Package 'ribosomeProfilingQC'

Title: Ribosome Profiling Quality Control
Description: Ribo-Seq (also named ribosome profiling or footprinting) measures translatome (unlike RNA-Seq, which sequences the transcriptome) by direct quantification of the ribosome-protected fragments (RPFs). This package provides the tools for quality assessment of ribosome profiling. In addition, it can preprocess Ribo-Seq data for subsequent differential analysis.
Authors: Jianhong Ou [aut, cre] , Mariah Hoye [aut]
Maintainer: Jianhong Ou <[email protected]>
License: GPL (>=3) + file LICENSE
Version: 1.19.0
Built: 2024-11-15 06:27:22 UTC
Source: https://github.com/bioc/ribosomeProfilingQC

Help Index


Assign reading frame

Description

Set reading frame for each reads in CDS region to frame0, frame1 and frame2.

Usage

assignReadingFrame(reads, CDS, txdb, ignore.seqlevelsStyle = FALSE)

Arguments

reads

Output of getPsiteCoordinates

CDS

Output of prepareCDS

txdb

A TxDb object. If it is set, assign reading frame for all reads. Default missing, only assign rading frame for reads in CDS.

ignore.seqlevelsStyle

Ignore the sequence name style detection or not.

Value

An GRanges object of reads with reading frame information.

Examples

library(Rsamtools)
bamfilename <- system.file("extdata", "RPF.WT.1.bam",
                           package="ribosomeProfilingQC")
yieldSize <- 10000000
bamfile <- BamFile(bamfilename, yieldSize = yieldSize)
pc <- getPsiteCoordinates(bamfile, bestpsite=13)
pc.sub <- pc[pc$qwidth %in% c(29, 30)]
#library(GenomicFeatures)
library(BSgenome.Drerio.UCSC.danRer10)
#txdb <- makeTxDbFromGFF(system.file("extdata",
 #         "Danio_rerio.GRCz10.91.chr1.gtf.gz",
 #         package="ribosomeProfilingQC"),
 #         organism = "Danio rerio",
 #         chrominfo = seqinfo(Drerio)["chr1"],
 #         taxonomyId = 7955)
#CDS <- prepareCDS(txdb)
CDS <- readRDS(system.file("extdata", "CDS.rds",
                           package="ribosomeProfilingQC"))
pc.sub <- assignReadingFrame(pc.sub, CDS)

Codon usage bias

Description

Calculate the codon usage for the reads in the identified CDSs. And then compared to the reference codon usage.

Usage

codonBias(
  RPFs,
  gtf,
  genome,
  bestpsite = 13,
  readsLen = c(28, 29),
  anchor = "5end",
  ignore.seqlevelsStyle = FALSE,
  summary = TRUE,
  removeDuplicates = TRUE,
  ...
)

Arguments

RPFs

Bam file names of RPFs.

gtf

GTF file name for annotation or a TxDb object.

genome

A BSgenome object.

bestpsite

P site postion.

readsLen

Reads length to keep.

anchor

5end or 3end. Default is 5end.

ignore.seqlevelsStyle

Ignore the sequence name style detection or not.

summary

Return the summary of codon usage bias or full list.

removeDuplicates

Remove the PCR duplicates or not. Default TRUE.

...

Parameters pass to makeTxDbFromGFF

Value

A list of data frame of codon count table if summary is TRUE. list 'reads' means the counts by raw reads. list 'reference' means the counts by sequence extracted from reference by the coordinates of mapped reads. Otherwise, return the counts (reads/reference) table for each reads.

Examples

path <- system.file("extdata", package="ribosomeProfilingQC")
RPFs <- dir(path, "RPF.*?\\.[12].bam$", full.names=TRUE)
gtf <- file.path(path, "Danio_rerio.GRCz10.91.chr1.gtf.gz")
library(BSgenome.Drerio.UCSC.danRer10)
cb <- codonBias(RPFs[c(1,2)], gtf=gtf, genome=Drerio)

Start or Stop codon usage

Description

Calculate the start or stop codon usage for the identified CDSs.

Usage

codonUsage(reads, start = TRUE, genome)

Arguments

reads

Output of assignReadingFrame.

start

Calculate for start codon or stop codon.

genome

A BSgenome object.

Value

Table of codon usage.

Examples

pcs <- readRDS(system.file("extdata", "samplePc.rds",
               package="ribosomeProfilingQC"))
library(BSgenome.Drerio.UCSC.danRer10)
codonUsage(pcs, genome=Drerio)
codonUsage(pcs, start=FALSE, genome=Drerio)

Extract counts for RPFs and RNAs

Description

Calculate the reads counts for gene level or transcript level.

Usage

countReads(
  RPFs,
  RNAs,
  gtf,
  level = c("tx", "gene"),
  bestpsite = 13,
  readsLen = c(28, 29),
  anchor = "5end",
  ignore.seqlevelsStyle = FALSE,
  ...
)

Arguments

RPFs

Bam file names of RPFs.

RNAs

Bam file names of RNAseq.

gtf

GTF file name for annotation.

level

Transcript or gene level.

bestpsite

numeric(1). P site postion.

readsLen

numeric(1). reads length to keep.

anchor

5end or 3end. Default is 5end.

ignore.seqlevelsStyle

Ignore the sequence name style detection or not.

...

Parameters pass to featureCounts except isGTFAnnotationFile, GTF.attrType, and annot.ext.

Value

A list with reads counts.

Examples

path <- system.file("extdata", package="ribosomeProfilingQC")
RPFs <- dir(path, "RPF.*?.[12].bam$", full.names=TRUE)
gtf <- file.path(path, "Danio_rerio.GRCz10.91.chr1.gtf.gz")
RNAs <- dir(path, "mRNA.*?.[12].bam$", full.names = TRUE)
cnts <- countReads(RPFs[1], gtf=gtf, level="gene", readsLen=29)
#cnts <- countReads(RPFs[1], RNAs[1], gtf=gtf, level="gene", readsLen=29)

Extract coverage depth for gene level or transcript level

Description

Calculate the coverage depth for gene level or transcript level. Coverage for RPFs will be the best P site coverage. Coverage for RNAs will be the coverage for 5'end of reads.

Usage

coverageDepth(
  RPFs,
  RNAs,
  gtf,
  level = c("tx", "gene"),
  bestpsite = 13,
  readsLen = c(28, 29),
  anchor = "5end",
  region = "cds",
  ext = 5000,
  ignore.seqlevelsStyle = FALSE,
  ...
)

Arguments

RPFs

Bam file names of RPFs.

RNAs

Bam file names of RNAseq.

gtf

GTF file name for annotation or a TxDb object.

level

Transcript or gene level.

bestpsite

P site postion.

readsLen

Reads length to keep.

anchor

5end or 3end. Default is 5end.

region

Annotation region. It could be "cds", "utr5", "utr3", "exon", "transcripts", "feature with extension".

ext

Extesion region for "feature with extension".

ignore.seqlevelsStyle

Ignore the sequence name style detection or not.

...

Parameters pass to makeTxDbFromGFF

Value

A cvgd object with coverage depth.

Examples

path <- system.file("extdata", package="ribosomeProfilingQC")
RPFs <- dir(path, "RPF.*?\\.[12].bam$", full.names=TRUE)
gtf <- file.path(path, "Danio_rerio.GRCz10.91.chr1.gtf.gz")
cvgs <- coverageDepth(RPFs[1], gtf=gtf, level="gene")

Calculate coverage rate

Description

Coverage is a measure as percentage of position with reads along the CDS. Coverage rate calculate coverage rate for RPFs and mRNAs in gene level. Coverage will be calculated based on best P sites for RPFs and 5'end for RNA-seq.

Usage

coverageRates(cvgs, RPFsampleOrder, mRNAsampleOrder)

Arguments

cvgs

Output of coverageDepth

RPFsampleOrder, mRNAsampleOrder

Sample order of RPFs and mRNAs. The parameters are used to make sure that the order of RPFs and mRNAs in cvgs is corresponding samples.

Value

A list with coverage rate.

Examples

path <- system.file("extdata", package="ribosomeProfilingQC")
RPFs <- dir(path, "RPF.*?\\.[12].bam$", full.names=TRUE)
gtf <- file.path(path, "Danio_rerio.GRCz10.91.chr1.gtf.gz")
cvgs <- coverageDepth(RPFs[1], gtf=gtf, level="gene")
cr <- coverageRates(cvgs)

Class "cvgd"

Description

An object of class "cvgd" represents output of coverageDepth.

Usage

cvgd(...)

## S4 method for signature 'cvgd'
x$name

## S4 replacement method for signature 'cvgd'
x$name <- value

## S4 method for signature 'cvgd,ANY,ANY'
x[[i, j, ..., exact = TRUE]]

## S4 replacement method for signature 'cvgd,ANY,ANY,ANY'
x[[i, j, ...]] <- value

## S4 method for signature 'cvgd'
show(object)

Arguments

...

Each argument in ... becomes an slot in the new "cvgd"-class.

x

cvgd object.

name

A literal character string or a name (possibly backtick quoted).

value

value to replace.

i, j

indexes specifying elements to extract or replace.

exact

see Extract

object

cvgd object.

Value

A cvgd object.

Slots

coverage

"list", list of CompressedRleList, specify the coverage of features of each sample.

granges

CompressedGRangesList, specify the features.

Examples

cvgd()

Estimate P site position

Description

Estimate P site position from a subset reads.

Usage

estimatePsite(
  bamfile,
  CDS,
  genome,
  anchor = "5end",
  readLen = c(25:30),
  ignore.seqlevelsStyle = FALSE
)

Arguments

bamfile

A BamFile object.

CDS

Output of prepareCDS

genome

A BSgenome object.

anchor

5end or 3end. Default is 5end.

readLen

The reads length used to estimate.

ignore.seqlevelsStyle

Ignore the sequence name style detection or not.

Value

A best P site position.

References

1: Bazzini AA, Johnstone TG, Christiano R, Mackowiak SD, Obermayer B, Fleming ES, Vejnar CE, Lee MT, Rajewsky N, Walther TC, Giraldez AJ. Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation. EMBO J. 2014 May 2;33(9):981-93. doi: 10.1002/embj.201488411. Epub 2014 Apr 4. PubMed PMID: 24705786; PubMed Central PMCID: PMC4193932.

Examples

library(Rsamtools)
bamfilename <- system.file("extdata", "RPF.WT.1.bam",
                           package="ribosomeProfilingQC")
yieldSize <- 10000000
bamfile <- BamFile(bamfilename, yieldSize = yieldSize)
#library(GenomicFeatures)
library(BSgenome.Drerio.UCSC.danRer10)
#txdb <- makeTxDbFromGFF(system.file("extdata",
 #         "Danio_rerio.GRCz10.91.chr1.gtf.gz",
 #         package="ribosomeProfilingQC"),
 #         organism = "Danio rerio",
 #         chrominfo = seqinfo(Drerio)["chr1"],
 #         taxonomyId = 7955)
#CDS <- prepareCDS(txdb)
CDS <- readRDS(system.file("extdata", "CDS.rds",
                           package="ribosomeProfilingQC"))
estimatePsite(bamfile, CDS, Drerio)

Filter CDS by size

Description

Filter CDS by CDS size.

Usage

filterCDS(CDS, sizeCutoff = 100L)

Arguments

CDS

Output of preparedCDS

sizeCutoff

numeric(1). Cutoff size for CDS. If the size of CDS is less than the cutoff, it will be filtered out.

Value

A GRanges object with filtered CDS.

Examples

#library(GenomicFeatures)
library(BSgenome.Drerio.UCSC.danRer10)
#txdb <- makeTxDbFromGFF(system.file("extdata",
 #         "Danio_rerio.GRCz10.91.chr1.gtf.gz",
 #         package="ribosomeProfilingQC"),
 #         organism = "Danio rerio",
 #         chrominfo = seqinfo(Drerio)["chr1"],
 #         taxonomyId = 7955)
#CDS <- prepareCDS(txdb)
CDS <- readRDS(system.file("extdata", "CDS.rds",
                           package="ribosomeProfilingQC"))
filterCDS(CDS)

Fragment Length Organization Similarity Score (FLOSS)

Description

The FLOSS will be calculated from a histogram of read lengths for footprints on a transcript or reading frame.

Usage

FLOSS(
  reads,
  ref,
  CDS,
  readLengths = c(26:34),
  level = c("tx", "gene"),
  draw = FALSE,
  ignore.seqlevelsStyle = FALSE
)

Arguments

reads

Output of getPsiteCoordinates

ref

Refercence id list. If level is set to tx, the id should be transcript names. If level is set to gene, the id should be gene id.

CDS

Output of prepareCDS

readLengths

Read length used for calculation

level

Transcript or gene level

draw

Plot FLOSS vs total reads or not.

ignore.seqlevelsStyle

Ignore the sequence name style detection or not.

Value

A data frame with colnames as id, FLOSS, totalReads, wilcox.test.pval, cook's distance.

References

1: Ingolia NT, Brar GA, Stern-Ginossar N, Harris MS, Talhouarne GJ, Jackson SE, Wills MR, Weissman JS. Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes. Cell Rep. 2014 Sep 11;8(5):1365-79. doi: 10.1016/j.celrep.2014.07.045. Epub 2014 Aug 21. PubMed PMID: 25159147; PubMed Central PMCID: PMC4216110.

Examples

library(Rsamtools)
bamfilename <- system.file("extdata", "RPF.WT.1.bam",
                           package="ribosomeProfilingQC")
yieldSize <- 10000000
bamfile <- BamFile(bamfilename, yieldSize = yieldSize)
pc <- getPsiteCoordinates(bamfile, bestpsite=13)
#library(GenomicFeatures)
library(BSgenome.Drerio.UCSC.danRer10)
#txdb <- makeTxDbFromGFF(system.file("extdata",
 #         "Danio_rerio.GRCz10.91.chr1.gtf.gz",
 #         package="ribosomeProfilingQC"),
 #         organism = "Danio rerio",
 #         chrominfo = seqinfo(Drerio)["chr1"],
 #         taxonomyId = 7955)
#CDS <- prepareCDS(txdb)
CDS <- readRDS(system.file("extdata", "CDS.rds",
                           package="ribosomeProfilingQC"))
set.seed(123)
ref <- sample(unique(CDS$gene_id), 100)
fl <- FLOSS(pc, ref, CDS, level="gene")

Extract counts for gene level or transcript level

Description

Calculate the reads counts or coverage rate for gene level or transcript level. Coverage is determined by measuring the proportion of in-frame CDS positions with >= 1 reads.

Usage

frameCounts(
  reads,
  level = c("tx", "gene"),
  frame0only = TRUE,
  coverageRate = FALSE
)

Arguments

reads

Output of assignReadingFrame.

level

Transcript or gene level

frame0only

Only count for reading frame 0 or not

coverageRate

Calculate for coverage or not

Value

A numeric vector with reads counts.

Examples

pcs <- readRDS(system.file("extdata", "samplePc.rds",
               package="ribosomeProfilingQC"))
cnts <- frameCounts(pcs)
cnts.gene <- frameCounts(pcs, level="gene")
cvg <- frameCounts(pcs, coverageRate=TRUE)

Get FPKM values for counts

Description

Calculate Fragments Per Kilobase of transcript per Million mapped reads (FPKM) for counts.

Usage

getFPKM(counts, gtf, level = c("gene", "tx"))

Arguments

counts

Output of countReads or normByRUVs

gtf

GTF file name for annotation.

level

Transcript or gene level.

Value

A list with FPKMs

Examples

path <- system.file("extdata", package="ribosomeProfilingQC")
#RPFs <- dir(path, "RPF.*?.[12].bam$", full.names=TRUE)
#RNAs <- dir(path, "mRNA.*?.[12].bam$", full.names=TRUE)
#gtf <- file.path(path, "Danio_rerio.GRCz10.91.chr1.gtf.gz")
#cnts <- countReads(RPFs, RNAs, gtf, level="gene")
cnts <- readRDS(file.path(path, "cnts.rds"))
fpkm <- getFPKM(cnts)

Calculate ORFscore

Description

To calculate the ORFscore, reads were counnted at each position within the ORF.

ORFscore=log2((n=13(FiFˉ)2Fˉ)+1)ORFscore = log_2((\sum_{n=1}^{3}\frac{(F_i-\bar{F})^2}{\bar{F}}) + 1)

where FnF_n is the number of reads in reading frame n, Fˉ\bar{F} is the total number of reads across all three frames divided by 3. If F1F_1 is smaller than F2F_2 or F3F_3, ORFscore=1XORFscoreORFscore = -1 X ORFscore.

Usage

getORFscore(reads)

Arguments

reads

Output of getPsiteCoordinates

Value

A numeric vector with ORFscore.

References

1: Bazzini AA, Johnstone TG, Christiano R, Mackowiak SD, Obermayer B, Fleming ES, Vejnar CE, Lee MT, Rajewsky N, Walther TC, Giraldez AJ. Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation. EMBO J. 2014 May 2;33(9):981-93. doi: 10.1002/embj.201488411. Epub 2014 Apr 4. PubMed PMID: 24705786; PubMed Central PMCID: PMC4193932.

Examples

pcs <- readRDS(system.file("extdata", "samplePc.rds",
               package="ribosomeProfilingQC"))
ORFscore <- getORFscore(pcs)

Get P site coordinates

Description

Extract P site coordinates from a bam file to a GRanges object.

Usage

getPsiteCoordinates(
  bamfile,
  bestpsite,
  anchor = "5end",
  param = ScanBamParam(what = c("qwidth"), tag = character(0), flag =
    scanBamFlag(isSecondaryAlignment = FALSE, isUnmappedQuery = FALSE,
    isNotPassingQualityControls = FALSE, isSupplementaryAlignment = FALSE))
)

Arguments

bamfile

A BamFile object.

bestpsite

P site postion. See estimatePsite

anchor

5end or 3end. Default is 5end.

param

A ScanBamParam object. Please note the 'qwidth' is required.

Value

A GRanges object with qwidth metadata which indicates the width of reads.

Examples

library(Rsamtools)
bamfilename <- system.file("extdata", "RPF.WT.1.bam",
                           package="ribosomeProfilingQC")
yieldSize <- 10000000
bamfile <- BamFile(bamfilename, yieldSize = yieldSize)
pc <- getPsiteCoordinates(bamfile, bestpsite=13)

barplot by ggplot2

Description

barplot with number in top.

Usage

ggBar(height, fill = "gray80", draw = TRUE, xlab, ylab, postfix)

Arguments

height

data for plot

fill, xlab, ylab

parameters pass to ggplot.

draw

plot or not

postfix

Postfix of text labled in top of bar.

Value

ggplot object.

Examples

ribosomeProfilingQC:::ggBar(sample.int(100, 3))

Metagene analysis plot

Description

Plot the average coverage of UTR5, CDS and UTR3.

Usage

metaPlot(
  UTR5coverage,
  CDScoverage,
  UTR3coverage,
  sample,
  xaxis = c("RPFs", "mRNA"),
  bins = c(UTR5 = 100, CDS = 500, UTR3 = 100),
  ...
)

Arguments

UTR5coverage, CDScoverage, UTR3coverage

Coverages of UTR5, CDS, and UTR3 region. Output of coverageDepth

sample

character(1). Sample name to plot.

xaxis

What to plot for x-axis.

bins

Bins for UTR5, CDS and UTR3.

...

Parameter pass to plot.

Value

A list contain the data for plot.

Examples

## Not run: 
path <- system.file("extdata", package="ribosomeProfilingQC")
RPFs <- dir(path, "RPF.*?\\.[12].bam$", full.names=TRUE)
RNAs <- dir(path, "mRNA.*?\\.[12].bam$", full.names=TRUE)
gtf <- file.path(path, "Danio_rerio.GRCz10.91.chr1.gtf.gz")
cvgs <- coverageDepth(RPFs[1], RNAs[1], gtf)
cvgs.utr3 <- coverageDepth(RPFs[1], RNAs[1], gtf, region="utr3")
cvgs.utr5 <- coverageDepth(RPFs[1], RNAs[1], gtf, region="utr5")
metaPlot(cvgs.utr5, cvgs, cvgs.utr3, sample=1)

## End(Not run)

Normalize the TE by Loess

Description

Fitting the translational efficiency values with the mRNA value by loess.

Usage

normalizeTEbyLoess(
  TE,
  log2 = TRUE,
  pseudocount = 0.001,
  span = 2/3,
  family.loess = "symmetric"
)

Arguments

TE

output of translationalEfficiency.

log2

logical(1L). Do log2 transform for TE or not. If TE value is not log2 transformed, please set it as TRUE.

pseudocount

The number will be add to sum of reads count to avoid X/0.

span, family.loess

Parameters will be passed to loess

Value

A list with RPFs, mRNA levels and TE as a matrix with log2 transformed translational efficiency.

Examples

path <- system.file("extdata", package="ribosomeProfilingQC")
cnts <- readRDS(file.path(path, "cnts.rds"))
fpkm <- getFPKM(cnts)
te <- translationalEfficiency(fpkm)
te1 <- normalizeTEbyLoess(te)
plotTE(te)
plotTE(te1, log2=FALSE)

Normalization by edgeR, DESeq2 or RUVSeq

Description

Normalization by multiple known methods

Usage

normBy(counts, method = c("edgeR", "DESeq2", "RUVs", "fpkm", "vsn"), ...)

Arguments

counts

Output of countReads

method

Character(1L) to indicate the method for normalization.

...

parameters will be passed to normByRUVs or getFPKM

Value

Normalized counts list

Examples

path <- system.file("extdata", package="ribosomeProfilingQC")
cnts <- readRDS(file.path(path, "cnts.rds"))
norm <- normBy(cnts, method = 'edgeR')
norm2 <- normBy(cnts, method = 'DESeq2')
norm3 <- normBy(cnts, 'vsn')

Normalization by RUVSeq

Description

Normalization by RUVSeq:RUVs methods

Usage

normByRUVs(counts, RPFgroup, mRNAgroup = RPFgroup, k = 1)

Arguments

counts

Output of countReads

RPFgroup, mRNAgroup

Groups for RPF and mRNA files

k

The number of factor of unwanted variation to be estimated from the data. See RUVs

Value

Normalized counts list

Examples

## Not run: ##waiting for EDASeq fix the issue.
path <- system.file("extdata", package="ribosomeProfilingQC")
#RPFs <- dir(path, "RPF.*?.[12].bam$", full.names=TRUE)
#RNAs <- dir(path, "mRNA.*?.[12].bam$", full.names=TRUE)
#gtf <- file.path(path, "Danio_rerio.GRCz10.91.chr1.gtf.gz")
#cnts <- countReads(RPFs, RNAs, gtf, level="gene")
cnts <- readRDS(file.path(path, "cnts.rds"))
gp <- c("KD1", "KD1", "WT", "WT")
norm <- normByRUVs(cnts, gp, gp)

## End(Not run)

Metaplot of P site distribution

Description

Metaplot of P site distribution in all the CDS aligned by the start codon or stop codon.

Usage

PAmotif(reads, genome, plot = TRUE, ignore.seqlevelsStyle = FALSE)

Arguments

reads

Output of assignReadingFrame or shiftReadsByFrame.

genome

A BSgenome object.

plot

Plot the motif or not.

ignore.seqlevelsStyle

Ignore the sequence name style detection or not.

Value

A pcm object

Examples

pcs <- readRDS(system.file("extdata", "samplePc.rds",
               package="ribosomeProfilingQC"))
library(BSgenome.Drerio.UCSC.danRer10)
#PAmotif(pcs, Drerio)

Metaplot of P site distribution

Description

Metaplot of P site distribution in all the CDS aligned by the start codon or stop codon.

Usage

plotDistance2Codon(
  reads,
  start = TRUE,
  anchor = 50,
  col = c(Frame_0 = "#009E73", Frame_1 = "#D55E00", Frame_2 = "#0072B2")
)

Arguments

reads

Output of assignReadingFrame.

start

Plot for start codon or stop codon.

anchor

The maximal xlim or (min, max) position for plot.

col

Colors for different reading frame.

Value

Invisible height of the barplot.

Examples

pcs <- readRDS(system.file("extdata", "samplePc.rds",
               package="ribosomeProfilingQC"))
plotDistance2Codon(pcs)
#plotDistance2Codon(pcs, start=FALSE)
#plotDistance2Codon(pcs, anchor=c(-10, 20))

Plot density for each reading frame

Description

Plot density for each reading frame.

Usage

plotFrameDensity(
  reads,
  density = TRUE,
  col = c(Frame_0 = "#009E73", Frame_1 = "#D55E00", Frame_2 = "#0072B2")
)

Arguments

reads

Output of assignReadingFrame

density

Plot density or counts

col

Colors for reading frames

Value

A ggplot object.

Examples

pcs <- readRDS(system.file("extdata", "samplePc.rds",
               package="ribosomeProfilingQC"))
plotFrameDensity(pcs)

Plot splice event

Description

Plot the splice event

Usage

plotSpliceEvent(
  se,
  tx_name,
  coverage,
  group1,
  group2,
  cutoffFDR = 0.05,
  resetIntronWidth = TRUE
)

Arguments

se

Output of spliceEvent

tx_name

Transcript name.

coverage

Coverages of feature region with extensions. Output of coverageDepth

group1, group2

The sample names of group 1 and group 2

cutoffFDR

Cutoff of FDR

resetIntronWidth

logical(1). If set to true, reset the region with no read to minimal width.

Value

A ggplot object.

Examples

## Not run: 
path <- system.file("extdata", package="ribosomeProfilingQC")
RPFs <- dir(path, "RPF.*?\\.[12].bam$", full.names=TRUE)
gtf <- file.path(path, "Danio_rerio.GRCz10.91.chr1.gtf.gz")
coverage <- coverageDepth(RPFs, gtf=gtf, level="gene",
                          region="feature with extension")
group1 <- c("RPF.KD1.1", "RPF.KD1.2")
group2 <- c("RPF.WT.1", "RPF.WT.2")
se <- spliceEvent(coverage, group1, group2)
plotSpliceEvent(se, se$feature[1], coverage, group1, group2)

## End(Not run)

Plot translational efficiency

Description

Scatterplot of RNA/RPFs level compared to the translational efficiency.

Usage

plotTE(
  TE,
  sample,
  xaxis = c("mRNA", "RPFs"),
  removeZero = TRUE,
  log2 = TRUE,
  theme = theme_classic(),
  type = "histogram",
  margins = "y",
  ...
)

Arguments

TE

Output of translationalEfficiency

sample

Sample names to plot.

xaxis

What to plot for x-axis.

removeZero

Remove the 0 values from plots.

log2

Do log2 transform for TE or not.

theme

Theme for ggplot2.

type, margins, ...

Parameters pass to ggMarginal

Value

A ggExtraPlot object.

Examples

path <- system.file("extdata", package="ribosomeProfilingQC")
#RPFs <- dir(path, "RPF.*?\.[12].bam$", full.names=TRUE)
#RNAs <- dir(path, "mRNA.*?\.[12].bam$", full.names=TRUE)
#gtf <- file.path(path, "Danio_rerio.GRCz10.91.chr1.gtf.gz")
#cnts <- countReads(RPFs, RNAs, gtf, level="gene")
cnts <- readRDS(file.path(path, "cnts.rds"))
fpkm <- getFPKM(cnts)
te <- translationalEfficiency(fpkm)
plotTE(te, 1)

Plot reads P site abundance for a specific transcript

Description

Plot the bundances of P site on a transcript.

Usage

plotTranscript(
  reads,
  tx_name,
  col = c(Frame_0 = "#009E73", Frame_1 = "#D55E00", Frame_2 = "#0072B2")
)

Arguments

reads

Output of assignReadingFrame

tx_name

Transcript names.

col

Colors for reading frames

Value

Invisible heights of the barplot.

Examples

pcs <- readRDS(system.file("extdata", "samplePc.rds",
               package="ribosomeProfilingQC"))

plotTranscript(pcs, c("ENSDART00000152562", "ENSDART00000054987"))

Prepare CDS

Description

Prepare CDS library from a TxDb object.

Usage

prepareCDS(txdb, withUTR = FALSE)

Arguments

txdb

A TxDb object.

withUTR

Including UTR information or not.

Value

A GRanges object with metadata which include: tx_id: transcript id; tx_name: transcript name; gene_id: gene id; isFirstExonInCDS: is first exon in CDS or not; idFirstExonInCDS: the id for the first exon; isLastExonInCDS: is last exon in CDS or not; wid.cumsu: cumulative sums of number of bases in CDS; internalPos: offset position from 1 base;

Examples

library(GenomicFeatures)
txdb_file <- system.file("extdata", "Biomart_Ensembl_sample.sqlite",
                         package="GenomicFeatures")
txdb <- loadDb(txdb_file)
CDS <- prepareCDS(txdb)

Plot reads distribution in genomic elements

Description

Plot the percentage of reads in CDS, 5'UTR, 3'UTR, introns, and other elements.

Usage

readsDistribution(
  reads,
  txdb,
  upstreamRegion = 3000,
  downstreamRegion = 3000,
  plot = TRUE,
  precedence = NULL,
  ignore.seqlevelsStyle = FALSE,
  ...
)

Arguments

reads

Output of getPsiteCoordinates

txdb

A TxDb object

upstreamRegion, downstreamRegion

The range for promoter region and downstream region.

plot

Plot the distribution or not

precedence

If no precedence specified, double count will be enabled, which means that if the reads overlap with both CDS and 5'UTR, both CDS and 5'UTR will be incremented. If a precedence order is specified, for example, if promoter is specified before 5'UTR, then only promoter will be incremented for the same example. The values could be any combinations of "CDS", "UTR5", "UTR3", "OtherExon", "Intron", "upstream", "downstreama" and "InterGenic", Default=NULL

ignore.seqlevelsStyle

Ignore the sequence name style detection or not.

...

Not use.

Value

The reads with distribution assignment

Examples

library(Rsamtools)
bamfilename <- system.file("extdata", "RPF.WT.1.bam",
                           package="ribosomeProfilingQC")
yieldSize <- 10000000
bamfile <- BamFile(bamfilename, yieldSize = yieldSize)
pc <- getPsiteCoordinates(bamfile, bestpsite=11)
pc.sub <- pc[pc$qwidth %in% c(29, 30)]
library(GenomicFeatures)
library(BSgenome.Drerio.UCSC.danRer10)
txdb <- makeTxDbFromGFF(system.file("extdata",
          "Danio_rerio.GRCz10.91.chr1.gtf.gz",
          package="ribosomeProfilingQC"),
          organism = "Danio rerio",
          chrominfo = seqinfo(Drerio)["chr1"],
          taxonomyId = 7955)
pc.sub <- readsDistribution(pc.sub, txdb, las=2)
pc.sub <- readsDistribution(pc.sub, txdb, las=2,
              precedence=c(
              "CDS", "UTR5", "UTR3", "OtherExon",
              "Intron", "upstream", "downstream",
              "InterGenic"
              ))

Plot start/stop windows

Description

Plot the reads shifted from start/stop position of CDS.

Usage

readsEndPlot(
  bamfile,
  CDS,
  toStartCodon = TRUE,
  fiveEnd = TRUE,
  shift = 0,
  window = c(-29, 30),
  readLen = 25:30,
  ignore.seqlevelsStyle = FALSE
)

Arguments

bamfile

A BamFile object.

CDS

Output of prepareCDS

toStartCodon

What to search: start or end codon

fiveEnd

Search from five or three ends of the reads.

shift

number(1). Search from 5' end or 3' end of given number. if fiveEnd set to false, please set the shift as a negative number.

window

The window of CDS region to plot

readLen

The reads length used to plot

ignore.seqlevelsStyle

Ignore the sequence name style detection or not.

Value

The invisible list with counts numbers and reads in GRanges.

Examples

library(Rsamtools)
bamfilename <- system.file("extdata", "RPF.WT.1.bam",
                           package="ribosomeProfilingQC")
yieldSize <- 10000000
bamfile <- BamFile(bamfilename, yieldSize = yieldSize)
#library(GenomicFeatures)
library(BSgenome.Drerio.UCSC.danRer10)
#txdb <- makeTxDbFromGFF(system.file("extdata",
 #         "Danio_rerio.GRCz10.91.chr1.gtf.gz",
 #         package="ribosomeProfilingQC"),
 #         organism = "Danio rerio",
 #         chrominfo = seqinfo(Drerio)["chr1"],
 #         taxonomyId = 7955)
#CDS <- prepareCDS(txdb)
CDS <- readRDS(system.file("extdata", "CDS.rds",
                           package="ribosomeProfilingQC"))
re <- readsEndPlot(bamfile, CDS, toStartCodon=TRUE)
readsEndPlot(re$reads, CDS, toStartCodon=TRUE, fiveEnd=FALSE)
#re <- readsEndPlot(bamfile, CDS, toStartCodon=FALSE)
#readsEndPlot(re$reads, CDS, toStartCodon=FALSE, fiveEnd=FALSE)
readsEndPlot(bamfile, CDS, shift=13)
#readsEndPlot(bamfile, CDS, fiveEnd=FALSE, shift=-16)

Get reads length to keep by cutoff percentage

Description

Set the percentage to filter the reads.

Usage

readsLenToKeep(readsLengthDensity, cutoff = 0.8)

Arguments

readsLengthDensity

Output of summaryReadsLength

cutoff

Cutoff value.

Value

Reads length to be kept.

Examples

reads <- GRanges("chr1", ranges=IRanges(seq.int(100), width=1),
                 qwidth=sample(25:31, size = 100, replace = TRUE,
                               prob = c(.01, .01, .05, .1, .77, .05, .01)))
readsLenToKeep(summaryReadsLength(reads, plot=FALSE))

Ribosome Release Score (RRS)

Description

RRS is calculated as the ratio of translational efficiency in the CDS with RPFs in the 3'UTR.

Usage

ribosomeReleaseScore(
  cdsTE,
  utr3TE,
  CDSsampleOrder,
  UTR3sampleOrder,
  pseudocount = 0,
  log2 = FALSE
)

Arguments

cdsTE, utr3TE

Translational efficiency of CDS and UTR3 region. Output of translationalEfficiency

CDSsampleOrder, UTR3sampleOrder

Sample order of cdsTE and utr3TE. The parameters are used to make sure that the order of CDS and UTR3 in TE is corresponding samples.

pseudocount

The number will be add to sum of reads count to avoid X/0.

log2

Do log2 transform or not.

Value

A vector of RRS.

Examples

## Not run: 
path <- system.file("extdata", package="ribosomeProfilingQC")
RPFs <- dir(path, "RPF.*?\\.[12].bam$", full.names=TRUE)
RNAs <- dir(path, "mRNA.*?\\.[12].bam$", full.names=TRUE)
gtf <- file.path(path, "Danio_rerio.GRCz10.91.chr1.gtf.gz")
cvgs <- coverageDepth(RPFs, RNAs, gtf)
cvgs.utr3 <- coverageDepth(RPFs, RNAs, gtf, region="utr3")
TE90 <- translationalEfficiency(cvgs, window = 90)
TE90.utr3 <- translationalEfficiency(cvgs.utr3, window = 90)
rrs <- ribosomeReleaseScore(TE90, TE90.utr3)

## End(Not run)

Shift reads by reading frame

Description

Shift reads P site position by reading frame. After shifting, all reading frame will be set as 0

Usage

shiftReadsByFrame(reads, txdb, ignore.seqlevelsStyle = FALSE)

Arguments

reads

Output of getPsiteCoordinates

txdb

A TxDb object.

ignore.seqlevelsStyle

Ignore the sequence name style detection or not.

Value

Reads with reading frame information

Examples

library(Rsamtools)
bamfilename <- system.file("extdata", "RPF.WT.1.bam",
                           package="ribosomeProfilingQC")
yieldSize <- 10000000
bamfile <- BamFile(bamfilename, yieldSize = yieldSize)
pc <- getPsiteCoordinates(bamfile, bestpsite=11)
pc.sub <- pc[pc$qwidth %in% c(29, 30)]
library(GenomicFeatures)
library(BSgenome.Drerio.UCSC.danRer10)
txdb <- makeTxDbFromGFF(system.file("extdata",
          "Danio_rerio.GRCz10.91.chr1.gtf.gz",
          package="ribosomeProfilingQC"),
          organism = "Danio rerio",
          chrominfo = seqinfo(Drerio)["chr1"],
          taxonomyId = 7955)
pc.sub <- shiftReadsByFrame(pc.sub, txdb)

Simulation function

Description

Simulate the RPFs reads in CDS, 5'UTR and 3'UTR

Usage

simulateRPF(
  txdb,
  outPath,
  genome,
  samples = 6,
  group1 = c(1, 2, 3),
  group2 = c(4, 5, 6),
  readsPerSample = 1e+06,
  readsLen = 28,
  psite = 13,
  frame0 = 0.9,
  frame1 = 0.05,
  frame2 = 0.05,
  DEregions = GRanges(),
  size = 1,
  sd = 0.02,
  minDElevel = log2(2),
  includeReadsSeq = FALSE
)

Arguments

txdb

A TxDb object

outPath

Output folder for the bam files

genome

A BSgenome object

samples

Total samples to simulate.

group1, group2

Numeric to index the sample groups.

readsPerSample

Total reads number per sample.

readsLen

Reads length, default 100bp.

psite

P-site position. default 13.

frame0, frame1, frame2

Percentage of reads distribution in frame0, frame1 and frame2

DEregions

The regions with differential reads in exon, utr5 and utr3.

size

Dispersion parameter. Must be strictly positive.

sd

Standard deviations.

minDElevel

Minimal differential level. default: log2(2).

includeReadsSeq

logical(1). Include reads sequence or not.

Value

An invisible list of GAlignments.

Examples

library(GenomicFeatures)
txdb_file <- system.file("extdata", "Biomart_Ensembl_sample.sqlite",
                         package="GenomicFeatures")
txdb <- loadDb(txdb_file)
simulateRPF(txdb, samples=1, readsPerSample = 1e3)
## Not run: 
cds <- prepareCDS(txdb, withUTR = TRUE)
cds <- cds[width(cds)>200]
DEregions <- cds[sample(seq_along(cds), 10)]
simulateRPF(txdb, samples=6, readsPerSample = 1e5, DEregions=DEregions)

## End(Not run)

Get splicing events

Description

Get differentical usage of alternative Translation Initiation Sites, alternative Polyadenylation Sites or alternative splicing sites

Usage

spliceEvent(coverage, group1, group2)

Arguments

coverage

Coverages of feature region with extensions. Output of coverageDepth

group1, group2

The sample names of group 1 and group 2

Value

A GRanges object of splice events.

Examples

## Not run: 
path <- system.file("extdata", package="ribosomeProfilingQC")
RPFs <- dir(path, "RPF.*?\\.[12].bam$", full.names=TRUE)
gtf <- file.path(path, "Danio_rerio.GRCz10.91.chr1.gtf.gz")
coverage <- coverageDepth(RPFs, gtf=gtf,
                  level="gene", region="feature with extension")
group1 <- c("RPF.KD1.1", "RPF.KD1.2")
group2 <- c("RPF.WT.1", "RPF.WT.2")
se <- spliceEvent(coverage, group1, group2)

## End(Not run)

Plot the distribution of reads in sense and antisense strand

Description

Plot the distribution of reads in sense and antisense strand to check the mapping is correct.

Usage

strandPlot(
  reads,
  CDS,
  col = c("#009E73", "#D55E00"),
  ignore.seqlevelsStyle = FALSE,
  ...
)

Arguments

reads

Output of getPsiteCoordinates

CDS

Output of prepareCDS

col

Coloar for sense and antisense strand.

ignore.seqlevelsStyle

Ignore the sequence name style detection or not.

...

Parameter passed to barplot

Value

A ggplot object.

Examples

library(Rsamtools)
bamfilename <- system.file("extdata", "RPF.WT.1.bam",
                           package="ribosomeProfilingQC")
yieldSize <- 10000000
bamfile <- BamFile(bamfilename, yieldSize = yieldSize)
pc <- getPsiteCoordinates(bamfile, bestpsite=11)
pc.sub <- pc[pc$qwidth %in% c(29, 30)]
library(GenomicFeatures)
library(BSgenome.Drerio.UCSC.danRer10)
txdb <- makeTxDbFromGFF(system.file("extdata",
          "Danio_rerio.GRCz10.91.chr1.gtf.gz",
          package="ribosomeProfilingQC"),
          organism = "Danio rerio",
          chrominfo = seqinfo(Drerio)["chr1"],
          taxonomyId = 7955)
CDS <- prepareCDS(txdb)
strandPlot(pc.sub, CDS)

Summary the reads lengths

Description

Plot the reads length distribution

Usage

summaryReadsLength(reads, widthRange = c(20:35), plot = TRUE, ...)

Arguments

reads

Output of getPsiteCoordinates

widthRange

The reads range to be plot

plot

Do plot or not

...

Not use.

Value

The reads length distribution

Examples

reads <- GRanges("chr1", ranges=IRanges(seq.int(100), width=1),
                 qwidth=sample(25:31, size = 100, replace = TRUE,
                               prob = c(.01, .01, .05, .1, .77, .05, .01)))
summaryReadsLength(reads)

Translational Efficiency

Description

Calculate Translational Efficiency (TE). TE is defined as the ratios of the absolute level of ribosome occupancy divided by RNA levels for transcripts.

Usage

translationalEfficiency(
  x,
  window,
  RPFsampleOrder,
  mRNAsampleOrder,
  pseudocount = 1,
  log2 = FALSE,
  normByLibSize = FALSE,
  shrink = FALSE,
  ...
)

Arguments

x

Output of getFPKM or normByRUVs. if window is set, it must be output of coverageDepth.

window

numeric(1). window size for maximal counts.

RPFsampleOrder, mRNAsampleOrder

Sample order of RPFs and mRNAs. The parameters are used to make sure that the order of RPFs and mRNAs in cvgs is corresponding samples.

pseudocount

The number will be add to sum of reads count to avoid X/0.

log2

Do log2 transform or not.

normByLibSize

Normalization by library size or not. If window size is provided and normByLibSize is set to TRUE, the coverage will be normalized by library size.

shrink

Shrink the TE or not.

...

Parameters will be passed to ash function from ashr.

Value

A list with RPFs, mRNA levels and TE as a matrix with translational efficiency

Examples

## Not run: 
path <- system.file("extdata", package="ribosomeProfilingQC")
RPFs <- dir(path, "RPF.*?\\.[12].bam$", full.names=TRUE)
RNAs <- dir(path, "mRNA.*?\\.[12].bam$", full.names=TRUE)
gtf <- file.path(path, "Danio_rerio.GRCz10.91.chr1.gtf.gz")
cnts <- countReads(RPFs, RNAs, gtf, level="gene")
fpkm <- getFPKM(cnts)
te <- translationalEfficiency(fpkm)

## End(Not run)