Title: | Probe region expression estimation for RNA-seq data for improved microarray comparability |
---|---|
Description: | The prebs package aims at making RNA-sequencing (RNA-seq) data more comparable to microarray data. The comparability is achieved by summarizing sequencing-based expressions of probe regions using a modified version of RMA algorithm. The pipeline takes mapped reads in BAM format as an input and produces either gene expressions or original microarray probe set expressions as an output. |
Authors: | Karolis Uziela and Antti Honkela |
Maintainer: | Karolis Uziela <[email protected]> |
License: | Artistic-2.0 |
Version: | 1.47.0 |
Built: | 2024-11-24 06:29:13 UTC |
Source: | https://github.com/bioc/prebs |
calc_prebs
calculates PREBS values for given set of BAM files.
calc_prebs(bam_files, probe_mapping_file, cdf_name = NULL, cluster = NULL, output_eset = TRUE, paired_ended_reads = FALSE, ignore_strand = TRUE, sum.method = "rpa")
calc_prebs(bam_files, probe_mapping_file, cdf_name = NULL, cluster = NULL, output_eset = TRUE, paired_ended_reads = FALSE, ignore_strand = TRUE, sum.method = "rpa")
bam_files |
A vector containing .bam files. |
probe_mapping_file |
A file containing probe mappings in the genome. |
cdf_name |
A name of CDF package to use in RMA algorithm. If cdf_name=NULL, the package name is inferred from the name of probe_mapping_file ("HGU133Plus2_Hs_ENSG_mapping.txt" -> "hgu133plus2hsensgcdf") |
cluster |
A cluster object created using "makeCluster" function from "parellel" package. If cluster=NULL, no parallelization is used. |
output_eset |
If set to TRUE, the output of |
paired_ended_reads |
Set it to TRUE if your data contains paired-ended reads. Otherwise, the two read mates will be treated as independent units. |
ignore_strand |
If set to TRUE, then the strand is ignored while counting read overlaps with probe regions. If you use strand-specific RNA-seq protocol, set to FALSE, otherwise set it to TRUE. |
sum.method |
Microarray summarization method to be used. Can be either |
calc_prebs
is the main function of prebs
package that implements the whole
pipeline. The function takes mapped reads in BAM format and probe sequence
mappings as an input.
calc_prebs
can run in two modes: rpa
and rma
. RMA is the classical
microarray summarization algorithm developed by R. A. Irizarry et al. (2003), while RPA is a newer algorithm that was developed by
L. Lahti et al. (2011). The default mode is rpa
. NOTE: before prebs
version 1.7.1 only RMA mode was available.
The output format depends on output_eset
option. If output_eset=TRUE
then
calc_prebs
returns ExpressionSet object (ExpressionSet object is defined in
affy
package). Otherwise, it returns a data frame containing PREBS values.
For running calc_prebs
with custom CDF, the custom CDF package has to be
downloaded and installed from Custom CDF website:
http://brainarray.mbni.med.umich.edu/CustomCDF
For running calc_prebs
with manufacturer's CDF, the manufacturer's CDF package
can be installed from Bioconductor, for example:
BiocManager::install("GenomicRanges");
BiocManager::install("hgu133plus2cdf")
For a detailed input specification, please refer to the prebs
vignette.
ExpressionSet object or a data frame containing PREBS values
if (require(prebsdata)) { # Get full paths to data files in \code{prebsdata} package bam_file1 <- system.file(file.path("sample_bam_files", "input1.bam"), package="prebsdata") bam_file2 <- system.file(file.path("sample_bam_files", "input2.bam"), package="prebsdata") bam_files <- c(bam_file1, bam_file2) custom_cdf_mapping1 <- system.file(file.path("custom-cdf", "HGU133Plus2_Hs_ENSG_mapping.txt"), package="prebsdata") custom_cdf_mapping2 <- system.file(file.path("custom-cdf", "HGU133A2_Hs_ENSG_mapping.txt"), package="prebsdata") manufacturer_cdf_mapping <- system.file(file.path("manufacturer-cdf", "HGU133Plus2_mapping.txt"), package="prebsdata") if (interactive()) { # Run PREBS using custom CDF without parallelization ("rpa" mode) prebs_values <- calc_prebs(bam_files, custom_cdf_mapping1) head(exprs(prebs_values)) # Run PREBS using custom CDF without parallelization ("rma" mode) prebs_values <- calc_prebs(bam_files, custom_cdf_mapping1, sum.method="rma") head(exprs(prebs_values)) # Run PREBS using custom CDF with parallelization library(parallel) N_CORES = 2 CLUSTER <- makeCluster(N_CORES) prebs_values <- calc_prebs(bam_files, custom_cdf_mapping1, cluster=CLUSTER) stopCluster(CLUSTER) # Run PREBS using another custom CDF prebs_values <- calc_prebs(bam_files, custom_cdf_mapping2) # Run PREBS and return data frame instead of ExpressionSet object prebs_values <- calc_prebs(bam_files, custom_cdf_mapping1, output_eset=FALSE) head(prebs_values) } # Run PREBS using Manufacturer's CDF (outputs probe set expressions) prebs_values <- calc_prebs(bam_files, manufacturer_cdf_mapping) head(exprs(prebs_values)) # Same as above, but state CDF package name explicitly prebs_values <- calc_prebs(bam_files, manufacturer_cdf_mapping, cdf_name="hgu133plus2cdf") }
if (require(prebsdata)) { # Get full paths to data files in \code{prebsdata} package bam_file1 <- system.file(file.path("sample_bam_files", "input1.bam"), package="prebsdata") bam_file2 <- system.file(file.path("sample_bam_files", "input2.bam"), package="prebsdata") bam_files <- c(bam_file1, bam_file2) custom_cdf_mapping1 <- system.file(file.path("custom-cdf", "HGU133Plus2_Hs_ENSG_mapping.txt"), package="prebsdata") custom_cdf_mapping2 <- system.file(file.path("custom-cdf", "HGU133A2_Hs_ENSG_mapping.txt"), package="prebsdata") manufacturer_cdf_mapping <- system.file(file.path("manufacturer-cdf", "HGU133Plus2_mapping.txt"), package="prebsdata") if (interactive()) { # Run PREBS using custom CDF without parallelization ("rpa" mode) prebs_values <- calc_prebs(bam_files, custom_cdf_mapping1) head(exprs(prebs_values)) # Run PREBS using custom CDF without parallelization ("rma" mode) prebs_values <- calc_prebs(bam_files, custom_cdf_mapping1, sum.method="rma") head(exprs(prebs_values)) # Run PREBS using custom CDF with parallelization library(parallel) N_CORES = 2 CLUSTER <- makeCluster(N_CORES) prebs_values <- calc_prebs(bam_files, custom_cdf_mapping1, cluster=CLUSTER) stopCluster(CLUSTER) # Run PREBS using another custom CDF prebs_values <- calc_prebs(bam_files, custom_cdf_mapping2) # Run PREBS and return data frame instead of ExpressionSet object prebs_values <- calc_prebs(bam_files, custom_cdf_mapping1, output_eset=FALSE) head(prebs_values) } # Run PREBS using Manufacturer's CDF (outputs probe set expressions) prebs_values <- calc_prebs(bam_files, manufacturer_cdf_mapping) head(exprs(prebs_values)) # Same as above, but state CDF package name explicitly prebs_values <- calc_prebs(bam_files, manufacturer_cdf_mapping, cdf_name="hgu133plus2cdf") }
The prebs package aims at making RNA-sequencing (RNA-seq) data more comparable to microarray data. The comparability is achieved by summarizing sequencing-based expressions of probe regions using standard microarray summarization algorithms (RPA or RMA). The pipeline takes mapped reads in BAM format as an input and produces either gene expressions or original microarray probe set expressions as an output.
The package has only one public function: calc_prebs
.
Type help(calc_prebs) for more information on the usage.