library(ggpubr)
library(gtools)
library(purrr)
library(scales)
library(pheatmap)
library(data.table)
library(gridExtra)
library(png)
library(knitr)
library(grid)
library(styler)
library(FactoMineR)
library(factoextra)
library(magick)
library(rlang)
library(GGally)
library(ggplotify)
library(remotes)
library(dplyr)
library(tidyr)
knitr::opts_chunk$set(echo = TRUE, message=FALSE,warning = FALSE,
fig.align = 'center',
dev = "png",
tidy='styler', tidy.opts=list(strict=TRUE))
## Color Format
colFmt <- function(x,color) {
outputFormat <- knitr::opts_knit$get("rmarkdown.pandoc.to")
if(outputFormat == 'latex') {
ret <- paste("\\textcolor{",color,"}{",x,"}",sep="")
} else if(outputFormat == 'html') {
ret <- paste("<font color='",color,"'>",x,"</font>",sep="")
} else {
ret <- x
}
return(ret)
}
protGear is a package for protein micro data processing just before
the main analysis. The package loads the ‘gpr
’ or
‘txt
’ file format extracted by the quantification software
and merges this with the specific sample identifiers. The package
processes multiple files extracted batch by batch with their
corresponding sample identifier file. The sample identifier file has 2
variables ‘v1
’ and ‘v2
’ which indicate the
mini-array or block number and sample identifier respectively. The
‘gpr
’ file and the corresponding sample identifier file
have the same file name. protGear also provides a web based Shiny(R)
platform for real time visualization of the data processing.
In this vignette the general work-flow of protGear will be outlined by processing a sample dataset from a multicentre study Plasmodium falciparum Merozoite Protein Microarray. The multicentre study design motivated the development of the protGear suite.
The details of the methodologies are published here https://doi.org/10.1016/j.csbj.2021.04.044
Create 2 folders that hold the ‘.gpr
’ files and the
corresponding sample identifier files.
The first part is to specify the parameters of the micro-array experiment to assist in processing the data. The parameters specified are
The parameters “chip_path
”, “channel
” ,
“totsamples
” and “sampleID_path
” are
mandatory.
## specify the the parameters to process the data
genepix_vars <- array_vars(
channel = "635",
chip_path = system.file("extdata/array_data/", package = "protGear"),
totsamples = 21,
blockspersample = 2,
sampleID_path = system.file("extdata/array_sampleID/", package = "protGear"),
mig_prefix = "_first",
machine = 1,
## optional
date_process = "0520"
)
The exact channel used should be checked in the header of the file
from the quantification software under Wavelengths
.
header_gpr <- readLines(system.file("extdata/array_data/machine1/KK2-06.txt", package = "protGear"),
n = 40
)
header_gpr <- gsub("\"", "", header_gpr[1:32])
header_gpr[1:32]
## [1] "ATF\t1\t\t\t\t\t\t\t\t\t\t\t\t\t\t"
## [2] "29\t31\t\t\t\t\t\t\t\t\t\t\t\t\t\t"
## [3] "Type=GenePix Export 3\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t"
## [4] "DateTime=2017/09/05 17:17:47\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t"
## [5] "Settings=\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t"
## [6] "GalFile=C:\\Users\\rkimathi\\Desktop\\GAL FILE DATA.gal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t"
## [7] "PixelSize=10\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t"
## [8] "Wavelengths=635\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t"
## [9] "ImageFiles=Z:\\Multicenter study\\4_9_2017\\data\\BRB0001.tif 0\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t"
## [10] "NormalizationMethod=None\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t"
## [11] "NormalizationFactors=1\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t"
## [12] "JpegImage=\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t"
## [13] "StdDev=Type 1\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t"
## [14] "FeatureType=Circular\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t"
## [15] "Barcode=\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t"
## [16] "BackgroundSubtraction=LocalFeature\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t"
## [17] "ImageOrigin=0, 0\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t"
## [18] "JpegOrigin=1670, 840\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t"
## [19] "Creator=GenePix Pro 7.3.0.0\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t"
## [20] "Scanner=GenePix 4300 [141110]\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t"
## [21] "FocusPosition=0\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t"
## [22] "Temperature=0\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t"
## [23] "LinesAveraged=1\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t"
## [24] "Comment=\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t"
## [25] "PMTGain=400\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t"
## [26] "ScanPower=100\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t"
## [27] "LaserPower=0.55\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t"
## [28] "Filters=Standard Red\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t"
## [29] "ScanRegion=0,0,2200,7200\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t"
## [30] "ScanArea=1\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t"
## [31] "Supplier=\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t"
## [32] "Flags\tNormalize\tAutoflag\tBlock\tColumn\tRow\tName\tID\tX\tY\tF635 Median\tB635\tB635 Median\tSNR 635\tF635 Median - B635\tIndex"
The function check_sampleID_files() helps to check whether each micro array file has a corresponding sample identifier file. The sample identifier files are generated from the lab plate maps to match the corresponding samples on a specific slide.If the sample identifier file is missing, protGear automatically generates the id’s.
protGear offers a functionality to inspect the slide visually for any
strong spatial biases when the scan image is not available. However, we
recommend using the scanned image to visualize the spatial artefacts
that might not be recorded in the .gpr
file. We include the
functions visualize_slide() and
visualize_slide_2d() to check the spatial
structure. The functions are build on
structure_plot() which shows the block and
mini-array structure of a slide.
Here we visualize the foreground MFI using the visualize_slide function
Microarray data is imported using the read_array_files() function. The function accepts the following mandatory arguments;
filename
- the name of the file which the data are to
be read from. In this example a list of multiple files from a folder is
used and passed to read_array_files() using
purrr.data_path
- The path where the file with the data is
locatedgenepix_vars
- A list of specific definitions of the
experiment design. See array_vars()For this example I use the sub-folder 1 specified using
genepix_vars$paths[[1]]
which is this path under vignette
folder
/tmp/RtmpQCXt17/Rinst20eb4c1a99d5/protGear/extdata/array_data//machine1.
#### read in all the datasets
### list all the file names under data folder
filenames <- list.files(file.path(genepix_vars$paths[[1]]),
pattern = "*.txt$|*.gpr$", full.names = FALSE
)
#' @___________________read_in_the_files_with_the_text_data_from_the_chip_____________________________
### read all the data files and save them in a list
data_path <- paste0(genepix_vars$paths[[1]], "/")
data_files <- purrr::map(
.x = filenames,
.f = read_array_files,
data_path = data_path,
genepix_vars = genepix_vars
)
data_files <- set_names(data_files, purrr::map(filenames, name_of_files))
Background noise is caused by non-specific fluorescence such as auto-fluorescence of the glass slide or non-specific binding of parameters and reference substances. To cut down the effect of background noise we have included different approaches for background correction. First, we extract the background values, visualize and select the best background approach. We have implemented five different approaches;
In ‘.gpr
’ files the Background column starts with a
‘B
’ followed by the wavelength or channel. In order to
perform background correction, we extract the background mean
fluorescent intensities (MFI’s) using the function
extract_bg() . The function accepts the
arguments iden
which is the file identifier,
data_files
a list of data objects with names utilised by
iden
and genepix_vars
defined using
array_vars() function. We utilise the
purr::map
function to extract the background MFI of
multiple data files.
## utilising the map package we process a number of files under data_files list
dfs <- names(data_files)
allData_bg <- purrr::map(.x = dfs, .f = extract_bg, data_files = data_files, genepix_vars)
allData_bg <- set_names(allData_bg, purrr::map(filenames, name_of_files))
allData_bg <- plyr::ldply(allData_bg)
Before selecting the best background correction approach the MFI signals are be inspected visually. In protGear we first utilise the function plot_FB() that graphs the background, BG_Median and foreground values, FBG_Median. On the protGear Shiny platform the visuals are interactive and you can identify the features or blocks with strong bias.
After background visualization and selecting the best approach the array data are merged with their specific sample identifier files.
Note: Each array file must have its
own corresponding sample identifier .csv
file stored in
array_vars() function under
sampleID_path
. Check General information section.
The method of background subtraction selected is specified under method below. The background correction is performed by bg_correct() function.
Buffer spots are specific to the experiment design and are not always included. Buffer spots are used to check for unexpected scanning artefacts. The buffer spots should have similar values in different slides. Some outliers are expected for buffer spots close sample spots or landmark. However you can specify the name of your control antigens here buffer_spot=“buffer” if you do not have buffer spots.
buffer_transp <- purrr::map(.x = sample_ID_merged_dfs, .f = buffer_spots, buffer_spot = "buffer")
buffer_transp <- set_names(buffer_transp, purrr::map(filenames, name_of_files))
buffers <- plyr::ldply(buffer_transp)
plot_buffer(buffers, buffer_names = "antigen", buffer_mfi = "FMedianBG_correct", slide_id = ".id")
To calculate the CV’s we utilise the
cv_estimation() function with a
cv_cut_off
specified , sample identifier variable and
antigen specified under sampleID_var
and
antigen
respectively. The replicate_var
and
mfi_var
identifies the variable with the replicate rank
generated and MFI’s values.
#' @________________________________calculated_cv_for_each_data_file_______________________________________
#' data without the selected mean for the best 2 CVs
dataCV <- purrr::map(
.x = sample_ID_merged_dfs, .f = cv_estimation, lab_replicates = 3,
cv_cut_off = 20,
sampleID_var = "sampleID", antigen_var = "antigen", replicate_var = "replicate",
mfi_var = "FMedianBG_correct"
)
lab_replicates <- 3
dataCV <- set_names(dataCV, purrr::map(filenames, name_of_files))
aa <- plyr::ldply(dataCV)
GGally::ggpairs(aa, aes(color = cvCat_all),
columns = paste(seq_len(lab_replicates)), title = "", axisLabels = "show"
) +
theme_light()
Here we create a summary of the CV values for each sample/slide utilising the cv_by_sample_estimation() function. This helps to identify samples with high values of CV. On the protGear dashboard an interactive table is created to show the summary for each sample.
#' @________________________________summary_of_cv_for_each_sample________________________________________
#' creates summaries by cv's greater than 20 and less than 20
cv_cut_off <- 20
dataCV_sample <- purrr::map(
.x = dataCV, .f = protGear::cv_by_sample_estimation, cv_variable = "cvCat_all",
lab_replicates = 3
)
dataCV_sample <- set_names(dataCV_sample, purrr::map(filenames, name_of_files))
all_cv_sample <- plyr::ldply(dataCV_sample)
less_20 <- rlang::sym(paste0("CV <= ", cv_cut_off, "_perc"))
gt_20 <- rlang::sym(paste0("CV > ", cv_cut_off, "_perc"))
less_20_per <- rlang::sym(paste0("% CV <=", cv_cut_off))
gt_20_per <- rlang::sym(paste0("% CV >", cv_cut_off))
ggplot(all_cv_sample) +
geom_violin(aes(.id, `CV <= 20_perc`, color = "% CV =<20")) +
geom_violin(aes(.id, `CV > 20_perc`, color = "% CV >20")) +
geom_violin(aes(.id, Others_perc, color = "Others")) +
ylab("% of CV") +
theme_minimal() +
ggtitle("% of CV >20 or <=20 for each slide all repeats considered")
We have implemented a function best_CV_estimation() to select the best replicates if an experiment has more than 2 technical replicates. This helps to select the less variable replicates.
#' @________________________________data_with_selected_best_2_CV_______________________________________
#' data with the selected mean for the best 2 CVs
dataCV_best2 <- purrr::map(
.x = dataCV, .f = best_CV_estimation, slide_id = "iden", lab_replicates = 3,
cv_cut_off = 20
)
## give the names to the returned list
dataCV_best2 <- set_names(dataCV_best2, purrr::map(filenames, name_of_files))
dataCV_sample_best2 <- purrr::map(
.x = dataCV_best2, .f = cv_by_sample_estimation,
cv_variable = "best_CV_cat", lab_replicates = 3
)
dataCV_sample_best2 <- set_names(dataCV_sample_best2, purrr::map(filenames, name_of_files))
all_cv_sample_best2 <- plyr::ldply(dataCV_sample_best2)
On the violin below we observe that with selecting the less variable replicates , the percentage of the “good CV” values increases.
## plot only the CV perccentages
ggplot(all_cv_sample_best2) +
geom_violin(aes(.id, `CV <= 20_perc`, color = "% CV =<20")) +
geom_violin(aes(.id, `CV > 20_perc`, color = "% CV >20")) +
geom_violin(aes(.id, Others_perc, color = "Others")) +
ylab("% of CV") +
theme_minimal() +
ggtitle("% of CV >20 or <=20 for each slide")
Tag subtraction is applied for antigens containing purification tags.
A file with the specific TAG name for each antigen is loaded. The file
has the antigen,TAG and TAG_name
and the TAG_name must be
part of the antigens listed.
tag_file <- read.csv(system.file("extdata/TAG_antigens.csv", package = "protGear"))
tag_antigens <- c("CD4TAG", "GST", "MBP")
batch_vars <- list(machine = "m1", day = "0520")
antigen | TAG | TAG_name |
---|---|---|
AARP | 0 | CD4TAG |
AMA1 | 0 | CD4TAG |
ASP | 0 | CD4TAG |
CD4TAG | 99 | NO_TAG |
CLAG3.2 | 0 | CD4TAG |
EBA140 | 0 | CD4TAG |
EBA175 | 0 | CD4TAG |
EBA181 | 0 | CD4TAG |
ETRAMP10.2 | 0 | CD4TAG |
GAMA | 0 | CD4TAG |
The function tag_subtract() implements the TAG subtration by matching the TAG names with the corresponding TAG values.
#' @________________________________subtract_the_tag_values_______________________________________
#'
## tag subtract
## read in the KILCHip TAG file to substract GST-1, MBP -2 and CD4TAG - 0 file
dataCV_tag <- purrr::map(
.x = dataCV_best2, .f = tag_subtract,
tag_antigens = tag_antigens, mean_best_CV_var = "mean_best_CV", tag_file = tag_file,
antigen_var = "antigen",
batch_vars = batch_vars
)
dataCV_tag <- set_names(dataCV_tag, purrr::map(filenames, name_of_files))
dataCV_tag <- plyr::ldply(dataCV_tag)
In this example here we plot a graph of antigens Tagged with GST before and after TAG subtraction.
aaa <- dataCV_tag %>%
filter(TAG_name == "GST")
aaa <- aaa %>%
dplyr::select(.id, sampleID, antigen, mean_best_CV, mean_best_CV_tag)
aaa <- aaa %>%
gather(measure, mfi, -c(.id:antigen))
ggplot(aaa, aes(as.factor(antigen), mfi, color = measure)) +
geom_boxplot(aes(fill = measure), alpha = 0.5) +
theme_light() +
xlab("antigen name") +
ggtitle("Before and after TAG subtraction") +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
To normalise the data, we create a matrix matrix_antigen
with all the data combined. We ensure the slide identifier is included
as row names of the matrix or we have a way to join them after
normalisation. The array_matrix
matrix is used to hold
these parameters. In place of AMA1
in the example below you
use one of your features or antigen. We have implemented four different
normalisation techniques;
df_to_normalise <- dataCV_tag %>%
ungroup() %>%
dplyr::select(slide = .id, sampleID, sample_array_ID, antigen, mean_best_CV) %>%
group_by(sampleID, slide)
df_to_normalise$sample_index <- group_indices(.data = df_to_normalise)
###
to_normalise <- df_to_normalise %>%
ungroup() %>%
dplyr::select(-slide, -sampleID, -sample_array_ID) %>%
dplyr::select(antigen, sample_index, everything()) %>%
gather(variable, value, -(antigen:sample_index)) %>%
unite(temp, antigen) %>%
dplyr::select(-variable) %>%
spread(temp, value) %>%
as.data.frame(.)
### get the row names of the machine data
row.names(to_normalise) <- to_normalise$sample_index
# batch_all <- as.factor(paste0(to_normalise$machine,"/",to_normalise$day))
# machines <- as.factor(to_normalise$machine)
# day_batches <- as.factor(to_normalise$day)
## create the matrix to normalise
matrix_antigen <- to_normalise %>%
dplyr::select(-sample_index) %>%
as.matrix(.)
## create the matrix to hold the important parameters
## in place of AMA1 you use one of your features or antigen
array_matrix <- df_to_normalise %>%
filter(antigen == "AMA1") %>%
ungroup() %>%
dplyr::select(sample_array_ID, sample_index, slide)
control_antigens <- c("CommercialHumanIgG", "CD4TAG")
The matrix_normalise() function is used to
normalise the data and returns a list of plots and a matrix of
normalised values. A plot is returned if return_plot = TRUE
otherwise only a matrix of normalised values will be returned.
normlise_df <- matrix_normalise(matrix_antigen,
method = "vsn", array_matrix = array_matrix,
return_plot = TRUE, control_antigens = control_antigens
)
normlise_df$plot_normalisation
On the dashboard we compare the different normalisation techniques using the mutiple_plot() function after loading the data.
control_antigens <- c("CommercialHumanIgG", "CD4TAG")
## no normalisation
normalise_list_none <- matrix_normalise(
matrix_antigen = matrix_antigen,
method = "none",
array_matrix = array_matrix,
return_plot = TRUE,
control_antigens = control_antigens
)
names(normalise_list_none) <- c("matrix_antigen_none", "plot_none")
## log2 normalisation
normalise_list_log <- matrix_normalise(
matrix_antigen = matrix_antigen,
method = "log2",
array_matrix = array_matrix,
return_plot = TRUE,
control_antigens = control_antigens
)
names(normalise_list_log) <- c("matrix_antigen_log", "plot_log")
## vsn normalisation
normalise_list_vsn <- matrix_normalise(
matrix_antigen = matrix_antigen,
method = "vsn",
array_matrix = array_matrix,
return_plot = TRUE,
control_antigens = control_antigens
)
names(normalise_list_vsn) <- c("matrix_antigen_vsn", "plot_vsn")
## cyclic loess with log
normalise_list_cyclic_loess_log <- matrix_normalise(
matrix_antigen = matrix_antigen,
method = "cyclic_loess_log",
array_matrix = array_matrix,
return_plot = TRUE,
control_antigens = control_antigens
)
names(normalise_list_cyclic_loess_log) <- c(
"matrix_antigen_cyclic_loess_log",
"plot_cyclic_loess_log"
)
normalise_list_rlm <- matrix_normalise(
matrix_antigen = matrix_antigen,
method = "rlm",
array_matrix = array_matrix,
return_plot = TRUE,
control_antigens = control_antigens
)
names(normalise_list_rlm) <- c("matrix_antigen_rlm", "plot_rlm")
## create a list after normalisation
normalised_list <- c(
normalise_list_none,
normalise_list_log,
normalise_list_vsn,
normalise_list_cyclic_loess_log,
normalise_list_rlm
)
##
normalised_list_plot <- normalised_list[grepl("plot", names(normalised_list))]
norm_df <- normlise_df$matrix_antigen_normalised
norm_df <- norm_df %>%
dplyr::select(-control_antigens)
p3 <- pheatmap::pheatmap(norm_df,
scale = "none", cluster_rows = FALSE,
main = paste("VSN", "Normalised Data"),
silent = TRUE
)
#-------
## if you want to save the file
# p3 <- ggplotify::as.ggplot(p3)
# p <- p3 + theme_void()
# ggsave(p ,
# filename ="heatmap.PNG" ,
# width = 16 , height = 12 ,
# limitsize = FALSE,
# dpi=200 )
#-------
p3
norm_df <- normlise_df$matrix_antigen_normalised
res_pca <- prcomp(norm_df, scale = TRUE)
var <- get_pca_var(res_pca)
vars_visualise <- 20
# Visualize the PCA
## individuals contributing to the PCA
p1 <- fviz_pca_ind(res_pca,
col.var = "contrib", # Color by contributions to the PC
gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"),
repel = TRUE # Avoid text overlapping
) + theme_minimal()
# Select the top vars_visualise contributing variables
p2 <- fviz_pca_biplot(res_pca,
label = "var",
select.var = list(contrib = vars_visualise)
) +
theme_minimal()
# Total cos2 of variables on Dim.1 and Dim.2
p3 <- fviz_cos2(res_pca, choice = "var", axes = 1:2, top = vars_visualise)
# Color by cos2 values: quality on the factor map
p4 <- fviz_pca_var(res_pca,
col.var = "cos2",
gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"),
select.var = list(contrib = vars_visualise),
repel = TRUE # Avoid text overlapping
)
## combine the plots into one grid
## combine the plots into one grid
## combine the plots into one grid
p_pca <- gridExtra::grid.arrange(p1, p2, p3, p4, ncol = 2)
## If you want to save the file
# ggsave(p_pca ,
# filename ="p_pca.PNG" ,
# width = 16 , height = 12 ,
# units = "in",
# limitsize = FALSE,
# dpi=300)
p_pca
## TableGrob (2 x 2) "arrange": 4 grobs
## z cells name grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
## 3 3 (2-2,1-1) arrange gtable[layout]
## 4 4 (2-2,2-2) arrange gtable[layout]
Shiny is an R package that makes it easy to build interactive web apps straight from R. protGear has a built in user-friendly Shiny dashboard to assist in real-time processing and visualization. It provides five sequential steps for handling a data table of fluorescent intensities. The dashboard is launched as below from R or RStudio. To Install R: Open an internet browser and go to www.r-project.org.
## R version 4.4.2 (2024-10-31)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.1 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so; LAPACK version 3.12.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: Etc/UTC
## tzcode source: system (glibc)
##
## attached base packages:
## [1] grid stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] protGear_1.11.0 vsn_3.75.0 Biobase_2.67.0
## [4] BiocGenerics_0.53.3 generics_0.1.3 limma_3.63.2
## [7] tidyr_1.3.1 dplyr_1.1.4 remotes_2.5.0
## [10] ggplotify_0.1.2 GGally_2.2.1 rlang_1.1.4
## [13] magick_2.8.5 factoextra_1.0.7 FactoMineR_2.11
## [16] styler_1.10.3 knitr_1.49 png_0.1-8
## [19] gridExtra_2.3 data.table_1.16.2 pheatmap_1.0.12
## [22] scales_1.3.0 purrr_1.0.2 gtools_3.9.5
## [25] ggpubr_0.6.0 ggplot2_3.5.1
##
## loaded via a namespace (and not attached):
## [1] RColorBrewer_1.1-3 sys_3.4.3 jsonlite_1.8.9
## [4] magrittr_2.0.3 estimability_1.5.1 farver_2.1.2
## [7] rmarkdown_2.29 fs_1.6.5 zlibbioc_1.52.0
## [10] vctrs_0.6.5 memoise_2.0.1 rstatix_0.7.2
## [13] htmltools_0.5.8.1 broom_1.0.7 Formula_1.2-5
## [16] gridGraphics_0.5-1 sass_0.4.9 bslib_0.8.0
## [19] htmlwidgets_1.6.4 plyr_1.8.9 plotly_4.10.4
## [22] emmeans_1.10.5 cachem_1.1.0 buildtools_1.0.0
## [25] mime_0.12 lifecycle_1.0.4 pkgconfig_2.0.3
## [28] Matrix_1.7-1 R6_2.5.1 fastmap_1.2.0
## [31] GenomeInfoDbData_1.2.13 MatrixGenerics_1.19.0 shiny_1.9.1
## [34] digest_0.6.37 colorspace_2.1-1 AnnotationDbi_1.69.0
## [37] S4Vectors_0.45.2 RSQLite_2.3.8 labeling_0.4.3
## [40] fansi_1.0.6 mgcv_1.9-1 httr_1.4.7
## [43] abind_1.4-8 compiler_4.4.2 bit64_4.5.2
## [46] withr_3.0.2 backports_1.5.0 carData_3.0-5
## [49] DBI_1.2.3 ggstats_0.7.0 R.utils_2.12.3
## [52] ggsignif_0.6.4 MASS_7.3-61 scatterplot3d_0.3-44
## [55] flashClust_1.01-2 tools_4.4.2 httpuv_1.6.15
## [58] R.oo_1.27.0 glue_1.8.0 nlme_3.1-166
## [61] R.cache_0.16.0 promises_1.3.2 cluster_2.1.6
## [64] gtable_0.3.6 tzdb_0.4.0 R.methodsS3_1.8.2
## [67] preprocessCore_1.69.0 hms_1.1.3 car_3.1-3
## [70] utf8_1.2.4 XVector_0.47.0 ggrepel_0.9.6
## [73] pillar_1.9.0 yulab.utils_0.1.8 genefilter_1.89.0
## [76] later_1.4.1 splines_4.4.2 Kendall_2.2.1
## [79] lattice_0.22-6 survival_3.7-0 bit_4.5.0
## [82] annotate_1.85.0 tidyselect_1.2.1 maketools_1.3.1
## [85] Biostrings_2.75.1 IRanges_2.41.1 shinydashboard_0.7.2
## [88] stats4_4.4.2 xfun_0.49 statmod_1.5.0
## [91] matrixStats_1.4.1 DT_0.33 UCSC.utils_1.3.0
## [94] lazyeval_0.2.2 yaml_2.3.10 boot_1.3-31
## [97] evaluate_1.0.1 tibble_3.2.1 BiocManager_1.30.25
## [100] multcompView_0.1-10 cli_3.6.3 affyio_1.77.0
## [103] xtable_1.8-4 munsell_0.5.1 jquerylib_0.1.4
## [106] Rcpp_1.0.13-1 GenomeInfoDb_1.43.2 XML_3.99-0.17
## [109] leaps_3.2 readr_2.1.5 blob_1.2.4
## [112] flexdashboard_0.6.2 viridisLite_0.4.2 mvtnorm_1.3-2
## [115] affy_1.85.0 crayon_1.5.3 KEGGREST_1.47.0