Performing scClassify using pretrained model

Introduction

A common application of single-cell RNA sequencing (RNA-seq) data is to identify discrete cell types. To take advantage of the large collection of well-annotated scRNA-seq datasets, scClassify package implements a set of methods to perform accurate cell type classification based on ensemble learning and sample size calculation.

This vignette will provide an example showing how users can use a pretrained model of scClassify to predict cell types. A pretrained model is a scClassifyTrainModel object returned by train_scClassify(). A list of pretrained model can be found in https://sydneybiox.github.io/scClassify/index.html.

First, install scClassify, install BiocManager and use BiocManager::install to install scClassify package.

# installation of scClassify
if (!requireNamespace("BiocManager", quietly = TRUE)) {
  install.packages("BiocManager")
}
BiocManager::install("scClassify")

Setting up the data

We assume that you have log-transformed (size-factor normalized) matrices as query datasets, where each row refers to a gene and each column a cell. For demonstration purposes, we will take a subset of single-cell pancreas datasets from one independent study (Wang et al.).

library(scClassify)
data("scClassify_example")
wang_cellTypes <- scClassify_example$wang_cellTypes
exprsMat_wang_subset <- scClassify_example$exprsMat_wang_subset
exprsMat_wang_subset <- as(exprsMat_wang_subset, "dgCMatrix")

Here, we load our pretrained model using a subset of the Xin et al.  human pancreas dataset as our reference data.

First, let us check basic information relating to our pretrained model.

data("trainClassExample_xin")
trainClassExample_xin
#> Class: scClassifyTrainModel 
#> Model name: training 
#> Feature selection methods: limma 
#> Number of cells in the training data: 674 
#> Number of cell types in the training data: 4

In this pretrained model, we have selected the genes based on Differential Expression using limma. To check the genes that are available in the pretrained model:

features(trainClassExample_xin)
#> [1] "limma"

We can also visualise the cell type tree of the reference data.

plotCellTypeTree(cellTypeTree(trainClassExample_xin))

Running scClassify

Next, we perform predict_scClassify with our pretrained model trainRes = trainClassExample to predict the cell types of our query data matrix exprsMat_wang_subset_sparse. Here, we used pearson and spearman as similarity metrics.

pred_res <- predict_scClassify(exprsMat_test = exprsMat_wang_subset,
                               trainRes = trainClassExample_xin,
                               cellTypes_test = wang_cellTypes,
                               algorithm = "WKNN",
                               features = c("limma"),
                               similarity = c("pearson", "spearman"),
                               prob_threshold = 0.7,
                               verbose = TRUE)
#> Performing unweighted ensemble learning... 
#> Using parameters: 
#> similarity  algorithm   features 
#>  "pearson"     "WKNN"    "limma" 
#> [1] "Using dynamic correlation cutoff..."
#> [1] "Using dynamic correlation cutoff..."
#> classify_res
#>                correct   correctly unassigned           intermediate 
#>            0.704590818            0.239520958            0.000000000 
#> incorrectly unassigned         error assigned          misclassified 
#>            0.000000000            0.051896208            0.003992016 
#> Using parameters: 
#> similarity  algorithm   features 
#> "spearman"     "WKNN"    "limma" 
#> [1] "Using dynamic correlation cutoff..."
#> [1] "Using dynamic correlation cutoff..."
#> classify_res
#>                correct   correctly unassigned           intermediate 
#>            0.702594810            0.013972056            0.000000000 
#> incorrectly unassigned         error assigned          misclassified 
#>            0.001996008            0.277445110            0.003992016 
#> weights for each base method: 
#> [1] NA NA

Noted that the cellType_test is not a required input. For datasets with unknown labels, users can simply leave it as cellType_test = NULL.

Prediction results for pearson as the similarity metric:

table(pred_res$pearson_WKNN_limma$predRes, wang_cellTypes)
#>                   wang_cellTypes
#>                    acinar alpha beta delta ductal gamma stellate
#>   alpha                 0   206    0     0      0     2        0
#>   beta                  0     0  118     0      1     0        0
#>   beta_delta_gamma      0     0    0     0     25     0        0
#>   delta                 0     0    0    10      0     0        0
#>   gamma                 0     0    0     0      0    19        0
#>   unassigned            5     0    0     0     70     0       45

Prediction results for spearman as the similarity metric:

table(pred_res$spearman_WKNN_limma$predRes, wang_cellTypes)
#>                   wang_cellTypes
#>                    acinar alpha beta delta ductal gamma stellate
#>   alpha                 0   206    0     0      0     2        2
#>   beta                  2     0  118     0     29     0        6
#>   beta_delta_gamma      1     0    0     0     66     0       31
#>   delta                 0     0    0    10      0     0        2
#>   gamma                 0     0    0     0      0    18        0
#>   unassigned            2     0    0     0      1     1        4

Session Info

sessionInfo()
#> R version 4.4.1 (2024-06-14)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 24.04.1 LTS
#> 
#> Matrix products: default
#> BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
#> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so;  LAPACK version 3.12.0
#> 
#> locale:
#>  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
#>  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=C              
#>  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
#>  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
#>  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
#> 
#> time zone: Etc/UTC
#> tzcode source: system (glibc)
#> 
#> attached base packages:
#> [1] stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] scClassify_1.17.0 BiocStyle_2.33.1 
#> 
#> loaded via a namespace (and not attached):
#>   [1] gridExtra_2.3               rlang_1.1.4                
#>   [3] magrittr_2.0.3              matrixStats_1.3.0          
#>   [5] compiler_4.4.1              mgcv_1.9-1                 
#>   [7] DelayedMatrixStats_1.27.3   vctrs_0.6.5                
#>   [9] reshape2_1.4.4              stringr_1.5.1              
#>  [11] pkgconfig_2.0.3             crayon_1.5.3               
#>  [13] fastmap_1.2.0               XVector_0.45.0             
#>  [15] labeling_0.4.3              ggraph_2.2.1               
#>  [17] utf8_1.2.4                  rmarkdown_2.28             
#>  [19] UCSC.utils_1.1.0            purrr_1.0.2                
#>  [21] xfun_0.47                   zlibbioc_1.51.1            
#>  [23] cachem_1.1.0                GenomeInfoDb_1.41.1        
#>  [25] jsonlite_1.8.8              highr_0.11                 
#>  [27] rhdf5filters_1.17.0         DelayedArray_0.31.11       
#>  [29] Rhdf5lib_1.27.0             BiocParallel_1.39.0        
#>  [31] tweenr_2.0.3                parallel_4.4.1             
#>  [33] cluster_2.1.6               R6_2.5.1                   
#>  [35] bslib_0.8.0                 stringi_1.8.4              
#>  [37] limma_3.61.9                diptest_0.77-1             
#>  [39] GenomicRanges_1.57.1        jquerylib_0.1.4            
#>  [41] Rcpp_1.0.13                 SummarizedExperiment_1.35.1
#>  [43] knitr_1.48                  mixtools_2.0.0             
#>  [45] IRanges_2.39.2              Matrix_1.7-0               
#>  [47] splines_4.4.1               igraph_2.0.3               
#>  [49] tidyselect_1.2.1            abind_1.4-5                
#>  [51] yaml_2.3.10                 hopach_2.65.0              
#>  [53] viridis_0.6.5               minpack.lm_1.2-4           
#>  [55] codetools_0.2-20            Cepo_1.11.2                
#>  [57] lattice_0.22-6              tibble_3.2.1               
#>  [59] plyr_1.8.9                  Biobase_2.65.1             
#>  [61] withr_3.0.1                 evaluate_0.24.0            
#>  [63] survival_3.7-0              proxy_0.4-27               
#>  [65] polyclip_1.10-7             kernlab_0.9-33             
#>  [67] pillar_1.9.0                BiocManager_1.30.25        
#>  [69] MatrixGenerics_1.17.0       stats4_4.4.1               
#>  [71] plotly_4.10.4               generics_0.1.3             
#>  [73] S4Vectors_0.43.2            ggplot2_3.5.1              
#>  [75] sparseMatrixStats_1.17.2    munsell_0.5.1              
#>  [77] scales_1.3.0                glue_1.7.0                 
#>  [79] lazyeval_0.2.2              proxyC_0.4.1               
#>  [81] maketools_1.3.0             tools_4.4.1                
#>  [83] data.table_1.16.0           sys_3.4.2                  
#>  [85] buildtools_1.0.0            graphlayouts_1.1.1         
#>  [87] tidygraph_1.3.1             rhdf5_2.49.0               
#>  [89] grid_4.4.1                  tidyr_1.3.1                
#>  [91] colorspace_2.1-1            SingleCellExperiment_1.27.2
#>  [93] nlme_3.1-166                GenomeInfoDbData_1.2.12    
#>  [95] patchwork_1.2.0             ggforce_0.4.2              
#>  [97] HDF5Array_1.33.6            cli_3.6.3                  
#>  [99] fansi_1.0.6                 segmented_2.1-1            
#> [101] S4Arrays_1.5.7              viridisLite_0.4.2          
#> [103] dplyr_1.1.4                 gtable_0.3.5               
#> [105] sass_0.4.9                  digest_0.6.37              
#> [107] BiocGenerics_0.51.0         SparseArray_1.5.31         
#> [109] ggrepel_0.9.5               htmlwidgets_1.6.4          
#> [111] farver_2.1.2                memoise_2.0.1              
#> [113] htmltools_0.5.8.1           lifecycle_1.0.4            
#> [115] httr_1.4.7                  statmod_1.5.0              
#> [117] MASS_7.3-61