Title: | Tools for quantitative proteomics data analysis |
---|---|
Description: | Tools for TMT based quantitative proteomics data analysis. |
Authors: | Matthew Eldridge [aut], Kamal Kishore [aut], Ashley Sawle [aut, cre] |
Maintainer: | Ashley Sawle <[email protected]> |
License: | GPL-2 |
Version: | 1.25.0 |
Built: | 2024-11-30 03:20:11 UTC |
Source: | https://github.com/bioc/qPLEXanalyzer |
Tools for quantitiative proteomics data analysis generated from qPLEX-RIME method The package offers the following functionalities Data processing, normalization & analysis:
convertToMSnset
: Converts quantitative data to a MSnSet
summarizeIntensities
: Summarizes multiple peptide measurements
for a protein
normalizeQuantiles
: Performs quantile normalization on the
peptides/proteins intensities
normalizeScaling
: Performs scaling normalization on the
peptides/proteins intensities (mean, median or sum)
groupScaling
: Performs scaling normalization on the
peptides/proteins intensities within group (median or mean)
rowScaling
: Normalization by scaling peptide/protein intensity
across all samples
regressIntensity
: Performs linear regression on protein
intensities based on selected protein
coefVar
: Calculating the coefficient of variation by utilizing
expression data within individual sample groups
computeDiffStats
: Compute differential statistics for the given
contrasts
getContrastResults
: Get differential statistics results for
given contrast
Visualization:
assignColours
: Assigns colours to samples in groups
corrPlot
: Correlation plot of all the samples
coveragePlot
: Computes and display protein sequence coverage of
hierarchicalPlot
: Hierarchical clustering plot of all the
samples
intensityBoxplot
: Intensity distribution boxplot of all the
samples
intensityPlot
: Intensity distribution plot of all the samples
maVolPlot
: MA or Volcano plot of differential analysis results
pcaPlot
: PCA plot of all the samples
peptideIntensityPlot
: Peptide intensity distribution plot of
specific protein
plotMeanVar
: Computes and plots mean-variance for samples in
MSnSet
rliPlot
: Relative intensity plot of all the samples
selected protein in proteomics experiment
Matthew Eldridge, Kamal Kishore, Ashley Sawle (Maintainer)
Useful links:
Assigns colours to samples in groups for plotting
assignColours(MSnSetObj, colourBy = "SampleGroup")
assignColours(MSnSetObj, colourBy = "SampleGroup")
MSnSetObj |
MSnSet; an object of class MSnSet |
colourBy |
character: column name from pData(MSnSetObj) to use for coloring samples |
A character vector of colors for samples.
data(human_anno) data(exp3_OHT_ESR1) MSnSet_data <- convertToMSnset(exp3_OHT_ESR1$intensities_qPLEX1, metadata=exp3_OHT_ESR1$metadata_qPLEX1, indExpData=c(7:16), Sequences=2, Accessions=6) sampleColours <- assignColours(MSnSet_data)
data(human_anno) data(exp3_OHT_ESR1) MSnSet_data <- convertToMSnset(exp3_OHT_ESR1$intensities_qPLEX1, metadata=exp3_OHT_ESR1$metadata_qPLEX1, indExpData=c(7:16), Sequences=2, Accessions=6) sampleColours <- assignColours(MSnSet_data)
Calculating the coefficient of variation by utilizing peptide/protein expression data within individual sample groups.
coefVar(MSnSetObj)
coefVar(MSnSetObj)
MSnSetObj |
MSnSet; an object of class MSnSet |
In this approach, we calculate distributions of the coefficient of variation (CV) for the dataset. The CVs are determined based on peptides or proteins intensities within each sample group, and the results are visualized through boxplots and cumulative fraction plots for each sample group.
An object of class list
consisting of object of class ggplot
)
data(human_anno) data(exp3_OHT_ESR1) MSnSet_data <- convertToMSnset(exp3_OHT_ESR1$intensities_qPLEX1, metadata=exp3_OHT_ESR1$metadata_qPLEX1, indExpData=c(7:16), Sequences=2, Accessions=6) exprs(MSnSet_data) <- exprs(MSnSet_data)+1.1 res <- coefVar(MSnSet_data)
data(human_anno) data(exp3_OHT_ESR1) MSnSet_data <- convertToMSnset(exp3_OHT_ESR1$intensities_qPLEX1, metadata=exp3_OHT_ESR1$metadata_qPLEX1, indExpData=c(7:16), Sequences=2, Accessions=6) exprs(MSnSet_data) <- exprs(MSnSet_data)+1.1 res <- coefVar(MSnSet_data)
Compute differential statistics on the given contrasts, based on
limma
functions.
computeDiffStats( MSnSetObj, batchEffect = NULL, transform = TRUE, contrasts, trend = TRUE, robust = TRUE )
computeDiffStats( MSnSetObj, batchEffect = NULL, transform = TRUE, contrasts, trend = TRUE, robust = TRUE )
MSnSetObj |
MSnSet; An object of class MSnSet |
batchEffect |
character; vector of variable(s) to correct for batch effect, Default : "SampleGroup" |
transform |
logical; apply log2 transformation to the raw intensitites |
contrasts |
character; named character vector of contrasts for differential statistics |
trend |
logical; TRUE or FALSE |
robust |
logical; TRUE or FALSE |
A statistical analysis for the identification of differentially regulated or bound proteins is carried out using limma based analysis. It uses linear models to assess differential expression in the context of multifactor designed experiments. Firstly, a linear model is fitted for each protein where the model includes variables for each group and MS run. Then, log2 fold changes between comparisions are estimated. Multiple testing correction of p-values are applied using the Benjamini-Hochberg method to control the false discovery rate (FDR).
In order to correct for batch effect, variable(s) can be defined. It should corresponds to a column name in pData(MSnSetObj). The default variable is "SampleGroup" that distinguish between two groups. If more variables are defined they are added to default.
A list object containing three components: MSnSetObj of class
MSnSet
(see MSnSet-class
) object), fittedLM (fitted
linear model) and fittedContrasts. This object should be input into
getContrastResults function to get differential results. See
eBayes
function of limma
for more details on
differential statistics.
data(human_anno) data(exp3_OHT_ESR1) MSnSet_data <- convertToMSnset(exp3_OHT_ESR1$intensities_qPLEX1, metadata=exp3_OHT_ESR1$metadata_qPLEX1, indExpData=c(7:16), Sequences=2, Accessions=6) MSnset_norm <- groupScaling(MSnSet_data, scalingFunction=median) MSnset_Pnorm <- summarizeIntensities(MSnset_norm, sum, human_anno) contrasts <- c(tam.24h_vs_vehicle = "tam.24h - vehicle", tam.6h_vs_vehicle = "tam.6h - vehicle") diffstats <- computeDiffStats(MSnSetObj=MSnset_Pnorm, contrasts=contrasts)
data(human_anno) data(exp3_OHT_ESR1) MSnSet_data <- convertToMSnset(exp3_OHT_ESR1$intensities_qPLEX1, metadata=exp3_OHT_ESR1$metadata_qPLEX1, indExpData=c(7:16), Sequences=2, Accessions=6) MSnset_norm <- groupScaling(MSnSet_data, scalingFunction=median) MSnset_Pnorm <- summarizeIntensities(MSnset_norm, sum, human_anno) contrasts <- c(tam.24h_vs_vehicle = "tam.24h - vehicle", tam.6h_vs_vehicle = "tam.6h - vehicle") diffstats <- computeDiffStats(MSnSetObj=MSnset_Pnorm, contrasts=contrasts)
Converts processed TMT peptide intensities to MSnSet
convertToMSnset( ExpObj, metadata, indExpData, Sequences = NULL, Accessions, type = "peptide", rmMissing = TRUE )
convertToMSnset( ExpObj, metadata, indExpData, Sequences = NULL, Accessions, type = "peptide", rmMissing = TRUE )
ExpObj |
data.frame; a data.frame consisting of quantitative peptide intensities and peptide annotation |
metadata |
data.frame; a data.frame describing the samples |
indExpData |
numeric; a numeric vector indicating the column indexes of intensities in ExpObj |
Sequences |
numeric; a numeric value indicating the index of column consisting of peptide sequence in ExpObj |
Accessions |
numeric; a numeric value indicating the index of column consisting of protein accession in ExpObj |
type |
character; what type of data set to create, either 'peptide' or 'protein' |
rmMissing |
logical; TRUE or FALSE to indicate whether to remove missing data or not |
This function builds an object of class MSnSet from a dataframe consisting of quantitative proteomics intensities data and a meta-data describing the samples information. This function creates an MSnSet object from the intensities and metadata file. The metadata must contain "SampleName", "SampleGroup", "BioRep" and "TechRep" columns. The function can be used for either peptide intensities or data that has already been summarized to protein level. The type argument should be set to 'protein' for the latter.
An object of class MSnSet
(see MSnSet-class
)
object).
data(human_anno) data(exp3_OHT_ESR1) MSnSet_data <- convertToMSnset(exp3_OHT_ESR1$intensities_qPLEX1, metadata=exp3_OHT_ESR1$metadata_qPLEX1, indExpData=c(7:16), Sequences=2, Accessions=6)
data(human_anno) data(exp3_OHT_ESR1) MSnSet_data <- convertToMSnset(exp3_OHT_ESR1$intensities_qPLEX1, metadata=exp3_OHT_ESR1$metadata_qPLEX1, indExpData=c(7:16), Sequences=2, Accessions=6)
Computes and display correlation plot for samples within MSnSet
corrPlot( MSnSetObj, addValues = TRUE, title = "", low_cor_colour = "#FFFFFF", high_cor_colour = "#B90505", low_cor_limit = 0, high_cor_limit = 1, textsize = 3 )
corrPlot( MSnSetObj, addValues = TRUE, title = "", low_cor_colour = "#FFFFFF", high_cor_colour = "#B90505", low_cor_limit = 0, high_cor_limit = 1, textsize = 3 )
MSnSetObj |
MSnSet; an object of class MSnSet |
addValues |
logical: adds correlation values to the plot |
title |
character; title of the plot |
low_cor_colour |
colour; colour for lowest correlation in scale |
high_cor_colour |
colour; colour for highest correlation in scale |
low_cor_limit |
numeric; lower limit for correlation in colour scale |
high_cor_limit |
numeric; upper limit for correlation in colour scale |
textsize |
integer: set the size of correlation values text |
An object created by ggplot
data(human_anno) data(exp3_OHT_ESR1) MSnSet_data <- convertToMSnset(exp3_OHT_ESR1$intensities_qPLEX1, metadata=exp3_OHT_ESR1$metadata_qPLEX1, indExpData=c(7:16), Sequences=2, Accessions=6) corrPlot(MSnSet_data, addValues=TRUE, title="Correlation plot") # change colours corrPlot(MSnSet_data, addValues=TRUE, title="Correlation plot", low_cor_colour="yellow", high_cor_colour="pink")
data(human_anno) data(exp3_OHT_ESR1) MSnSet_data <- convertToMSnset(exp3_OHT_ESR1$intensities_qPLEX1, metadata=exp3_OHT_ESR1$metadata_qPLEX1, indExpData=c(7:16), Sequences=2, Accessions=6) corrPlot(MSnSet_data, addValues=TRUE, title="Correlation plot") # change colours corrPlot(MSnSet_data, addValues=TRUE, title="Correlation plot", low_cor_colour="yellow", high_cor_colour="pink")
Computes and displays peptide sequence coverage in proteomics experiment
coveragePlot(MSnSetObj, ProteinID, ProteinName, fastaFile, myCol = "brown")
coveragePlot(MSnSetObj, ProteinID, ProteinName, fastaFile, myCol = "brown")
MSnSetObj |
MSnSet: an object of class MSnSet |
ProteinID |
character: Uniprot ID of the protein |
ProteinName |
character: name of the protein |
fastaFile |
character: fasta file of protein sequence |
myCol |
colour: colour for plotting |
In the qPLEX-RIME experiment it is imperative for bait protein to have good sequence coverage. This function plots the protein sequence coverage of the bait protein in the qPLEX-RIME experiment. It requires the fasta sequence file of bait protein as input to generate the plot.
An object created by ggplot
data(human_anno) data(exp3_OHT_ESR1) MSnSet_data <- convertToMSnset(exp3_OHT_ESR1$intensities_qPLEX1, metadata=exp3_OHT_ESR1$metadata_qPLEX1, indExpData=c(7:16), Sequences=2, Accessions=6) mySequenceFile <- system.file('extdata', "P03372.fasta", package="qPLEXanalyzer") coveragePlot(MSnSet_data, ProteinID="P03372", ProteinName="ERa", fastaFile=mySequenceFile)
data(human_anno) data(exp3_OHT_ESR1) MSnSet_data <- convertToMSnset(exp3_OHT_ESR1$intensities_qPLEX1, metadata=exp3_OHT_ESR1$metadata_qPLEX1, indExpData=c(7:16), Sequences=2, Accessions=6) mySequenceFile <- system.file('extdata', "P03372.fasta", package="qPLEXanalyzer") coveragePlot(MSnSet_data, ProteinID="P03372", ProteinName="ERa", fastaFile=mySequenceFile)
Five ER qPLEX-RIME (9plex) experiments were performed on two wild type clones, two ARID1A knockout clones and one parental cell line with Tamoxifen treatment in MCF7 cell lines.
An object of class list
related to peptides
quantification. It consists of qPLEX-RIME data from five experimental runs.
Each run contains 9 samples divided into nine conditions (T_14, V_14,
T_11, V_11, ECACC.T, ECACC.V, T_221, V_221 and Ref).
An object of class list
related to peptides
quantification.
An ER qPLEX-RIME experiment was performed to compare two different methods of crosslinking. MCF7 cells were double crosslinked with DSG/formaldehyde (double) or with formaldehyde alone (single). Four biological replicates were obtained for each condition along with two IgG pooled samples from each replicate.
An object of class list
related to peptides
quantification. It consists of qPLEX-RIME data of 10 samples divided into
three conditions (FA, DSG.FA and IgG).
An object of class list
related to peptides
quantification.
Three ER qPLEX-RIME (10plex) experiments were performed to investigate the dynamics of the ER complex assembly upon 4-hydrotamoxifen (OHT) treatment at 2h, 6h and 24h or at 24h post-treatment with the drug-vehicle alone (ethanol). Two biological replicates of each condition were included in each experiment to finally consider a total of six replicates per time point. Additionally, MCF7 cells were treated with OHT or ethanol and cross-linked at 24h post-treatment in each experiment to be used for mock IgG pull-downs and to enable discrimination of non-specific binding in the same experiment. This is a timecourse experiment to study the effect of tamoxifen in ER interactome using qPLEX-RIME method.
An object of class list
related to peptides
quantification. It consists of qPLEX-RIME data from three experimental runs.
Each run contains 10 samples divided into five conditions (IgG, vehicle,
tam.2h, tam.6h and tam.24h).
An object of class list
related to peptides
quantification.
Get differential statistics results for given contrasts.
getContrastResults( diffstats, contrast, controlGroup = NULL, transform = TRUE, writeFile = FALSE )
getContrastResults( diffstats, contrast, controlGroup = NULL, transform = TRUE, writeFile = FALSE )
diffstats |
list; output of computeDiffStats function |
contrast |
character; contrast of interest for which to retrieve differential statistics results |
controlGroup |
character; control group such as IgG |
transform |
logical; apply log2 transformation to the raw intensities |
writeFile |
logical; whether to write the results into a text file |
A data.frame
object and text file containing the
result of the differential statistics.
data(human_anno) data(exp3_OHT_ESR1) MSnSet_data <- convertToMSnset(exp3_OHT_ESR1$intensities_qPLEX1, metadata=exp3_OHT_ESR1$metadata_qPLEX1, indExpData=c(7:16), Sequences=2, Accessions=6) MSnset_norm <- groupScaling(MSnSet_data, scalingFunction=median) MSnset_Pnorm <- summarizeIntensities(MSnset_norm, sum, human_anno) contrasts <- c(tam.24h_vs_vehicle = "tam.24h - vehicle") diffstats <- computeDiffStats(MSnset_Pnorm, contrasts=contrasts) diffexp <- getContrastResults(diffstats=diffstats, contrast=contrasts)
data(human_anno) data(exp3_OHT_ESR1) MSnSet_data <- convertToMSnset(exp3_OHT_ESR1$intensities_qPLEX1, metadata=exp3_OHT_ESR1$metadata_qPLEX1, indExpData=c(7:16), Sequences=2, Accessions=6) MSnset_norm <- groupScaling(MSnSet_data, scalingFunction=median) MSnset_Pnorm <- summarizeIntensities(MSnset_norm, sum, human_anno) contrasts <- c(tam.24h_vs_vehicle = "tam.24h - vehicle") diffstats <- computeDiffStats(MSnset_Pnorm, contrasts=contrasts) diffexp <- getContrastResults(diffstats=diffstats, contrast=contrasts)
Performs scaling normalization on the intensities within group (median or mean)
groupScaling( MSnSetObj, scalingFunction = median, groupingColumn = "SampleGroup" )
groupScaling( MSnSetObj, scalingFunction = median, groupingColumn = "SampleGroup" )
MSnSetObj |
MSnSet; an object of class MSnSet |
scalingFunction |
function; median or mean |
groupingColumn |
character; the feature on which groups would be based; default="SampleGroup" |
In this normalization method the central tendencies (mean or median) of the samples within groups are aligned. The argument "groupingColumn" is used to define separate groups to normalize. The function takes one of the column of pData(data) as the variable for classifying group. The default variable is "SampleGroup". It is imperative in qPLEX-RIME experiment to define IgG as a separate group and normalize it separately from others. You could add a column into the metadata to define this classification.
An object of class MSnSet
(see MSnSet-class
)
data(human_anno) data(exp3_OHT_ESR1) MSnSet_data <- convertToMSnset(exp3_OHT_ESR1$intensities_qPLEX1, metadata=exp3_OHT_ESR1$metadata_qPLEX1, indExpData=c(7:16), Sequences=2, Accessions=6) MSnset_norm <- groupScaling(MSnSet_data, scalingFunction=median, groupingColumn="SampleGroup")
data(human_anno) data(exp3_OHT_ESR1) MSnSet_data <- convertToMSnset(exp3_OHT_ESR1$intensities_qPLEX1, metadata=exp3_OHT_ESR1$metadata_qPLEX1, indExpData=c(7:16), Sequences=2, Accessions=6) MSnset_norm <- groupScaling(MSnSet_data, scalingFunction=median, groupingColumn="SampleGroup")
Computes and displays hierarchical clustering plot for samples in MSnSet
hierarchicalPlot( MSnSetObj, sampleColours = NULL, colourBy = "SampleGroup", horizontal = TRUE, title = "" )
hierarchicalPlot( MSnSetObj, sampleColours = NULL, colourBy = "SampleGroup", horizontal = TRUE, title = "" )
MSnSetObj |
MSnSet; an object of class MSnSet |
sampleColours |
character: a named vector of colors for samples, names
should be values of |
colourBy |
character: column name from |
horizontal |
logical: define orientation of the dendrogram |
title |
character: the main title for the dendrogram |
An object created by ggplot
data(exp3_OHT_ESR1) MSnSet_data <- convertToMSnset(exp3_OHT_ESR1$intensities_qPLEX1, metadata=exp3_OHT_ESR1$metadata_qPLEX1, indExpData=c(7:16), Sequences=2, Accessions=6) exprs(MSnSet_data) <- exprs(MSnSet_data)+0.01 hierarchicalPlot(MSnSet_data, title="qPLEX_RIME_ER")
data(exp3_OHT_ESR1) MSnSet_data <- convertToMSnset(exp3_OHT_ESR1$intensities_qPLEX1, metadata=exp3_OHT_ESR1$metadata_qPLEX1, indExpData=c(7:16), Sequences=2, Accessions=6) exprs(MSnSet_data) <- exprs(MSnSet_data)+0.01 hierarchicalPlot(MSnSet_data, title="qPLEX_RIME_ER")
Uniprot Human protein annotation table.
An object of class data.frame
consisting of uniprot
human protein annotation.
Intensity distribution boxplot of all the samples
intensityBoxplot( MSnSetObj, title = "", sampleColours = NULL, colourBy = "SampleGroup" )
intensityBoxplot( MSnSetObj, title = "", sampleColours = NULL, colourBy = "SampleGroup" )
MSnSetObj |
MSnSet; an object of class MSnSet |
title |
character; title of the plot |
sampleColours |
character: a named character vector of colors for samples |
colourBy |
character: column name from pData(MSnSetObj) to use for coloring samples |
The column provided to the colourBy
argument will be used to colour
the samples. The colours will be determined using the function
assignColours
, alternatively the user may specify a named
vector of colours using the sampleColours
argument. The names of the
sampleColours
vector should match the unique values in the
colourBy
column.
An object created by ggplot
data(human_anno) data(exp3_OHT_ESR1) MSnSet_data <- convertToMSnset(exp3_OHT_ESR1$intensities_qPLEX1, metadata=exp3_OHT_ESR1$metadata_qPLEX1, indExpData=c(7:16), Sequences=2, Accessions=6) intensityBoxplot(MSnSet_data, title = "qPLEX_RIME_ER") # custom colours customCols <- rainbow(length(unique(pData(MSnSet_data)$SampleGroup))) names(customCols) <- unique(pData(MSnSet_data)$SampleGroup) intensityBoxplot(MSnSet_data, title = "qPLEX_RIME_ER", sampleColours = customCols)
data(human_anno) data(exp3_OHT_ESR1) MSnSet_data <- convertToMSnset(exp3_OHT_ESR1$intensities_qPLEX1, metadata=exp3_OHT_ESR1$metadata_qPLEX1, indExpData=c(7:16), Sequences=2, Accessions=6) intensityBoxplot(MSnSet_data, title = "qPLEX_RIME_ER") # custom colours customCols <- rainbow(length(unique(pData(MSnSet_data)$SampleGroup))) names(customCols) <- unique(pData(MSnSet_data)$SampleGroup) intensityBoxplot(MSnSet_data, title = "qPLEX_RIME_ER", sampleColours = customCols)
Intensity distribution plot of all the samples
intensityPlot( MSnSetObj, sampleColours = NULL, title = "", colourBy = "SampleGroup", transform = TRUE, xlab = "log2(intensity)", trFunc = log2xplus1 )
intensityPlot( MSnSetObj, sampleColours = NULL, title = "", colourBy = "SampleGroup", transform = TRUE, xlab = "log2(intensity)", trFunc = log2xplus1 )
MSnSetObj |
MSnSet; an object of class MSnSet |
sampleColours |
character: a vector of colors for samples |
title |
character: title for the plot |
colourBy |
character: column name from pData(MSnSetObj) to use for coloring samples |
transform |
logical: whether to log transform intensities |
xlab |
character: label for x-axis |
trFunc |
func: internal helper function for log transformation |
The column provided to the colourBy
argument will be used to colour
the samples. The colours will be determined using the function
assignColours
, alternatively the user may specify a named
vector of colours using the sampleColours
argument. The names of the
sampleColours
vector should match the unique values in the
colourBy
column.
An object created by ggplot
data(human_anno) data(exp3_OHT_ESR1) MSnSet_data <- convertToMSnset(exp3_OHT_ESR1$intensities_qPLEX1, metadata=exp3_OHT_ESR1$metadata_qPLEX1, indExpData=c(7:16), Sequences=2, Accessions=6) intensityPlot(MSnSet_data, title = "qPLEX_RIME_ER") # custom colours customCols <- rainbow(length(unique(pData(MSnSet_data)$SampleGroup))) names(customCols) <- unique(pData(MSnSet_data)$SampleGroup) intensityPlot(MSnSet_data, title = "qPLEX_RIME_ER", sampleColours = customCols)
data(human_anno) data(exp3_OHT_ESR1) MSnSet_data <- convertToMSnset(exp3_OHT_ESR1$intensities_qPLEX1, metadata=exp3_OHT_ESR1$metadata_qPLEX1, indExpData=c(7:16), Sequences=2, Accessions=6) intensityPlot(MSnSet_data, title = "qPLEX_RIME_ER") # custom colours customCols <- rainbow(length(unique(pData(MSnSet_data)$SampleGroup))) names(customCols) <- unique(pData(MSnSet_data)$SampleGroup) intensityPlot(MSnSet_data, title = "qPLEX_RIME_ER", sampleColours = customCols)
Performs batch correction on multiple runs using an Internal Reference Scale sample.
IRSnorm(MSnSetObj, IRSname = "RefPool", groupingColumn = "Plex")
IRSnorm(MSnSetObj, IRSname = "RefPool", groupingColumn = "Plex")
MSnSetObj |
MSnSet; an object of class MSnSet |
IRSname |
character; name of the Reference group within the SampleGroup column |
groupingColumn |
character; the pData(MSnSetObj) column name used to define batches; default="Plex" |
The Internal Reference Scale sample (IRS) should ideally be representative of the entire proteome detectable across all sample in the experiment, e.g. a pooled sample made up of aliquots of protein from all samples. The IRS is then run and measured in each TMT experiment. The normalization procedure makes measurements of the IRS from different TMT batches exactly the same, and puts all of the reporter ions on the same "intensity scale". The argument 'IRSname' is used to define the name of the Reference group within the SampleGroup column. The argument "groupingColumn" takes one of the column of pData(MSnSetObj) to define separate batches to correct; the default variable name is "Plex".
An object of class MSnSet
(see MSnSet-class
)
data(human_anno) data(ER_ARID1A_KO_MCF7) MSnset_SET1 <- convertToMSnset(ER_ARID1A_KO_MCF7$intensities_Set1, metadata=ER_ARID1A_KO_MCF7$metadata_Set1, indExpData=c(7:15), Sequences=2, Accessions=6) MSnset_SET2 <- convertToMSnset(ER_ARID1A_KO_MCF7$intensities_Set2, metadata=ER_ARID1A_KO_MCF7$metadata_Set2, indExpData=c(7:15), Sequences=2, Accessions=6) MSnset_SET3 <- convertToMSnset(ER_ARID1A_KO_MCF7$intensities_Set3, metadata=ER_ARID1A_KO_MCF7$metadata_Set3, indExpData=c(7:15), Sequences=2, Accessions=6) MSnset_SET4 <- convertToMSnset(ER_ARID1A_KO_MCF7$intensities_Set4, metadata=ER_ARID1A_KO_MCF7$metadata_Set4, indExpData=c(7:14), Sequences=2, Accessions=6) MSnset_SET5 <- convertToMSnset(ER_ARID1A_KO_MCF7$intensities_Set5, metadata=ER_ARID1A_KO_MCF7$metadata_Set5, indExpData=c(7:15), Sequences=2, Accessions=6) MSnset_SET1_norm <- normalizeScaling(MSnset_SET1, median) MSnset_SET2_norm <- normalizeScaling(MSnset_SET2, median) MSnset_SET3_norm <- normalizeScaling(MSnset_SET3, median) MSnset_SET4_norm <- normalizeScaling(MSnset_SET4, median) MSnset_SET5_norm <- normalizeScaling(MSnset_SET5, median) MSnset_SET1_Pnorm <- summarizeIntensities(MSnset_SET1_norm, sum, human_anno) MSnset_SET2_Pnorm <- summarizeIntensities(MSnset_SET2_norm, sum, human_anno) MSnset_SET3_Pnorm <- summarizeIntensities(MSnset_SET3_norm, sum, human_anno) MSnset_SET4_Pnorm <- summarizeIntensities(MSnset_SET4_norm, sum, human_anno) MSnset_SET5_Pnorm <- summarizeIntensities(MSnset_SET5_norm, sum, human_anno) MSnset_SET1_Pnorm <- updateSampleNames(updateFvarLabels(MSnset_SET1_Pnorm)) MSnset_SET2_Pnorm <- updateSampleNames(updateFvarLabels(MSnset_SET2_Pnorm)) MSnset_SET3_Pnorm <- updateSampleNames(updateFvarLabels(MSnset_SET3_Pnorm)) MSnset_SET4_Pnorm <- updateSampleNames(updateFvarLabels(MSnset_SET4_Pnorm)) MSnset_SET5_Pnorm <- updateSampleNames(updateFvarLabels(MSnset_SET5_Pnorm)) MSnset_comb <- MSnbase::combine(MSnset_SET1_Pnorm, MSnset_SET2_Pnorm, MSnset_SET3_Pnorm, MSnset_SET4_Pnorm, MSnset_SET5_Pnorm) tokeep <- complete.cases(fData(MSnset_comb)) MSnset_comb <- MSnset_comb[tokeep,] sampleNames(MSnset_comb) <- pData(MSnset_comb)$SampleName fData(MSnset_comb) <- fData(MSnset_comb)[,c(2,3,6)] colnames(fData(MSnset_comb)) <- c("Sequences", "Modifications", "Accessions") MSnset_comb_corr <- IRSnorm(MSnset_comb, IRSname="Ref", groupingColumn="Run")
data(human_anno) data(ER_ARID1A_KO_MCF7) MSnset_SET1 <- convertToMSnset(ER_ARID1A_KO_MCF7$intensities_Set1, metadata=ER_ARID1A_KO_MCF7$metadata_Set1, indExpData=c(7:15), Sequences=2, Accessions=6) MSnset_SET2 <- convertToMSnset(ER_ARID1A_KO_MCF7$intensities_Set2, metadata=ER_ARID1A_KO_MCF7$metadata_Set2, indExpData=c(7:15), Sequences=2, Accessions=6) MSnset_SET3 <- convertToMSnset(ER_ARID1A_KO_MCF7$intensities_Set3, metadata=ER_ARID1A_KO_MCF7$metadata_Set3, indExpData=c(7:15), Sequences=2, Accessions=6) MSnset_SET4 <- convertToMSnset(ER_ARID1A_KO_MCF7$intensities_Set4, metadata=ER_ARID1A_KO_MCF7$metadata_Set4, indExpData=c(7:14), Sequences=2, Accessions=6) MSnset_SET5 <- convertToMSnset(ER_ARID1A_KO_MCF7$intensities_Set5, metadata=ER_ARID1A_KO_MCF7$metadata_Set5, indExpData=c(7:15), Sequences=2, Accessions=6) MSnset_SET1_norm <- normalizeScaling(MSnset_SET1, median) MSnset_SET2_norm <- normalizeScaling(MSnset_SET2, median) MSnset_SET3_norm <- normalizeScaling(MSnset_SET3, median) MSnset_SET4_norm <- normalizeScaling(MSnset_SET4, median) MSnset_SET5_norm <- normalizeScaling(MSnset_SET5, median) MSnset_SET1_Pnorm <- summarizeIntensities(MSnset_SET1_norm, sum, human_anno) MSnset_SET2_Pnorm <- summarizeIntensities(MSnset_SET2_norm, sum, human_anno) MSnset_SET3_Pnorm <- summarizeIntensities(MSnset_SET3_norm, sum, human_anno) MSnset_SET4_Pnorm <- summarizeIntensities(MSnset_SET4_norm, sum, human_anno) MSnset_SET5_Pnorm <- summarizeIntensities(MSnset_SET5_norm, sum, human_anno) MSnset_SET1_Pnorm <- updateSampleNames(updateFvarLabels(MSnset_SET1_Pnorm)) MSnset_SET2_Pnorm <- updateSampleNames(updateFvarLabels(MSnset_SET2_Pnorm)) MSnset_SET3_Pnorm <- updateSampleNames(updateFvarLabels(MSnset_SET3_Pnorm)) MSnset_SET4_Pnorm <- updateSampleNames(updateFvarLabels(MSnset_SET4_Pnorm)) MSnset_SET5_Pnorm <- updateSampleNames(updateFvarLabels(MSnset_SET5_Pnorm)) MSnset_comb <- MSnbase::combine(MSnset_SET1_Pnorm, MSnset_SET2_Pnorm, MSnset_SET3_Pnorm, MSnset_SET4_Pnorm, MSnset_SET5_Pnorm) tokeep <- complete.cases(fData(MSnset_comb)) MSnset_comb <- MSnset_comb[tokeep,] sampleNames(MSnset_comb) <- pData(MSnset_comb)$SampleName fData(MSnset_comb) <- fData(MSnset_comb)[,c(2,3,6)] colnames(fData(MSnset_comb)) <- c("Sequences", "Modifications", "Accessions") MSnset_comb_corr <- IRSnorm(MSnset_comb, IRSname="Ref", groupingColumn="Run")
MA or Volcano plot of differential statistics results
maVolPlot( diffstats, contrast, title = "", controlGroup = NULL, selectedGenes = NULL, fdrCutOff = 0.05, lfcCutOff = 1, controlLfcCutOff = 1, plotType = "MA" )
maVolPlot( diffstats, contrast, title = "", controlGroup = NULL, selectedGenes = NULL, fdrCutOff = 0.05, lfcCutOff = 1, controlLfcCutOff = 1, plotType = "MA" )
diffstats |
list; output of computeDiffStats function |
contrast |
character; contrast of interest to plot differential statistics results |
title |
character: title for the plot |
controlGroup |
character; control group such as IgG |
selectedGenes |
character: a vector defining genes to plot |
fdrCutOff |
numeric: False Discovery Rate (adj.P.Val) cut off |
lfcCutOff |
numeric: Log Fold Change (log2FC) cutoff for |
controlLfcCutOff |
numeric: only plot genes above controlLogFoldChange cutoff |
plotType |
character: which type of plot to generate: "MA" or "Volcano" |
Genes determined as significant according to the Log Fold Change and False Discovery Rate cutoffs are highlighted in red.
A user specified selection of genes can be highlighted by passing a character
vector of Accessions to the selectedGenes
argument. The contents of
this vector will be matched with the Accessions column of the
diffstats
object to identify rows to highlight. These will be plotted
in blue and labeled with the contents of the GeneSymbol
column. Note
that if the GeneSymbol
for a selected gene is missing, no label will
be apparent.
An object created by ggplot
data(human_anno) data(exp3_OHT_ESR1) MSnSet_data <- convertToMSnset(exp3_OHT_ESR1$intensities_qPLEX1, metadata=exp3_OHT_ESR1$metadata_qPLEX1, indExpData=c(7:16), Sequences=2, Accessions=6) MSnset_norm <- groupScaling(MSnSet_data, scalingFunction=median) MSnset_Pnorm <- summarizeIntensities(MSnset_norm, sum, human_anno) contrasts <- c(tam.24h_vs_vehicle = "tam.24h - vehicle") diffstats <- computeDiffStats(MSnset_Pnorm, contrasts=contrasts) maVolPlot(diffstats, contrast = contrasts, plotType="MA") maVolPlot(diffstats, contrast = contrasts, plotType="Volcano")
data(human_anno) data(exp3_OHT_ESR1) MSnSet_data <- convertToMSnset(exp3_OHT_ESR1$intensities_qPLEX1, metadata=exp3_OHT_ESR1$metadata_qPLEX1, indExpData=c(7:16), Sequences=2, Accessions=6) MSnset_norm <- groupScaling(MSnSet_data, scalingFunction=median) MSnset_Pnorm <- summarizeIntensities(MSnset_norm, sum, human_anno) contrasts <- c(tam.24h_vs_vehicle = "tam.24h - vehicle") diffstats <- computeDiffStats(MSnset_Pnorm, contrasts=contrasts) maVolPlot(diffstats, contrast = contrasts, plotType="MA") maVolPlot(diffstats, contrast = contrasts, plotType="Volcano")
Merge modified peptides with identical sequences to single peptide intensity. This function is especially useful for modified peptide enrichment based method such as phosphopeptide analysis.
mergePeptides(MSnSetObj, summarizationFunction, annotation, keepCols = NULL)
mergePeptides(MSnSetObj, summarizationFunction, annotation, keepCols = NULL)
MSnSetObj |
MSnSet; an object of class MSnSet |
summarizationFunction |
function; method used to aggregate the peptides. sum, mean or median |
annotation |
data.frame; a data.frame of protein annotation of four columns: "Accessions", "Gene", "Description" and "GeneSymbol" |
keepCols |
a vector of additional columns from fData(MSnSetObj) to keep. either be a numeric vector of column indices or a character vector of column names |
Rows of the intensity matrix with identical peptide sequences are merged by
summarising the intensities using summarizationFunction
.
Columns specified with keepCols
are retained in the final output.
Non-unique entries in different rows are concatenated with ';'.
An object of class MSnSet
(see MSnSet-class
)
data(human_anno) data(exp3_OHT_ESR1) MSnSet_data <- convertToMSnset(exp3_OHT_ESR1$intensities_qPLEX1, metadata=exp3_OHT_ESR1$metadata_qPLEX1, indExpData=c(7:16), Sequences=2, Accessions=6) MSnset_P <- mergePeptides(MSnSet_data, sum, human_anno)
data(human_anno) data(exp3_OHT_ESR1) MSnSet_data <- convertToMSnset(exp3_OHT_ESR1$intensities_qPLEX1, metadata=exp3_OHT_ESR1$metadata_qPLEX1, indExpData=c(7:16), Sequences=2, Accessions=6) MSnset_P <- mergePeptides(MSnSet_data, sum, human_anno)
Merge peptides with identical modification sites to single site intensity. This function is especially useful for data based on enrichment of specific peptide modification.
mergeSites(MSnSetObj, summarizationFunction, annotation, keepCols = NULL)
mergeSites(MSnSetObj, summarizationFunction, annotation, keepCols = NULL)
MSnSetObj |
MSnSet; an object of class MSnSet |
summarizationFunction |
function; method used to aggregate the peptides. sum, mean or median |
annotation |
data.frame; a data.frame of protein annotation of four columns: "Accessions", "Gene", "Description" and "GeneSymbol" |
keepCols |
a vector of additional columns from fData(MSnSetObj) to keep. either be a numeric vector of column indices or a character vector of column names |
Rows of the intensity matrix with identical sites on same protein are merged by
summarising the intensities using summarizationFunction
. The merging will only take
place if "Sites" and "Type" column are present in the fData(MSnSetObj). Sites contains the
information of modified site position within the protein sequence and Type tells us about
whether the modification is single (1xPhospho/Acetyl) or multi (2xPhospho/Acetyl).
Columns specified with keepCols
are retained in the final output.
Non-unique entries in different rows are concatenated with ';'.
An object of class MSnSet
(see MSnSet-class
)
data(human_anno) data(exp3_OHT_ESR1) MSnSet_data <- convertToMSnset(exp3_OHT_ESR1$intensities_qPLEX1, metadata=exp3_OHT_ESR1$metadata_qPLEX1, indExpData=c(7:16), Sequences=2, Accessions=6) #MSnset_P <- mergeSites(MSnSet_data, sum, human_anno)
data(human_anno) data(exp3_OHT_ESR1) MSnSet_data <- convertToMSnset(exp3_OHT_ESR1$intensities_qPLEX1, metadata=exp3_OHT_ESR1$metadata_qPLEX1, indExpData=c(7:16), Sequences=2, Accessions=6) #MSnset_P <- mergeSites(MSnSet_data, sum, human_anno)
Uniprot Mouse protein annotation table.
An object of class data.frame
consisting of uniprot
mouse protein annotation.
Performs quantile normalization on the intensities within columns
normalizeQuantiles(MSnSetObj)
normalizeQuantiles(MSnSetObj)
MSnSetObj |
MSnSet; an object of class MSnSet |
The peptide intensities are roughly replaced by the order statics on their abundance. This normalization technique has the effect of making the distributions of intensities from the different samples identical in terms of their statistical properties. It is the strongest normalization method and should be used carefully as it erases most of the difference between the samples.
An object of class MSnSet
(see MSnSet-class
)
data(human_anno) data(exp3_OHT_ESR1) MSnSet_data <- convertToMSnset(exp3_OHT_ESR1$intensities_qPLEX1, metadata=exp3_OHT_ESR1$metadata_qPLEX1, indExpData=c(7:16), Sequences=2, Accessions=6) MSnset_norm <- normalizeQuantiles(MSnSet_data)
data(human_anno) data(exp3_OHT_ESR1) MSnSet_data <- convertToMSnset(exp3_OHT_ESR1$intensities_qPLEX1, metadata=exp3_OHT_ESR1$metadata_qPLEX1, indExpData=c(7:16), Sequences=2, Accessions=6) MSnset_norm <- normalizeQuantiles(MSnSet_data)
Performs scaling normalization on the peptide/protein intensities (median or mean)
normalizeScaling(MSnSetObj, scalingFunction = median, ProteinId = NULL)
normalizeScaling(MSnSetObj, scalingFunction = median, ProteinId = NULL)
MSnSetObj |
MSnSet; an object of class MSnSet |
scalingFunction |
function; median or mean |
ProteinId |
character; protein Id |
In this normalization method the central tendencies (mean or median) of the samples are aligned. The central tendency for each sample is computed and log transformed. A scaling factor is determined by subtracting from each central tendency the mean of all the central tendencies. The raw intensities are then divided by the scaling factor to get normalized intensities.
The intensities can also be normalized based on the peptide intensities of a selected protein. For this the argument "ProteinId" allows you to define the protein that will be used for scaling the intensities.
An object of class MSnSet
(see MSnSet-class
)
data(human_anno) data(exp3_OHT_ESR1) MSnSet_data <- convertToMSnset(exp3_OHT_ESR1$intensities_qPLEX1, metadata=exp3_OHT_ESR1$metadata_qPLEX1, indExpData=c(7:16), Sequences=2, Accessions=6) MSnset_norm <- normalizeScaling(MSnSet_data, scalingFunction=median)
data(human_anno) data(exp3_OHT_ESR1) MSnSet_data <- convertToMSnset(exp3_OHT_ESR1$intensities_qPLEX1, metadata=exp3_OHT_ESR1$metadata_qPLEX1, indExpData=c(7:16), Sequences=2, Accessions=6) MSnset_norm <- normalizeScaling(MSnSet_data, scalingFunction=median)
PCA plots of the samples within MSnset
pcaPlot( MSnSetObj, omitIgG = FALSE, sampleColours = NULL, transFunc = log2xplus1, transform = TRUE, colourBy = "SampleGroup", title = "", labelColumn = "BioRep", labelsize = 4, pointsize = 4, x.nudge = 4, x.PC = 1 )
pcaPlot( MSnSetObj, omitIgG = FALSE, sampleColours = NULL, transFunc = log2xplus1, transform = TRUE, colourBy = "SampleGroup", title = "", labelColumn = "BioRep", labelsize = 4, pointsize = 4, x.nudge = 4, x.PC = 1 )
MSnSetObj |
MSnSet; an object of class MSnSet |
omitIgG |
Logical: whether to remove IgG from the PCA plot |
sampleColours |
character: A named vector of colours for samples |
transFunc |
func: internal helper function for log transformation |
transform |
logical: whether to log transform intensities |
colourBy |
character: column name to use for colouring samples from
|
title |
character: title for the plot |
labelColumn |
character: column name from |
labelsize |
numeric: size of the labels |
pointsize |
numeric: size of plotting points |
x.nudge |
numeric: distance to move labels along the x-axis away from the plotting points |
x.PC |
numeric: The principle component to plot on the x-axis; the following PC will be plotted on the y-axis |
The column provided to the "colourBy" argument will be used to colour the samples. The colours will be determined using the function assignColours, alternatively the user may specify a named vector of colours using the "sampleColours" argument. The names of the "sampleColours" vector should match the unique values in the "colourBy" column.
An object created by ggplot
data(human_anno) data(exp3_OHT_ESR1) MSnSet_data <- convertToMSnset(exp3_OHT_ESR1$intensities_qPLEX1, metadata=exp3_OHT_ESR1$metadata_qPLEX1, indExpData=c(7:16), Sequences=2, Accessions=6) exprs(MSnSet_data) <- exprs(MSnSet_data)+0.01 pcaPlot(MSnSet_data, omitIgG = TRUE, labelColumn = "BioRep") # custom colours and PC2 v PC3 customCols <- rainbow(length(unique(pData(MSnSet_data)$SampleGroup))) names(customCols) <- unique(pData(MSnSet_data)$SampleGroup) pcaPlot(MSnSet_data, omitIgG = TRUE, labelColumn = "BioRep", sampleColours = customCols, x.PC=2)
data(human_anno) data(exp3_OHT_ESR1) MSnSet_data <- convertToMSnset(exp3_OHT_ESR1$intensities_qPLEX1, metadata=exp3_OHT_ESR1$metadata_qPLEX1, indExpData=c(7:16), Sequences=2, Accessions=6) exprs(MSnSet_data) <- exprs(MSnSet_data)+0.01 pcaPlot(MSnSet_data, omitIgG = TRUE, labelColumn = "BioRep") # custom colours and PC2 v PC3 customCols <- rainbow(length(unique(pData(MSnSet_data)$SampleGroup))) names(customCols) <- unique(pData(MSnSet_data)$SampleGroup) pcaPlot(MSnSet_data, omitIgG = TRUE, labelColumn = "BioRep", sampleColours = customCols, x.PC=2)
Plots all the peptide intensities for the selected protein
peptideIntensityPlot( MSnSetObj, ProteinID, ProteinName, combinedIntensities = NULL, selectedSequence = NULL, selectedModifications = NULL )
peptideIntensityPlot( MSnSetObj, ProteinID, ProteinName, combinedIntensities = NULL, selectedSequence = NULL, selectedModifications = NULL )
MSnSetObj |
MSnSet; an object of class MSnSet containing peptide level intensities |
ProteinID |
character: Uniprot ID of the protein |
ProteinName |
character: name of the protein |
combinedIntensities |
MSnSet; an object of class MSnSet containing protein level intensities |
selectedSequence |
character: sequence present in the "Sequences"
column in |
selectedModifications |
character: modification present in the
"Modifications" column in |
Providing a summarised protein level MSnSet object to the
combinedIntensities
argument will add a summed protein intensity trace
to the plot along with the peptide intensities.
An object created by ggplot
data(human_anno) data(exp3_OHT_ESR1) MSnSet_data <- convertToMSnset(exp3_OHT_ESR1$intensities_qPLEX1, metadata=exp3_OHT_ESR1$metadata_qPLEX1, indExpData=c(7:16), Sequences=2, Accessions=6) MSnset_P <- summarizeIntensities(MSnSet_data, sum, human_anno) peptideIntensityPlot(MSnSet_data, combinedIntensities=MSnset_P, ProteinID="P03372", ProteinName= "ESR1")
data(human_anno) data(exp3_OHT_ESR1) MSnSet_data <- convertToMSnset(exp3_OHT_ESR1$intensities_qPLEX1, metadata=exp3_OHT_ESR1$metadata_qPLEX1, indExpData=c(7:16), Sequences=2, Accessions=6) MSnset_P <- summarizeIntensities(MSnSet_data, sum, human_anno) peptideIntensityPlot(MSnSet_data, combinedIntensities=MSnset_P, ProteinID="P03372", ProteinName= "ESR1")
Computes and plots variance v mean intensity for peptides in MSnset
plotMeanVar(MSnSetObj, title = "")
plotMeanVar(MSnSetObj, title = "")
MSnSetObj |
MSnSet; an object of class MSnSet |
title |
character: title for the plot |
An object created by ggplot
data(human_anno) data(exp3_OHT_ESR1) MSnSet_data <- convertToMSnset(exp3_OHT_ESR1$intensities_qPLEX1, metadata=exp3_OHT_ESR1$metadata_qPLEX1, indExpData=c(7:16), Sequences=2, Accessions=6) plotMeanVar(MSnSet_data, title="Mean_Variance")
data(human_anno) data(exp3_OHT_ESR1) MSnSet_data <- convertToMSnset(exp3_OHT_ESR1$intensities_qPLEX1, metadata=exp3_OHT_ESR1$metadata_qPLEX1, indExpData=c(7:16), Sequences=2, Accessions=6) plotMeanVar(MSnSet_data, title="Mean_Variance")
Performs linear regression on protein intensities based on selected protein (qPLEX-RIME bait)
regressIntensity(MSnSetObj, ProteinId, controlInd = NULL, plot = TRUE)
regressIntensity(MSnSetObj, ProteinId, controlInd = NULL, plot = TRUE)
MSnSetObj |
MSnSet; an object of class MSnSet |
ProteinId |
character; Uniprot protein ID |
controlInd |
numeric; index of IgG within MSnSet |
plot |
character; Whether or not to plot the QC histograms |
This function performs regression based analysis upon protein intensities based on a selected protein. In qPLEX RIME this method could be used to regress out the effect of target protein on other interactors. This function corrects this dependency of many proteins on the target protein levels by linear regression. It sets the target protein levels as the independent variable (x) and each of the other proteins as the dependent variable (y). The resulting residuals of the linear regressions y=ax+b are the protein levels corrected for target protein dependency.
An object of class MSnSet
(see MSnSet-class
).
This consists of corrected protein levels. In addition, the function can
also plot histograms of correlation of target protein with all other
proteins before and after this correction.
data(human_anno) data(exp3_OHT_ESR1) MSnSet_data <- convertToMSnset(exp3_OHT_ESR1$intensities_qPLEX1, metadata=exp3_OHT_ESR1$metadata_qPLEX1, indExpData=c(7:16), Sequences=2, Accessions=6) MSnset_P <- summarizeIntensities(MSnSet_data, sum, human_anno) IgG_ind <- which(pData(MSnset_P)$SampleGroup == "IgG") MSnset_reg <- regressIntensity(MSnset_P, controlInd=IgG_ind, ProteinId="P03372")
data(human_anno) data(exp3_OHT_ESR1) MSnSet_data <- convertToMSnset(exp3_OHT_ESR1$intensities_qPLEX1, metadata=exp3_OHT_ESR1$metadata_qPLEX1, indExpData=c(7:16), Sequences=2, Accessions=6) MSnset_P <- summarizeIntensities(MSnSet_data, sum, human_anno) IgG_ind <- which(pData(MSnset_P)$SampleGroup == "IgG") MSnset_reg <- regressIntensity(MSnset_P, controlInd=IgG_ind, ProteinId="P03372")
Relative log intensity (RLI) plots of the samples within MSnset
rliPlot( MSnSetObj, title = "", sampleColours = NULL, colourBy = "SampleGroup", omitIgG = TRUE )
rliPlot( MSnSetObj, title = "", sampleColours = NULL, colourBy = "SampleGroup", omitIgG = TRUE )
MSnSetObj |
MSnSet; an object of class MSnSet |
title |
character: title for the plot |
sampleColours |
character: a named vector of colours for samples |
colourBy |
character: column name to use for colouring samples from pData(MSnSetObj) |
omitIgG |
logical: whether to remove IgG from the RLI plot |
An RLI-plot is a boxplot that can be used to visualise unwanted variation in a data set. It is similar to the relative log expression plot developed for microarray analysis - see Gandolfo and Speed (2018). Rather than examining gene expression, the RLI plot uses the MS intensities for each peptide or the summarised protein intensities.
The column provided to the colourBy
argument will be used to colour
the samples. The colours will be determined using the function
assignColours
, alternatively the user may specify a named
vector of colours using the sampleColours
argument. The names of the
sampleColours
vector should match the unique values in the
colourBy
column.
An object created by ggplot
Gandolfo LC, Speed TP (2018) RLE plots: Visualizing unwanted variation in high dimensional data. PLoS ONE 13(2): e0191629. https://doi.org/10.1371/journal.pone.0191629
data(human_anno) data(exp3_OHT_ESR1) MSnSet_data <- convertToMSnset(exp3_OHT_ESR1$intensities_qPLEX1, metadata=exp3_OHT_ESR1$metadata_qPLEX1, indExpData=c(7:16), Sequences=2, Accessions=6) rliPlot(MSnSet_data, title = "qPLEX_RIME_ER") # custom colours customCols <- rainbow(length(unique(pData(MSnSet_data)$SampleGroup))) names(customCols) <- unique(pData(MSnSet_data)$SampleGroup) rliPlot(MSnSet_data, title = "qPLEX_RIME_ER", sampleColours = customCols)
data(human_anno) data(exp3_OHT_ESR1) MSnSet_data <- convertToMSnset(exp3_OHT_ESR1$intensities_qPLEX1, metadata=exp3_OHT_ESR1$metadata_qPLEX1, indExpData=c(7:16), Sequences=2, Accessions=6) rliPlot(MSnSet_data, title = "qPLEX_RIME_ER") # custom colours customCols <- rainbow(length(unique(pData(MSnSet_data)$SampleGroup))) names(customCols) <- unique(pData(MSnSet_data)$SampleGroup) rliPlot(MSnSet_data, title = "qPLEX_RIME_ER", sampleColours = customCols)
Divide each peptide/protein by the row mean/median and transform to log2
rowScaling(MSnSetObj, scalingFunction)
rowScaling(MSnSetObj, scalingFunction)
MSnSetObj |
MSnSet; an object of class MSnSet |
scalingFunction |
function; median or mean |
An object of class MSnSet
(see MSnSet-class
).
data(human_anno) data(exp3_OHT_ESR1) MSnSet_data <- convertToMSnset(exp3_OHT_ESR1$intensities_qPLEX1, metadata=exp3_OHT_ESR1$metadata_qPLEX1, indExpData=c(7:16), Sequences=2, Accessions=6) MSnset_norm <- rowScaling(MSnSet_data, scalingFunction=median)
data(human_anno) data(exp3_OHT_ESR1) MSnSet_data <- convertToMSnset(exp3_OHT_ESR1$intensities_qPLEX1, metadata=exp3_OHT_ESR1$metadata_qPLEX1, indExpData=c(7:16), Sequences=2, Accessions=6) MSnset_norm <- rowScaling(MSnSet_data, scalingFunction=median)
Summarizes multiple peptides intensities measurements to protein level.
summarizeIntensities(MSnSetObj, summarizationFunction, annotation)
summarizeIntensities(MSnSetObj, summarizationFunction, annotation)
MSnSetObj |
MSnSet; an object of class MSnSet |
summarizationFunction |
function; method used to aggregate the peptides into proteins. Sum, mean or median |
annotation |
data.frame; a data.frame of protein annotation of four columns: "Accessions", "Gene", "Description" and "GeneSymbol" |
An object of class MSnSet
(see MSnSet-class
)
data(human_anno) data(exp3_OHT_ESR1) MSnSet_data <- convertToMSnset(exp3_OHT_ESR1$intensities_qPLEX1, metadata=exp3_OHT_ESR1$metadata_qPLEX1, indExpData=c(7:16), Sequences=2, Accessions=6) MSnset_P <- summarizeIntensities(MSnSet_data, sum, human_anno)
data(human_anno) data(exp3_OHT_ESR1) MSnSet_data <- convertToMSnset(exp3_OHT_ESR1$intensities_qPLEX1, metadata=exp3_OHT_ESR1$metadata_qPLEX1, indExpData=c(7:16), Sequences=2, Accessions=6) MSnset_P <- summarizeIntensities(MSnSet_data, sum, human_anno)