Title: | Robust likelihood-based survival modeling with microarray data |
---|---|
Description: | This package selects genes associated with survival. |
Authors: | HyungJun Cho <[email protected]>, Sukwoo Kim <[email protected]>, Soo-heang Eo <[email protected]>, Jaewoo Kang <[email protected]> |
Maintainer: | Soo-heang Eo <[email protected]> |
License: | GPL (>= 2) |
Version: | 2.65.0 |
Built: | 2024-10-31 04:18:53 UTC |
Source: | https://github.com/bioc/rbsurv |
These data sets consist of gene expression and survival of the patients with gliomas. Note that it contains a subset of the data published in Freije et al. (2004).
Freije et al. (2004). Gene Expression Profiling of Gliomas Strongly Predicts Survival, Cancer Research, 64: 6503-6510.
This selects survival-associated genes with microarray data.
rbsurv(time, ...)
rbsurv(time, ...)
time |
an object for which the extraction of model rbsurv is meaningful. |
... |
other arguments |
HyungJun Cho, Sukwoo Kim, Soo-heang Eo, and Jaewoo Kang
Cho,H., Yu,A., Kim,S., Kang,J., and Hong S-M. (2009). Robust likelihood-based survival modeling for microarray gene expression Data, Journal of Statistical Software, 29(1):1-16. URL http://www.jstatsoft.org/v29/i01/.
library(rbsurv) data(gliomaSet) x <- exprs(gliomaSet) x <- log2(x) time <- gliomaSet$Time status <- gliomaSet$Status z <- cbind(gliomaSet$Age, gliomaSet$Gender) fit <- rbsurv(time=time, status=status, x=x, method="efron", max.n.genes=20, n.iter=10, n.fold=3, n.seq=1) fit$model
library(rbsurv) data(gliomaSet) x <- exprs(gliomaSet) x <- log2(x) time <- gliomaSet$Time status <- gliomaSet$Status z <- cbind(gliomaSet$Age, gliomaSet$Gender) fit <- rbsurv(time=time, status=status, x=x, method="efron", max.n.genes=20, n.iter=10, n.fold=3, n.seq=1) fit$model
This selects survival-associated genes with microarray data.
## Default S3 method: rbsurv(time, status, x, z=NULL, alpha=1, gene.ID=NULL, method="efron", n.iter=10, n.fold=3, n.seq=1, seed=1234, max.n.genes=nrow(x),...)
## Default S3 method: rbsurv(time, status, x, z=NULL, alpha=1, gene.ID=NULL, method="efron", n.iter=10, n.fold=3, n.seq=1, seed=1234, max.n.genes=nrow(x),...)
time |
a vector for survival times |
status |
a vector for survival status, 0=censored, 1=event |
x |
a matrix for expression values (genes in rows, samples in columns) |
z |
a matrix for risk factors |
alpha |
significance level for evaluating risk factors; significant risk factors included with the alpha level if alpha < 1 |
gene.ID |
a vector for gene IDs; if NULL, row numbers are assigned. |
method |
a character string specifying the method for tie handling. Choose one of "efron", "breslow", "exact". The default is "efron". If there are no tied death times all the methods are equivalent. |
n.iter |
the number of iterations for gene selection |
n.fold |
the number of partitions of samples |
n.seq |
the number of sequential runs or multiple models |
seed |
a seed for sample partitioning |
max.n.genes |
the maximum number of genes considered. If the number of the input genes is greater than the given number, it is reduced by fitting individual Cox models. |
... |
other arguments |
model |
survival-associated gene model |
n.genes |
number of genes |
n.samples |
number of samples |
method |
method for tie handling |
covariates |
covariates |
n.iter |
number of iterations for gene seletion |
n.fold |
number of partitions of samples |
n.seq |
number of sequential runs or multiple models |
gene.list |
a list of genes included in the models |
HyungJun Cho, Sukwoo Kim, Soo-heang Eo, and Jaewoo Kang
Cho,H., Yu,A., Kim,S., Kang,J., and Hong S-M. (2009). Robust likelihood-based survival modeling for microarray gene expression Data, Journal of Statistical Software, 29(1):1-16. URL http://www.jstatsoft.org/v29/i01/.