
ence dataset. The results are then visualized as boxplots, grouped by cell types and datasets (query
and reference). This allows for a comparative analysis of the distributions of the principal compo-
nents across different cell types and datasets. The function internally calls projectPCA to perform
the PCA projection. It then reshapes the output data into a long format suitable for ggplot2 plotting.

Value

A ggplot object representing the boxplots of specified principal components for the given cell types
and datasets.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

Examples

Load data
data("reference_data")
data("query_data")

Plot the PC data

pc_plot <- boxplotPCA(query_data = query_data,
reference_data = reference_data,
cell_types = c("CD4", "CD8", "B_and_plasma”, "Myeloid"),
query_cell_type_col = "SingleR_annotation”,
ref_cell_type_col = "expert_annotation”,
pc_subset = 1:6)

pc_plot

4 calculateCategorizationEntropy

calculateCategorizationEntropy
Calculate Categorization Entropy

Description

This function takes a matrix of category scores (cell type by cells) and calculates the entropy of the
category probabilities for each cell. This gives a sense of how confident the cell type assignments
are. High entropy = lots of plausible category assignments = low confidence. Low entropy = only
one or two plausible categories = high confidence. This is confidence in the vernacular sense, not
in the "confidence interval" statistical sense. Also note that the entropy tells you nothing about
whether or not the assignments are correct — see the other functionality in the package for that. This
functionality can be used for assessing how comparatively confident different sets of assignments
are (given that the number of categories is the same).

Usage
calculateCategorizationEntropy(
X,
inverse_normal_transform = FALSE,
plot = TRUE,
verbose = TRUE
)
Arguments
X A matrix of category scores.

inverse_normal_transform
If TRUE, apply inverse normal transformation to X. Default is FALSE.

plot If TRUE, plot a histogram of the entropies. Default is TRUE.
verbose If TRUE, display messages about the calculations. Default is TRUE.
Details

The function checks if X is already on the probability scale. Otherwise, it applies softmax column-
wise.

You can think about entropies on a scale from 0 to a maximum that depends on the number of cat-
egories. This is the function for entropy (minus input checking): entropy(p) = -sum(p*log(p)) .
If that input vector p is a uniform distribution over the length(p) categories, the entropy will be a
high as possible.

Value

A vector of entropy values for each column in X.

calculateCellDistancesSimilarity 5

Author(s)

Andrew Ghazi, <andrew_ghazi@hms.harvard. edu>

Examples

Simulate 500 cells with scores on 4 possible cell types
X <= rnorm(500 * 4) |> matrix(nrow = 4)
X[1, 1:250] <- X[1, 1:250] + 5 # Make the first category highly scored in the first 250 cells

The function will issue a message about softmaxing the scores, and the entropy histogram will be
bimodal since we made half of the cells clearly category 1 while the other half are roughly even.
entropy_scores <- calculateCategorizationEntropy(X)

calculateCellDistancesSimilarity

Function to Calculate Bhattacharyya Coefficients and Hellinger Dis-
tances

Description

This function computes Bhattacharyya coefficients and Hellinger distances to quantify the similarity
of density distributions between query cells and reference data for each cell type.

Usage

calculateCellDistancesSimilarity(
query_data,
reference_data,
query_cell_type_col,
ref_cell_type_col,

cell_names,
pc_subset = 1:5,
assay_name = "logcounts”
)
Arguments
query_data A SingleCellExperiment object containing numeric expression matrix for the

query cells.

reference_data A SingleCellExperiment object containing numeric expression matrix for the
reference cells.
query_cell_type_col
The column name in the colData of query_data that identifies the cell types.
ref_cell_type_col
The column name in the colData of reference_data that identifies the cell
types.

6 calculateCellDistancesSimilarity

cell_names A character vector specifying the names of the query cells for which to compute
distance measures.
pc_subset A numeric vector specifying which principal components to include in the plot.
Default is 1:5.
assay_name Name of the assay on which to perform computations. Default is "logcounts".
Details

This function first computes distance data using the calculateCellDistances function, which
calculates pairwise distances between cells within the reference data and between query cells and
reference cells in the PCA space. Bhattacharyya coefficients and Hellinger distances are calculated
to quantify the similarity of density distributions between query cells and reference data for each
cell type. Bhattacharyya coefficient measures the similarity of two probability distributions, while
Hellinger distance measures the distance between two probability distributions.

Bhattacharyya coefficients range between 0 and 1. A value closer to 1 indicates higher similarity
between distributions, while a value closer to 0 indicates lower similarity

Hellinger distances range between 0 and 1. A value closer to 0 indicates higher similarity between
distributions, while a value closer to 1 indicates lower similarity.

Value
A list containing distance data for each cell type. Each entry in the list contains:

ref_distances A vector of all pairwise distances within the reference subset for the cell type.

query_to_ref distances A matrix of distances from each query cell to all reference cells for the
cell type.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

Examples

Load data
data("reference_data")
data("query_data")

Plot the PC data

distance_data <- calculateCellDistances(query_data = query_data,
reference_data = reference_data,
query_cell_type_col = "SingleR_annotation”,
ref_cell_type_col = "expert_annotation”,
pc_subset = 1:10)

Identify outliers for CD4

cd4_anomalies <- detectAnomaly(reference_data = reference_data,
query_data = query_data,
query_cell_type_col = "SingleR_annotation”,
ref_cell_type_col = "expert_annotation”,
pc_subset = 1:10,

calculateCramerPValue 7

n_tree = 500,
anomaly_treshold = 0.5)
cd4_top6_anomalies <- names(sort(cd4_anomalies$CD4$query_anomaly_scores, decreasing = TRUE)[1:6])

Get overlap measures
overlap_measures <- calculateCellDistancesSimilarity(query_data = query_data,
reference_data = reference_data,
cell_names = cd4_top6_anomalies,
query_cell_type_col = "SingleR_annotation”,
ref_cell_type_col = "expert_annotation”,
pc_subset = 1:10)
overlap_measures

calculateCramerPValue Calculate Cramer Test P-Values for Two-Sample Comparison of Mul-
tivariate ECDFs

Description

This function performs the Cramer test for comparing multivariate empirical cumulative distribution
functions (ECDFs) between two samples.

Usage

calculateCramerPValue(
reference_data,
query_data = NULL,
ref_cell_type_col,
query_cell_type_col = NULL,
cell_types = NULL,
pc_subset = 1:5,
assay_name = "logcounts”

Arguments

reference_data A SingleCellExperiment object containing numeric expression matrix for the
reference cells.

query_data A SingleCellExperiment object containing numeric expression matrix for the
query cells. If NULL, the PC scores are regressed against the cell types of the
reference data.

ref_cell_type_col
The column name in the colData of reference_data that identifies the cell
types.

query_cell_type_col
The column name in the colData of query_data that identifies the cell types.

8 calculateHotellingPValue

cell_types A character vector specifying the cell types to include in the plot. If NULL, all
cell types are included.
pc_subset A numeric vector specifying which principal components to include in the plot.
Default is PC1 to PC5.
assay_name Name of the assay on which to perform computations. Default is "logcounts".
Details

The function performs the following steps:

1. Projects the data into the PCA space.
2. Subsets the data to the specified cell types and principal components.

3. Performs the Cramer test for each cell type using the cramer.test function in the cramer
package.

Value

A named vector of p-values from the Cramer test for each cell type.

References

Baringhaus, L., & Franz, C. (2004). "On a new multivariate two-sample test". Journal of Multivari-
ate Analysis, 88(1), 190-206.

Examples

Load data
data("reference_data")
data("query_data")

Plot the PC data (with query data)

cramer_test <- calculateCramerPValue(reference_data = reference_data,
query_data = query_data,
ref_cell_type_col = "expert_annotation”,
query_cell_type_col = "SingleR_annotation”,

cell_types = c("CD4", "CD8", "B_and_plasma”, "Myeloid"),

pc_subset = 1:5)

cramer_test

calculateHotellingPValue

Perform Hotelling’s T-squared Test on PCA Scores for Single-cell
RNA-seq Data

Description

Computes Hotelling’s T-squared test statistic and p-values for each specified cell type based on
PCA-projected data from query and reference datasets.

calculateHotellingPValue 9

Usage

calculateHotellingPValue(
query_data,
reference_data,
query_cell_type_col,
ref_cell_type_col,
cell_types = NULL,
pc_subset = 1:5,
n_permutation = 500,

assay_name = "logcounts”
)
Arguments
query_data A SingleCellExperiment object containing numeric expression matrix for the
query cells.

reference_data A SingleCellExperiment object containing numeric expression matrix for the
reference cells.

query_cell_type_col
character. The column name in the colData of query_data that identifies the
cell types.

ref_cell_type_col
character. The column name in the colData of reference_data that identifies
the cell types.

cell_types A character vector specifying the cell types to include in the plot. If NULL, all
cell types are included.

pc_subset A numeric vector specifying which principal components to include in the plot.
Default is PC1 to PCS.

n_permutation Number of permutations to perform for p-value calculation. Default is 500.

assay_name Name of the assay on which to perform computations. Default is "logcounts".

Details

This function calculates Hotelling’s T-squared statistic for comparing multivariate means between
reference and query datasets, projected onto a subset of principal components (PCs). It performs a
permutation test to obtain p-values for each cell type specified.

Value

A named numeric vector of p-values from Hotelling’s T-squared test for each cell type.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

10 calculateHVGOverlap

References

Hotelling, H. (1931). "The generalization of Student’s ratio". *Annals of Mathematical Statistics*.
2 (3): 360-378. doi:10.1214/a0ms/1177732979.

Examples

Load data
data("reference_data")
data("query_data")

Get the p-values

p_values <- calculateHotellingPValue(query_data = query_data,
reference_data = reference_data,
query_cell_type_col = "SingleR_annotation”,
ref_cell_type_col = "expert_annotation”,
pc_subset = 1:10)

round(p_values, 5)

calculateHVGOverlap Calculate the Overlap Coefficient for Highly Variable Genes

Description

Calculates the overlap coefficient between the sets of highly variable genes from a reference dataset
and a query dataset.

Usage

calculateHVGOverlap(reference_genes, query_genes)

Arguments
reference_genes
A character vector of highly variable genes from the reference dataset.
query_genes A character vector of highly variable genes from the query dataset.

Details

The overlap coefficient measures the similarity between two gene sets, indicating how well-aligned
reference and query datasets are in terms of their highly variable genes. This metric is useful in
single-cell genomics to understand the correspondence between different datasets.

The coefficient is calculated using the formula:

X NY]
min(| X1, [Y1)
where X and Y are the sets of highly variable genes from the reference and query datasets, respec-

tively, | X NY] is the number of genes common to both X and Y, and min(| X, |Y’]) is the size of
the smaller set among X and Y.

Coef ficient(X,Y) =

calculate VarImpOverlap 11

Value

Overlap coefficient, a value between 0 and 1, where O indicates no overlap and 1 indicates complete
overlap of highly variable genes between datasets.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

References

Luecken et al. Benchmarking atlas-level data integration in single-cell genomics. Nature Methods,
19:41-50, 2022.

Examples

Load data
data("reference_data")
data("query_data")

Selecting highly variable genes

ref_var <- scran::getTopHVGs(reference_data, n = 500)

query_var <- scran::getTopHVGs(query_data, n = 500)

overlap_coefficient <- calculateHVGOverlap(reference_genes = ref_var,
query_genes = query_var)

overlap_coefficient

calculateVarImpOverlap
Compare Gene Importance Across Datasets Using Random Forest

Description

This function identifies and compares the most important genes for differentiating cell types be-
tween a query dataset and a reference dataset using Random Forest.

Usage

calculateVarImpOverlap(
reference_data,
query_data = NULL,
ref_cell_type_col,
query_cell_type_col = NULL,
cell_types = NULL,
n_tree = 500,
n_top = 50

12 calculate VarImpOverlap

Arguments

reference_data A SingleCellExperiment object containing numeric expression matrix for the
reference cells.

query_data A SingleCellExperiment object containing numeric expression matrix for the
query cells. If NULL, then the variable importance scores are only computed
for the reference data. Default is NULL.

ref_cell_type_col
A character string specifying the column name in the reference dataset contain-
ing cell type annotations.

query_cell_type_col
A character string specifying the column name in the query dataset containing
cell type annotations.

cell_types A character vector specifying the cell types to include in the plot. If NULL, all
cell types are included.

n_tree An integer specifying the number of trees to grow in the Random Forest. Default
is 500.

n_top An integer specifying the number of top genes to consider when comparing

variable importance scores. Default is 50.

Details

This function uses the Random Forest algorithm to calculate the importance of genes in differen-
tiating between cell types within both a reference dataset and a query dataset. The function then
compares the top genes identified in both datasets to determine the overlap in their importance
scores.

Value

A list containing three elements:

var_imp_ref A list of data frames containing variable importance scores for each combination
of cell types in the reference dataset.

var_imp_query A list of data frames containing variable importance scores for each combination
of cell types in the query dataset.

var_imp_comparison
A named vector indicating the proportion of top genes that overlap between the
reference and query datasets for each combination of cell types.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

References

Breiman, L. (2001). "Random forests". *Machine Learning*, 45(1), 5-32. doi:10.1023/A:1010933404324.

calculate WassersteinDistance 13

Examples

Load data
data("reference_data")
data("query_data")

Compute important variables for all pairwise cell comparisons
rf_output <- calculateVarImpOverlap(reference_data = reference_data,
query_data = query_data,

query_cell_type_col = "SingleR_annotation”,
ref_cell_type_col = "expert_annotation”,
n_tree = 500,

n_top = 50)

Comparison table
rf_output$var_imp_comparison

calculateWassersteinDistance

Compute Wasserstein Distances Between Query and Reference
Datasets

Description

This function calculates Wasserstein distances between a query dataset and a reference dataset, as
well as within the reference dataset itself, after projecting them into a shared PCA space.

Usage

calculateWassersteinDistance(
query_data,
reference_data,
ref_cell_type_col,
query_cell_type_col,
pc_subset = 1:5,
n_resamples = 300,

assay_name = "logcounts”
)
Arguments
query_data A SingleCellExperiment object containing a numeric expression matrix for

the query cells.

reference_data A SingleCellExperiment object with a numeric expression matrix for the ref-
erence cells.
ref_cell_type_col

The column name in the colData of reference_data that identifies cell types.

14 calculate WassersteinDistance

query_cell_type_col
The column name in the colData of query_data that identifies cell types.

pc_subset A numeric vector specifying which principal components to use. Default is
1:10.
n_resamples An integer specifying the number of resamples to generate the null distribution.
Default is 300.
assay_name The name of the assay to use for computations. Default is "logcounts”.
Details

The function begins by projecting the query dataset onto the PCA space defined by the reference
dataset. It then computes Wasserstein distances between randomly sampled pairs within the ref-
erence dataset to create a null distribution. Similarly, it calculates distances between the reference
and query datasets. The function assesses overall differences in distances to understand the variation
between the datasets.

Value

A list with the following components:

null_dist A numeric vector of Wasserstein distances computed from resampled pairs within
the reference dataset.
query_dist The mean Wasserstein distance between the query dataset and the reference
dataset.
cell_type A character vector containing the unique cell types present in the reference
dataset.
References

Schuhmacher, D., Bernhard, S., & Book, M. (2019). "A Review of Approximate Transport in
Machine Learning". In Journal of Machine Learning Research (Vol. 20, No. 117, pp. 1-61).

See Also

plot.calculateWassersteinDistanceObject

Examples

Load data
data("reference_data")
data("query_data")

Extract CD4 cells
ref_data_subset <- reference_data[, which(reference_data$expert_annotation == "CD4")]
query_data_subset <- query_datal, which(query_data$expert_annotation == "CD4")]

Selecting highly variable genes (can be customized by the user)
ref_top_genes <- scran::getTopHVGs(ref_data_subset, n = 500)
query_top_genes <- scran::getTopHVGs(query_data_subset, n = 500)

histQCvsAnnotation 15

Intersect the gene symbols to obtain common genes
common_genes <- intersect(ref_top_genes, query_top_genes)
ref_data_subset <- ref_data_subset[common_genes,]
query_data_subset <- query_data_subset[common_genes,]

Run PCA on reference data
ref_data_subset <- scater::runPCA(ref_data_subset)

Compute Wasserstein distances and compare using quantile-based permutation test
wasserstein_data <- calculateWassersteinDistance(query_data = query_data_subset,
reference_data = ref_data_subset,
query_cell_type_col = "expert_annotation”,
ref_cell_type_col = "expert_annotation”,
pc_subset = 1:5,
n_resamples = 100)
plot(wasserstein_data)

histQCvsAnnotation Histograms: QC Stats and Annotation Scores Visualization

Description

This function generates histograms for visualizing the distribution of quality control (QC) statistics
and annotation scores associated with cell types in single-cell genomic data.

Usage

histQCvsAnnotation(
se_object,
cell_type_col,
cell_types = NULL,

qc_col,
score_col
)
Arguments
se_object A SingleCellExperiment containing the single-cell expression data and meta-
data.
cell_type_col The column name in the colData of se_object that contains the cell type la-
bels.
cell_types A vector of cell types to plot (e.g., c("T-cell", "B-cell")). Defaults to NULL, which
will include all the cells.
gc_col A column name in the colData of se_object that contains the QC stats of
interest.
score_col The column name in the colData of se_object that contains the cell type

SCOres.

16 plotCellTypeMDS

Details

The particularly useful in the analysis of data from single-cell experiments, where understanding
the distribution of these metrics is crucial for quality assessment and interpretation of cell type
annotations.

Value

A object containing two histograms displayed side by side. The first histogram represents the
distribution of QC stats, and the second histogram represents the distribution of annotation scores.

Examples

data("query_data")

Generate histograms
histQCvsAnnotation(se_object = query_data,
cell_type_col = "SingleR_annotation”,
cell_types = c("CD4", "CD8"),
gc_col = "percent_mito",
score_col = "annotation_scores")

histQCvsAnnotation(se_object = query_data,
cell_type_col = "SingleR_annotation”,
cell_types = NULL,
gc_col = "percent_mito",
score_col = "annotation_scores”)

plotCellTypeMDS Plot Reference and Query Cell Types using MDS

Description

This function facilitates the assessment of similarity between reference and query datasets through
Multidimensional Scaling (MDS) scatter plots. It allows the visualization of cell types, color-coded
with user-defined custom colors, based on a dissimilarity matrix computed from a user-selected
gene set.

Usage

plotCellTypeMDS(
query_data,
reference_data,
query_cell_type_col,
ref_cell_type_col,
cell_types = NULL,
assay_name = "logcounts”

plotCellTypeMDS 17

Arguments

query_data A SingleCellExperiment containing the single-cell expression data and meta-
data.

reference_data A SingleCellExperiment object containing the single-cell expression data and
metadata.
query_cell_type_col
The column name in the colData of query_data that identifies the cell types.
ref_cell_type_col
The column name in the colData of reference_data that identifies the cell

types.
cell_types A character vector specifying the cell types to include in the plot. If NULL, all
cell types are included.
assay_name Name of the assay on which to perform computations. Default is "logcounts".
Details

To evaluate dataset similarity, the function selects specific subsets of cells from both reference
and query datasets. It then calculates Spearman correlations between gene expression profiles,
deriving a dissimilarity matrix. This matrix undergoes Classical Multidimensional Scaling (MDS)
for visualization, presenting cell types in a scatter plot, distinguished by colors defined by the user.

Value

A ggplot object representing the MDS scatter plot with cell type coloring.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

References

* Kruskal, J. B. (1964). "Multidimensional scaling by optimizing goodness of fit to a nonmetric
hypothesis". *Psychometrika*, 29(1), 1-27. doi:10.1007/BF02289565.

* Borg, L., & Groenen, P. J. F. (2005). *Modern multidimensional scaling: Theory and applica-
tions* (2nd ed.). Springer Science & Business Media. doi:10.1007/978-0-387-25975-1.

Examples

Load data
data("reference_data")
data("query_data")

Generate the MDS scatter plot with cell type coloring
mds_plot <- plotCellTypeMDS(query_data = query_data,
reference_data = reference_data,
cell_types = c("CD4", "CD8", "B_and_plasma”, "Myeloid")[1:4],
query_cell_type_col = "SingleR_annotation”,
ref_cell_type_col = "expert_annotation”)

18 plotCellTypePCA

mds_plot

plotCellTypePCA Plot Principal Components for Different Cell Types

Description

This function plots the principal components for different cell types in the query and reference
datasets.

Usage

plotCellTypePCA(
query_data,
reference_data,
query_cell_type_col,
ref_cell_type_col,
cell_types = NULL,
pc_subset = 1:5,

assay_name = "logcounts”
)
Arguments
query_data A SingleCellExperiment object containing numeric expression matrix for the

query cells.

reference_data A SingleCellExperiment object containing numeric expression matrix for the
reference cells.
query_cell_type_col
The column name in the colData of query_data that identifies the cell types.
ref_cell_type_col
The column name in the colData of reference_data that identifies the cell

types.
cell_types A character vector specifying the cell types to include in the plot. If NULL, all
cell types are included.
pc_subset A numeric vector specifying which principal components to include in the plot.
Default is 1:5.
assay_name Name of the assay on which to perform computations. Default is "logcounts".
Details

This function projects the query dataset onto the principal component space of the reference dataset
and then plots the specified principal components for the specified cell types. It uses the ‘project-
PCA° function to perform the projection and ggplot?2 to create the plots.

plotGeneExpressionDimred 19

Value

A ggplot object representing the boxplots of specified principal components for the given cell types
and datasets.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

Examples

Load data
data("reference_data")
data("query_data")

Plot the PC data

pc_plot <- plotCellTypePCA(query_data = query_data,
reference_data = reference_data,
cell_types = c("CD4", "CD8", "B_and_plasma”, "Myeloid"),
query_cell_type_col = "expert_annotation”,
ref_cell_type_col = "expert_annotation”,
pc_subset = 1:5)

pc_plot

plotGeneExpressionDimred
Visualize gene expression on a dimensional reduction plot

Description

This function plots gene expression on a dimensional reduction plot using methods like t-SNE,
UMAP, or PCA. Each single cell is color-coded based on the expression of a specific gene or
feature.

Usage

plotGeneExpressionDimred(
se_object,
method = c("TSNE", "UMAP", "PCA"),
pc_subset = 1:5,
feature,
assay_name = "logcounts”

20 plotGeneSetScores

Arguments
se_object An object of class SingleCellExperiment containing log-transformed expres-
sion matrix and other metadata. It can be either a reference or query dataset.
method The reduction method to use for visualization. It should be one of the supported
methods: "TSNE", "UMAP", or "PCA".
pc_subset An optional vector specifying the principal components (PCs) to include in the
plot if method = "PCA". Default is 1:5.
feature A character string representing the name of the gene or feature to be visualized.
assay_name Name of the assay on which to perform computations. Default is "logcounts".
Value

A ggplot object representing the dimensional reduction plot with gene expression.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

Examples

Load data
data("query_data")

Plot gene expression on PCA plot

plotGeneExpressionDimred(se_object = query_data,
method = "PCA",
pc_subset = 1:5,
feature = "VPREB3")

plotGeneSetScores Visualization of gene sets or pathway scores on dimensional reduction
plot

Description

Plot gene sets or pathway scores on PCA, TSNE, or UMAP. Single cells are color-coded by scores
of gene sets or pathways.

Usage

plotGeneSetScores(
se_object,
method = c("PCA", "TSNE", "UMAP"),
score_col,
pc_subset = 1:5

plotMarkerExpression

Arguments

se_object

method

score_col

pc_subset

Details

21

An object of class SingleCellExperiment containing numeric expression ma-
trix and other metadata. It can be either a reference or query dataset.

A character string indicating the method for visualization ("PCA", "TSNE", or
"UMAP").

A character string representing the name of the score_col (score) in the col-
Data(se_object) to plot.

An optional vector specifying the principal components (PCs) to include in the
plot if method = "PCA". Default is 1:5.

This function plots gene set scores on reduced dimensions such as PCA, t-SNE, or UMAP. It ex-
tracts the reduced dimensions from the provided SingleCellExperiment object. Gene set scores are

visualized as a scatter plot with colors indicating the scores. For PCA, the function automatically
includes the percentage of variance explained in the plot’s legend.

Value

A ggplot2 object representing the gene set scores plotted on the specified reduced dimensions.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

Examples

Load data
data("query_data")

Plot gene set scores on PCA
plotGeneSetScores(se_object = query_data,
method = "PCA",
score_col = "gene_set_scores”,
pc_subset = 1:5)

Note: Users can provide their own gene set scores in the colData of the 'se_object' object,
using any dimension reduction of their choice.

plotMarkerExpression Plot gene expression distribution from overall and cell type-specific
perspective

Description

This function generates density plots to visualize the distribution of gene expression values for a
specific gene across the overall dataset and within a specified cell type.

22 plotMarkerExpression

Usage

plotMarkerExpression(
reference_data,
query_data,
ref_cell_type_col,
query_cell_type_col,
cell_type,
gene_name,
assay_name = "logcounts"”

Arguments

reference_data A SingleCellExperiment object containing numeric expression matrix for the
reference cells.

guery_data A SingleCellExperiment object containing numeric expression matrix for the
query cells.

ref_cell_type_col
The column name in the colData of reference_data that identifies the cell
types.

query_cell_type_col
The column name in the colData of query_data that identifies the cell types.

cell_type A vector of cell type cell_types to plot (e.g., c("T-cell", "B-cell")).

gene_name The gene name for which the distribution is to be visualized.

assay_name Name of the assay on which to perform computations. Default is "logcounts".
Details

This function generates density plots to compare the distribution of a specific marker gene between
reference and query datasets. The aim is to inspect the alignment of gene expression levels as a
surrogate for dataset similarity. Similar distributions suggest a good alignment, while differences
may indicate discrepancies or incompatibilities between the datasets. To make the gene expression
scales comparable between the datasets, the gene expression values are transformed using z-rank
normalization. This transformation ranks the expression values and then scales the ranks to have a
mean of 0 and a standard deviation of 1, which helps in standardizing the distributions for compar-
ison.

Value
A gtable object containing two arranged density plots as grobs. The first plot shows the overall gene
expression distribution, and the second plot displays the cell type-specific expression distribution.
Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

plotPairwiseDistancesDensity

Examples

Load data
data("reference_data")
data("query_data")

Note: Users can use SingleR or any other method to obtain the cell type annotations.
reference_data,

query_data = query_data,

ref_cell_type_col = "expert_annotation”,

query_cell_type_col = "SingleR_annotation”,

gene_name = "VPREB3",

cell_type = "B_and_plasma")

plotMarkerExpression(reference_data =

23

plotPairwiseDistancesDensity

Ridgeline Plot of Pairwise Distance Analysis

Description

This function calculates pairwise distances or correlations between query and reference cells of a
specified cell type and visualizes the results using ridgeline plots, displaying the density distribution

for each comparison.

Usage

plotPairwiseDistancesDensity(
query_data,
reference_data,
query_cell_type_col,
ref_cell_type_col,
cell_type_query,
cell_type_ref,
pc_subset = 1:5,

distance_metric = c("correlation”, "euclidean"),
correlation_method = c("spearman”, "pearson"),
assay_name = "logcounts”
)
Arguments
query_data A SingleCellExperiment containing the single-cell expression data and meta-
data.

reference_data A SingleCellExperiment object containing the single-cell expression data and

metadata.
query_cell_type_col

The column name in the colData of query_data that identifies the cell types.

24 plotPairwiseDistancesDensity

ref_cell_type_col
The column name in the colData of reference_data that identifies the cell
types.

cell_type_query
The query cell type for which distances or correlations are calculated.

cell_type_ref The reference cell type for which distances or correlations are calculated.

pc_subset A numeric vector specifying which principal components to use in the analysis.
Default is 1:5. If set to NULL, the assay data is used directly for computations
without dimensionality reduction.

distance_metric
The distance metric to use for calculating pairwise distances, such as euclidean,
manbhattan, etc. Set to "correlation” to calculate correlation coefficients.

correlation_method
The correlation method to use when distance_metric is "correlation". Possi-
ble values are "pearson" and "spearman".

assay_name Name of the assay on which to perform computations. Default is "logcounts".

Details

Designed for SingleCellExperiment objects, this function subsets data for specified cell types,
computes pairwise distances or correlations, and visualizes these measurements through ridgeline
plots. The plots help evaluate the consistency and differentiation of annotated cell types within
single-cell datasets.

Value

A ggplot2 object showing ridgeline plots of calculated distances or correlations.

See Also

calculateWassersteinDistance

Examples

Load data
data("reference_data")
data("query_data")

Example usage of the function

plotPairwiseDistancesDensity(query_data = query_data,
reference_data = reference_data,
query_cell_type_col = "SingleR_annotation”,
ref_cell_type_col = "expert_annotation”,
cell_type_query = "CD8",
cell_type_ref = "CD8",
pc_subset = 1:5,
distance_metric = "euclidean”,
correlation_method = "pearson”)

plotQCvsAnnotation 25

plotQCvsAnnotation Scatter plot: QC stats vs Cell Type Annotation Scores

Description

Creates a scatter plot to visualize the relationship between QC stats (e.g., library size) and cell type
annotation scores for one or more cell types.

Usage

plotQCvsAnnotation(
se_object,
cell_type_col,
cell_types = NULL,

qc_col,
score_col
)
Arguments
se_object A SingleCellExperiment containing the single-cell expression data and meta-
data.
cell_type_col The column name in the colData of se_object that contains the cell type la-
bels.
cell_types A vector of cell type labels to plot (e.g., c("T-cell", "B-cell")). Defaults to NULL,
which will include all the cells.
gc_col A column name in the colData of se_object that contains the QC stats of
interest.
score_col The column name in the colData of se_object that contains the cell type an-

notation scores.

Details

This function generates a scatter plot to explore the relationship between various quality control
(QC) statistics, such as library size and mitochondrial percentage, and cell type annotation scores.
By examining these relationships, users can assess whether specific QC metrics, systematically
influence the confidence in cell type annotations, which is essential for ensuring reliable cell type
annotation.

Value

A ggplot object displaying a scatter plot of QC stats vs annotation scores, where each point repre-
sents a cell, color-coded by its cell type.

26 projectPCA

Examples

Load data
data("qc_data")

pl <- plotQCvsAnnotation(se_object = qc_data,
cell_type_col = "SingleR_annotation”,
cell_types = NULL,
gc_col = "total”,
score_col = "annotation_scores”)
p1 + ggplot2::xlab("Library Size")

projectPCA Project Query Data Onto PCA Space of Reference Data

Description

This function projects a query singleCellExperiment object onto the PCA space of a reference sin-
gleCellExperiment object. The PCA analysis on the reference data is assumed to be pre-computed
and stored within the object.

Usage

projectPCA(
query_data,
reference_data,
query_cell_type_col,
ref_cell_type_col,
pc_subset = 1:10,

assay_name = "logcounts”
)
Arguments
query_data A SingleCellExperiment object containing numeric expression matrix for the
query cells.

reference_data A SingleCellExperiment object containing numeric expression matrix for the
reference cells.

query_cell_type_col
character. The column name in the colData of query_data that identifies the
cell types.

ref_cell_type_col
character. The column name in the colData of reference_data that identifies
the cell types.

pc_subset A numeric vector specifying the subset of principal components (PCs) to com-
pare. Default is 1:10.

assay_name Name of the assay on which to perform computations. Defaults to "logcounts”.

projectSIR 27

Details

This function assumes that the "PCA" element exists within the reducedDims of the reference data
(obtained using reducedDim(reference_data)) and that the genes used for PCA are present in
both the reference and query data. It performs centering and scaling of the query data based on the
reference data before projection.

Value

A data. frame containing the projected data in rows (reference and query data combined).

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

Examples

Load data
data("reference_data")
data("query_data")

Project the query data onto PCA space of reference

pca_output <- projectPCA(query_data = query_data,
reference_data = reference_data,
query_cell_type_col = "SingleR_annotation”,
ref_cell_type_col = "expert_annotation”,
pc_subset = 1:10)

projectSIR Project Query Data Onto SIR Space of Reference Data

Description

This function projects a query SingleCellExperiment object onto the SIR (supervised indepen-
dent component) space of a reference SingleCellExperiment object. The SVD of the reference
data is computed on conditional means per cell type, and the query data is projected based on these
reference components.

Usage

projectSIR(
query_data,
reference_data,
query_cell_type_col,
ref_cell_type_col,
cell_types = NULL,
multiple_cond_means = TRUE,
assay_name = "logcounts”,

28 projectSIR

cumulative_variance_threshold = 0.7,
n_neighbor = 1

)

Arguments

query_data A SingleCellExperiment object containing numeric expression matrix for the
query cells.

reference_data A SingleCellExperiment object containing numeric expression matrix for the
reference cells.

query_cell_type_col
A character string specifying the column in the colData of query_data that
identifies the cell types.

ref_cell_type_col
A character string specifying the column in the colData of reference_data
that identifies the cell types.

cell_types A character vector of cell types for which to compute conditional means in the
reference data.

multiple_cond_means
A logical value indicating whether to compute multiple conditional means per
cell type (through PCA and clustering). Defaults to TRUE.

assay_name A character string specifying the assay name on which to perform computations.
Defaults to "logcounts”.

cumulative_variance_threshold
A numeric value between 0 and 1 specifying the variance threshold for PCA
when computing multiple conditional means. Defaults to @.7.

n_neighbor An integer specifying the number of nearest neighbors for clustering when com-
puting multiple conditional means. Defaults to 1.

Details

The genes used for the projection (SVD) must be present in both the reference and query datasets.
The function first computes conditional means for each cell type in the reference data, then performs
SVD on these conditional means to obtain the rotation matrix used for projecting both the reference
and query datasets. The query data is centered and scaled based on the reference data.

Value

A list containing:

cond_means A matrix of the conditional means computed for the reference data.

rotation_mat The rotation matrix obtained from the SVD of the conditional means.
sir_projections
A data.frame containing the SIR projections for both the reference and query
datasets.

percent_var The percentage of variance explained by each component of the SIR projection.

projectSIR 29

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

Examples

Load data
data("reference_data")
data("query_data")

Project the query data onto SIR space of reference

sir_output <- projectSIR(query_data = query_data,
reference_data = reference_data,
query_cell_type_col = "SingleR_annotation”,
ref_cell_type_col = "expert_annotation”)

Index

boxplotPCA, 2

calculateCategorizationEntropy, 4
calculateCellDistancesSimilarity, 5
calculateCramerPValue, 7
calculateHotellingPValue, 8
calculateHVGOverlap, 10
calculateVarImpOverlap, 11
calculateWassersteinDistance, 13, 24

histQCvsAnnotation, 15

plot.calculateWassersteinDistanceObject,
14
plotCellTypeMDS, 16
plotCellTypePCA, 18
plotGeneExpressionDimred, 19
plotGeneSetScores, 20
plotMarkerExpression, 21
plotPairwiseDistancesDensity, 23
plotQCvsAnnotation, 25
projectPCA, 26
projectSIR, 27

SingleCellExperiment, 3,5,7,9, 12, 13, 15,
17, 18, 20-26, 28

30

	boxplotPCA
	calculateCategorizationEntropy
	calculateCellDistancesSimilarity
	calculateCramerPValue
	calculateHotellingPValue
	calculateHVGOverlap
	calculateVarImpOverlap
	calculateWassersteinDistance
	histQCvsAnnotation
	plotCellTypeMDS
	plotCellTypePCA
	plotGeneExpressionDimred
	plotGeneSetScores
	plotMarkerExpression
	plotPairwiseDistancesDensity
	plotQCvsAnnotation
	projectPCA
	projectSIR
	Index

